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Review of Secret Key (Symmetric) 
CryptographyCryptography 
• Confidentiality• Confidentiality

– stream ciphers (uses PRNG)
block ciphers with encryption modes– block ciphers with encryption modes

• Integrity
Cryptographic hash functions– Cryptographic hash functions

– Message authentication code (keyed hash functions)
• Limitation: sender and receiver must share the• Limitation: sender and receiver must share the 

same key
– Needs secure channel for key distribution– Needs secure channel for key distribution
– Impossible for two parties having no prior relationship
– Needs many keys for n parties to communicate
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Needs many keys for n parties to communicate



Public Key Encryption Overviewy yp

• Each party has a PAIR (K, K-1) of keys: ac pa ty as a ( , ) o eys
– K is the public key, and used for encryption
– K-1 is the private key, and used for decryption
– Satisfies    DK-1[EK[M]] = M

• Knowing the public-key K, it is computationally infeasible 
t t th i t k K 1to compute the private key K-1

– How to check (K,K-1) is a pair?
– Offers only computational security PK Encryption impossible– Offers only computational security.  PK Encryption impossible 

when P=NP, as deriving K-1 from K is in NP.

• The public-key K may be made publicly available, e.g., in p y y p y g
a publicly available directory
– Many can encrypt, only one can decrypt
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• Public-key systems aka asymmetric crypto systems



Public Key Cryptography Early 
HistoryHistory
• The concept is proposed in Diffie and Hellman 

(1976) “N Di ti i C t h ”(1976) “New Directions in Cryptography”
– public-key encryption schemes

bli k di t ib ti t– public key distribution systems
• Diffie-Hellman key agreement protocol

digital signature– digital signature
• Public-key encryption was proposed in 1970 by 

James EllisJames Ellis
– in a classified paper made public in 1997 by the British 

Governmental Communications HeadquartersGovernmental Communications Headquarters
• Concept of digital signature is still originally due 

to Diffie & Hellman
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to e & e a



Public Key Encryption Algorithmsy yp g

Al t ll bli k ti l ith• Almost all public-key encryption algorithms use 
either number theory and modular arithmetic, or 

lli tielliptic curves
• RSA

– based on the hardness of factoring large numbers
• El Gamal

– Based on the hardness of solving discrete logarithm
– Basic idea: public key gx, private key x, to encrypt: p y g , p y , yp

[gy, gxy M].
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RSA Algorithmg

• Invented in 1978 by Ron Rivest Adi ShamirInvented in 1978 by Ron Rivest, Adi Shamir 
and Leonard Adleman
– Published as R L Rivest, A Shamir, L Adleman, "OnPublished as R L Rivest, A Shamir, L Adleman, On 

Digital Signatures and Public Key Cryptosystems", 
Communications of the ACM, vol 21 no 2, pp120-126, 
Feb 1978Feb 1978 

• Security relies on the difficulty of factoring large 
composite numberscomposite numbers 

• Essentially the same algorithm was discovered 
in 1973 by Clifford Cocks who works for thein 1973 by Clifford Cocks, who works for the 
British intelligence

Fall 2010/Lecture 31 6



RSA Public Key Crypto Systemy yp y
Key generation:y g
1. Select 2 large prime numbers of about the same 

size, p and q
T i ll h h b t 512 d 2048 bitTypically each p, q has between 512 and 2048 bits

2. Compute n = pq, and (n) = (q-1)(p-1)
3 Select e 1<e< (n) s t gcd(e (n)) = 13. Select e,  1<e< (n), s.t. gcd(e, (n)) = 1

Typically e=3 or e=65537
4. Compute d, 1< d< (n) s.t. ed  1 mod (n)4. Compute  d, 1  d  (n) s.t.  ed 1 mod (n)

Knowing (n), d easy to compute. 

Public key:  (e, n)
Private key:  d
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RSA Description (cont.) p ( )

EncryptionEncryption
Given a message M, 0 < M < n M  Zn {0}
use public key (e n)use public key (e, n) 
compute C = Me mod n  C  Zn {0}

Decryption
Given a ciphertext C use private key (d)Given a ciphertext C, use private key (d) 
Compute Cd mod n = (Me mod n)d mod n = Med

mod n = Mmod n  M
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C = Me mod (n=pq)

Plaintext: M Ciphertext: C
Cd mod n

From n, difficult to figure out p,q

From (n,e), difficult to figure d.From (n,e), difficult to figure d.

From (n,e) and C, difficult to figure out M s.t. C = Me
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RSA Examplep

p = 11 q = 7 n = 77 (n) = 60• p = 11, q = 7, n = 77, (n) = 60
• d = 13, e = 37   (ed = 481;  ed mod 60 = 1)

L t M 15 Th C Me d• Let M = 15.  Then C  Me mod n
– C  1537 (mod 77) = 71

M Cd d• M  Cd mod n
– M  7113 (mod 77) = 15
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RSA Example 2p

P t• Parameters:
– p = 3, q = 5, q= pq = 15
– (n) = ?

• Let e = 3, what is d?
• Given M=2, what is C?
• How to decrypt?How to decrypt?
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RSA Securityy
• Security depends on the difficulty of factoring n

– Factor n => (n) => compute d from (e, (n))

• The length of n=pq reflects the strength
700 bit f t d i 2007– 700-bit n factored in 2007

– 768 bit factored in 2009

• 1024 bit for minimal level of security today• 1024 bit for minimal level of security today
– likely to be breakable in near future

• Minimal 2048 bits recommended for current usageMinimal 2048 bits recommended for current usage 
• NIST suggests 15360-bit RSA keys are equivalent in 

strength to 256-bitstrength to 256 bit 
• RSA speed is quadratic in key length
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Real World Usage of Public Key 
Encr ptionEncryption

Often used to encrypt a symmetric key• Often used to encrypt a symmetric key
– To encrypt a message M under a public key (n,e), generate a 

new AES key K, compute [RSA(n,e,K), AES(K,M)]y , p [ ( , , ), ( , )]

• Plain RSA does not satisfy IND requirement.
– How to break it?

• One often needs padding, e.g., Optimal Asymmetric 
Encryption Padding (OAEP)
– Roughly, to encrypt M, chooses random r, encode M as

M’ = [X = M  H1(r)  , Y= r  H2(X) ]
where H1 and H2 are cryptographic hash functions, then encrypt 1 2 yp g p , yp

it as (M’) e mod n 
– Note that given M’=[X,Y],  r = Y  H2(X), and M = X  H1(r) 
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Digital Signatures: The Problemg g

• Consider the real-life example where a person pays by 
credit card and signs a bill; the seller verifies that the 
signature on the bill is the same with the signature onsignature on the bill is the same with the signature on 
the card

• Contracts they are valid if they are signed• Contracts, they are valid if they are signed.
• Signatures provide non-repudiation.

– ensuring that a party in a dispute cannot repudiate or refute theensuring that a party in a dispute cannot repudiate, or refute the 
validity of a statement or contract.

• Can we have a similar service in the electronic world? 
– Does Message Authentication Code provide non-repudiation?  

Why?
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Digital Signaturesg g
• MAC: One party generates MAC, one party verifies 

integrity.
• Digital signatures: One party generates signature, 

many parties can verify.
• Digital Signature: a data string which associates a 

ith i i ti titmessage with some originating entity.
• Digital Signature Scheme:

( )– a signing algorithm: takes a message and a (private) signing 
key, outputs a signature

– a verification algorithm: takes a (public) key verification key a– a verification algorithm: takes a (public) key verification key, a 
message, and a signature

• Provides:
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– Authentication, Data integrity, Non-Repudiation



Digital Signatures and Hash g g

Very often digital signatures are used• Very often digital signatures are used 
with hash functions, hash of a 
message is signed, instead of themessage is signed, instead of the 
message.

• Hash function must be:
– Pre-image resistant
– Weak collision resistant
– Strong collision resistant 
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RSA Signaturesg

Key generation (as in RSA encryption):Key generation (as in RSA encryption):
• Select 2 large prime numbers of about the 

same size, p and q, p q
• Compute n = pq, and  = (q - 1)(p - 1)
• Select a random integer e,  1 < e < , s.t. 

gcd(e, ) = 1
• Compute  d, 1 <  d <   s.t.  ed  1 mod 

Public key:  (e, n) used for verification
Secret key:  d, used for generation
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RSA Signatures (cont.) g ( )

Signing message MS g g essage
• Verify 0 < M < n
• Compute S = Md mod nCompute S  M mod n

Verifying signature SVerifying signature S
• Use public key (e, n) 
• Compute Se mod n = (Md mod n)e mod n = M• Compute S mod n  (M mod n) mod n  M

Note: in practice a hash of the message is signedNote: in practice, a hash of the message is signed
and not the message itself.
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The Big Pictureg

Secret Key Public Key 

S tti
Secrecy / 
C fid ti lit

Stream ciphers Public key 
ti RSA

Setting Setting

Confidentiality Block ciphers + 
encryption modes

encryption: RSA, 
El Gamal, etc.

Authenticity / 
Integrity

Message 
Authentication 
C d

Digital Signatures: 
RSA, DSA, etc.

Code
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Readings for This Lectureg

• Differ & Hellman:
– New Directions in Cryptography
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Coming Attractions …g

K t d tifi t• Key management and certificates
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