Computer Security CS 426 Lecture 35

Commitment & Zero Knowledge Proofs

Fall 2010/Lecture 35

Readings for This Lecture

- Optional:
 - Haveli and Micali: "Practical and Privably-Secure Commitment Schemes from Collision-Free Hashing"
 - Jean-Jacques et al.: <u>How to</u> <u>explain Zero-Knowledge</u> <u>Protocols to Your Children</u>

• This lecture's topics won't be in the final exam

Commitment schemes

- An electronic way to temporarily hide a value that cannot be changed
 - Stage 1 (Commit)
 - Sender locks a message in a box and sends the locked box to another party called the Receiver
 - State 2 (Reveal)
 - the Sender proves to the Receiver that the message in the box is a certain message
- Usage scenarios: flipping fair coins, bidding for a contract

Types of commitment

- Bit commitment
- Integer commitment
- String commitment

Security properties of commitment schemes

- Hiding
 - at the end of Stage 1, no adversarial receiver learns any information about the committed value
- Binding
 - at the end of Stage 1, no adversarial sender can successfully reveal two different values in Stage 2

A broken commitment scheme

- Using encryption
 - Stage 1 (Commit)
 - the Sender generates a key k and sends E_k[M] to the Receiver
 - State 2 (Reveal)
 - the Sender sends k to the Receiver, the Receiver can decrypt the message
- What is wrong using the above as a commitment scheme? Is it hiding? Is this binding?

Formalizing Security Properties of Commitment schemes

- Two kinds of adversaries
 - those with infinite computation power and those with limited computation power
- Unconditional hiding
 - the commitment phase does not leak any information about the committed message, in the information theoretical sense (similar to perfect secrecy)
- Computational hiding
 - an adversary with limited computation power cannot learn anything about the committed message (similar to semantic security)

Formalizing Security Properties of Commitment schemes

- Unconditional binding
 - after the commitment phase, an infinite powerful adversary sender cannot reveal two different values
- Computational binding
 - after the commitment phase, an adversary with limited computation power cannot reveal two different values
- No commitment scheme can be both unconditional hiding and unconditional binding

Another (also broken) commitment scheme

- Using a one-way function *H*
 - Stage 1 (Commit)
 - the Sender sends c=H(M) to the Receiver
 - State 2 (Reveal)
 - the Sender sends *M* to the Receiver, the Receiver verifies that c=*H*(*M*)
- What is wrong using this as a commitment scheme? Is it binding? Is it hiding?

Commitment Schemes Using Cryptographic Hash Functions

- A scheme likely secure enough in practice, but difficult to prove security (assuming only H is one-way and strongly collision-resistant)
 - To commit to message M, choose random, fixedlength r, send H(r || M)
 - To open commitment, send r, M
 - Receiver cannot fully recover M.
 - Is this computational or information theoretic hiding?
 - Sender cannot find another M' to open.
 - Is this computational or information theoretic binding?

Commitment must be randomized.

For Provably Secure Commitment Scheme based on Cryptogrpahic Hash

- See Haveli and Micali:
 - "Practical and Privably-Secure Commitment Schemes from Collision-Free Hashing"
 - Uses Universal Hashing (a family of hash functions with some properties)

The Pederson Commitment Scheme

- Public parameters: (p,g,h)
 - p: large prime (1024 bit)
 - g: a number in [2, p-1]
 - h: another element such that log_gh is unknown
- Protocol
 - To commit to x, committer chooses random r and sends (g^xh^r mod p) to the receiver.
 - To open, the committer sends x and r to the receiver
- Benefits:
 - One can prove many things about the committed value without opening it

Pedersen Commitment Scheme (cont.)

- Unconditionally hiding
 - Given a commitment c, every value x is equally likely to be the value committed in c.
 - For example, given x,r, and any x', there exists r' such that g^xh^r = g^{x'}h^{r'}, in fact r = (x-x')a⁻¹ + r mod q.
- Computationally binding
 - Suppose the sender open another value x' ≠ x. That is, the sender find x' and r' such that c = g^xh^{r'} mod p. Now the sender knows x,r,x', and r' s.t., g^xh^r = g^{x'}h^{r'} (mod p), the sender can compute log_g(h) = (x'-x)·(r-r')⁻¹. Assume DL is hard, the sender cannot open the commitment with another value.

Properties of Interactive Zero-Knowledge Proofs

- Zero-knowledge Proof of Knowledge
 - Proving knowing a secret, without revealing any information about the secret.
- Completeness
 - Given honest prover and honest verifier, the protocol succeeds with overwhelming probability
- Soundness
 - No one who doesn't know the secret can convince the verifier with nonnegligible probability
- Zero knowledge
 - The proof does not leak any additional information

Intuitive Explanation of ZK

- See the paper "How to explain Zero-Knowledge Protocols to Your Children"
 - http://sparrow.ece.cmu.edu/group/630f08/readings/ZK-IntroPaper.pdf

Schnorr Protocol (ZK Proof of Knowing Discrete Log)

- System parameter: p, q, g
 - We have $g^q = 1 \mod p$
- Public identity: c = g^a mod p
- Private authenticator:
- Protocol
 - 1. P: picks random r in [1..q], sends $d = g^r \mod p$,

а

- 2. V: sends random challenge e in [1..2^t]
- 3. P: sends y=r- ea (mod q)
- 4. V: accepts if $d = g^y c^e \mod p$

Security of Schnorr Protocol -Soundness

- Probability of forge: 1/2^t
 - The prover who does not know *a* can cheat by guess *e*
 - Set $d = c^e g^y$ at the first step
- We build a knowledge extractor as follows. Suppose the prover is challenged twice with on same c, first with e1, second with e2.
 - Send e1, receive y1 such that $g^{y1}c^{e1} = d$
 - Send e2, receive y2 such that $g^{y2}c^{e2} = d$
 - $-g^{y_1-y_2}=c^{e_2-e_1}$, output $\log_g(c) = (y_1-y_2) \cdot (e_2-e_1)^{-1}$

Pedersen Commitment – ZK Prove know how to open

- Public commitment c = g^xh^r (mod p)
- Private knowledge x,r
- Protocol:
 - 1. P: picks random y, s in [1..q], sends $d = g^{y}h^{s}$ mod p
 - 2. V: sends random challenge e in [1..q]
 - 3. P: sends u=y+ex, v=s+er (mod q)
 - 4. V: accepts if $g^{u}h^{v} = dc^{e} \pmod{p}$
- Security property similar to Schnorr protocol

Other Things One Can Prove in ZK fashion with Pederson Commitments

- The committed value is a bit.
- The committed value is in a range.
- Two committed values equal
- Two committed values satisfy some linear relations
- And many more

Coming Attractions ...

Network Security Defenses

