CS 426 (Fall 2010)

Public Key Encryption and Digital Signatures
Review of Secret Key (Symmetric) Cryptography

- Confidentiality
 - stream ciphers (uses PRNG)
 - block ciphers with encryption modes

- Integrity
 - Cryptographic hash functions
 - Message authentication code (keyed hash functions)

- Limitation: sender and receiver must share the same key
 - Needs secure channel for key distribution
 - Impossible for two parties having no prior relationship
 - Needs many keys for n parties to communicate
Public Key Encryption Overview

- Each party has a PAIR (K, K^{-1}) of keys:
 - K is the public key, and used for encryption
 - K^{-1} is the private key, and used for decryption
 - Satisfies $D_{K^{-1}}[E_K[M]] = M$

- Knowing the public-key K, it is computationally infeasible to compute the private key K^{-1}
 - How to check (K,K^{-1}) is a pair?
 - Offers only computational security. PK Encryption impossible when P=NP, as deriving K^{-1} from K is in NP.

- The public-key K may be made publicly available, e.g., in a publicly available directory
 - Many can encrypt, only one can decrypt

- Public-key systems aka *asymmetric* crypto systems
Public Key Cryptography Early History

• The **concept** is proposed in Diffie and Hellman (1976) “New Directions in Cryptography”
 – public-key encryption schemes
 – public key distribution systems
 • Diffie-Hellman key agreement protocol
 – digital signature

• Public-key encryption was proposed in 1970 by James Ellis
 – in a classified paper made public in 1997 by the British Governmental Communications Headquarters

• Concept of digital signature is still originally due to Diffie & Hellman
Public Key Encryption Algorithms

- Almost all public-key encryption algorithms use either number theory and modular arithmetic, or elliptic curves
- RSA
 - based on the hardness of factoring large numbers
- El Gamal
 - Based on the hardness of solving discrete logarithm
 - Basic idea: public key g^x, private key x, to encrypt: $[g^y, g^{xy} M]$.
RSA Algorithm

- Invented in **1978** by Ron Rivest, Adi Shamir and Leonard Adleman
- Security relies on the difficulty of factoring large composite numbers
- Essentially the same algorithm was discovered in 1973 by Clifford Cocks, who works for the British intelligence
RSA Public Key Crypto System

Key generation:
1. Select 2 large prime numbers of about the same size, p and q
 Typically each p, q has between 512 and 2048 bits
2. Compute n = pq, and \(\Phi(n) = (q-1)(p-1) \)
3. Select e, \(1 < e < \Phi(n) \) s.t. \(\gcd(e, \Phi(n)) = 1 \)
 Typically e=3 or e=65537
4. Compute d, \(1 < d < \Phi(n) \) s.t. \(ed \equiv 1 \pmod{\Phi(n)} \)
 Knowing \(\Phi(n) \), d easy to compute.

Public key: (e, n)
Private key: d
RSA Description (cont.)

Encryption
Given a message M, $0 < M < n$ \(M \in \mathbb{Z}_n - \{0\} \)
use public key \((e, n)\)
compute $C = M^e \mod n$ \(C \in \mathbb{Z}_n - \{0\} \)

Decryption
Given a ciphertext C, use private key \((d)\)
Compute $C^d \mod n = (M^e \mod n)^d \mod n = M^{ed} \mod n = M$
Ciphertext: $C = M^e \mod (n=pq)$

Plaintext: M

Ciphertext: C

$C^d \mod n$

From n, difficult to figure out p, q

From (n, e), difficult to figure d.

From (n, e) and C, difficult to figure out M s.t. $C = M^e$
RSA Example

- $p = 11$, $q = 7$, $n = 77$, $\Phi(n) = 60$
- $d = 13$, $e = 37$ \ ($ed = 481$; $ed \mod 60 = 1$)
- Let $M = 15$. Then $C \equiv M^e \mod n$
 - $C \equiv 15^{37} \pmod{77} = 71$
- $M \equiv C^d \mod n$
 - $M \equiv 71^{13} \pmod{77} = 15$
RSA Example 2

- Parameters:
 - $p = 3$, $q = 5$, $pq = 15$
 - $\Phi(n) = ?$

- Let $e = 3$, what is d?

- Given $M=2$, what is C?

- How to decrypt?
RSA Security

• Security depends on the difficulty of factoring n
 – Factor n \Rightarrow \Phi(n) \Rightarrow \text{compute d from } (e, \Phi(n))

• The length of n=pq reflects the strength
 – 700-bit n factored in 2007
 – 768 bit factored in 2009

• 1024 bit for minimal level of security today
 – likely to be breakable in near future

• Minimal 2048 bits recommended for current usage

• NIST suggests 15360-bit RSA keys are equivalent in strength to 256-bit

• RSA speed is quadratic in key length
Real World Usage of Public Key Encryption

- Often used to encrypt a symmetric key
 - To encrypt a message M under a public key (n,e), generate a new AES key K, compute $[RSA(n,e,K), AES(K,M)]$

- Plain RSA does not satisfy IND requirement.
 - How to break it?

- One often needs padding, e.g., Optimal Asymmetric Encryption Padding (OAEP)
 - Roughly, to encrypt M, chooses random r, encode M as
 $M' = [X = M \oplus H_1(r), Y = r \oplus H_2(X)]$
 where H_1 and H_2 are cryptographic hash functions, then encrypt it as $(M')^e \mod n$
 - Note that given $M'=[X,Y]$, $r = Y \oplus H_2(X)$, and $M = X \oplus H_1(r)$
Digital Signatures: The Problem

- Consider the real-life example where a person pays by credit card and signs a bill; the seller verifies that the signature on the bill is the same with the signature on the card.
- Contracts, they are valid if they are signed.
- Signatures provide non-repudiation.
 - ensuring that a party in a dispute cannot repudiate, or refute the validity of a statement or contract.
- Can we have a similar service in the electronic world?
 - Does Message Authentication Code provide non-repudiation? Why?
Digital Signatures

• MAC: One party generates MAC, one party verifies integrity.
• Digital signatures: One party generates signature, many parties can verify.
• Digital Signature: a data string which associates a message with some originating entity.
• Digital Signature Scheme:
 – a signing algorithm: takes a message and a (private) signing key, outputs a signature
 – a verification algorithm: takes a (public) key verification key, a message, and a signature
• Provides:
 – Authentication, Data integrity, Non-Repudiation
Digital Signatures and Hash

- Very often digital signatures are used with hash functions, hash of a message is signed, instead of the message.
- Hash function must be:
 - Pre-image resistant
 - Weak collision resistant
 - Strong collision resistant
RSA Signatures

Key generation (as in RSA encryption):
• Select 2 large prime numbers of about the same size, p and q
• Compute n = pq, and \(\Phi = (q - 1)(p - 1) \)
• Select a random integer e, \(1 < e < \Phi \), s.t. \(\gcd(e, \Phi) = 1 \)
• Compute d, \(1 < d < \Phi \) s.t. \(ed \equiv 1 \mod \Phi \)

Public key: (e, n) used for verification
Secret key: d, used for generation
RSA Signatures (cont.)

Signing message M
- Verify $0 < M < n$
- Compute $S = M^d \mod n$

Verifying signature S
- Use public key (e, n)
- Compute $S^e \mod n = (M^d \mod n)^e \mod n = M$

Note: in practice, a hash of the message is signed and not the message itself.
The Big Picture

<table>
<thead>
<tr>
<th></th>
<th>Secret Key Setting</th>
<th>Public Key Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secrecy / Confidentiality</td>
<td>Stream ciphers Block ciphers + encryption modes</td>
<td>Public key encryption: RSA, El Gamal, etc.</td>
</tr>
<tr>
<td>Authenticity / Integrity</td>
<td>Message Authentication Code</td>
<td>Digital Signatures: RSA, DSA, etc.</td>
</tr>
</tbody>
</table>
Readings for This Lecture

- Differ & Hellman:
 - New Directions in Cryptography
Coming Attractions …

• Key management and certificates