
Computer Security
CS 426
Lecture 29

IFEDAC & Windows MICIFEDAC & Windows MIC

CS426 Fall 2010/Lecture 29 1

Access Control Check

• Given an access request, return an access control
decision based on the policy
– allow / deny

Access A Request Allow / Deny
Control Check

q / y

The Policy
2Fall 2010/Lecture 29CS426

The Gap Between Request &
PolicPolicy

A t bj t t t f ti• A request: a subject wants to perform an action
– E.g., processes in OS

• The policy: each principal has a set of privileges
– E.g., user accounts in OS

• Challenging to fill the gap between the subjectsChallenging to fill the gap between the subjects
and the principals
– relate the subject to the principalsrelate the subject to the principals

3Fall 2010/Lecture 29CS426

Unix DAC Revisited (1)()

Action Process Effective RealAction Process Effective
UID

Real
Principals

User A Logs In shell User A User A

Load Binary “Goodie”
Controlled by user B

Goodie User A ? ?
Controlled by user B

•When the Goodie process issues a request what principal(s)•When the Goodie process issues a request, what principal(s)
is/are responsible for the request?
•Under what assumption, it is correct to say that User A is p , y
responsible for the request?

Assumption: Programs are benign, i.e., they only do

CS426 Fall 2010/Lecture 29 4

what they are told to do.

UNIX DAC Revisited (2)()
Action Process Effective Real

UID Principals
shell User A User A

Load AcroBat Reader Binary AcroBat User A User A

Read File Downloaded from
N t k

AcroBat User A ? ?
Network

•When the AcroBat process (after reading the file) issues a•When the AcroBat process (after reading the file) issues a
request, which principal(s) is/are responsible for the request?
•Under what assumption, it is correct to say that User A is p , y
responsible for the request?

Assumption: Programs are correct, i.e., they handle

CS426 Fall 2010/Lecture 29 5

inputs correctly.

Why DAC is vulnerable?y

I li it ti• Implicit assumptions
– Software are benign, i.e., behave as intended
– Software are correct, i.e., bug-free

• The reality
– Malware are popular
– Software are vulnerable

• The problem is not caused by the discretionary
nature of policy specification!p y p
– i.e., owners can set policies for files

6Fall 2010/Lecture 29CS426

Why DAC is Vulnerable? (cont’)y ()

A d i th f t h i• A deeper reason in the enforcement mechanism
– A single invoker is not enough to capture the origins of

a processa process
• When the program is a Trojan

– The program-provider should be responsible for the
requests

• When the program is vulnerable
– It may be exploited by input-providers
– The requests may be issued by injected code from

input-providers

7Fall 2010/Lecture 29CS426

Revisit: The Origins of a Processg

• DAC• DAC
– Origin: the invoker

Wh t l ?• Who may control a process?
– Invoker
– Program provider
– Input provider

• UMIP
– Add the program-provider and input-providers to the

origins
– High / Low: whether it comes from network or has

received network input
8Fall 2010/Lecture 29CS426

Limitation of UMIP

S t th t b t t k (l)• Separates the system between network (low)
and system critical (high)

• What to do with normal user files?
– Treat them as low:

• User files are not protected
– Treat them at high

• Malicious users (or users with weak passwords) lead to
compromise of the protection

S l ti I f ti Fl E h d• Solution: Information Flow Enhanced
Discretionary Access Control (IFEDAC)

CS426 Fall 2010/Lecture 29 9

IFEDAC Overview

K Id f IFEDAC• Key Idea of IFEDAC:
– Maintains a set of principals that could be responsible

for any requestfor any request
– A request is authorized if all principals in the

responsible set are authorizedp

• Principals in IFEDAC: Entities that may potentially c pa s C t t es t at ay pote t a y
compromise the system
– Local users (DAC user accounts)()
– Remote network traffic

• denoted as net
• represents the remote adversary

10Fall 2010/Lecture 29CS426

Integrity Levels in IFEDACg y

• Maintain an integrity level for each process & file
– A label is a a set of principals

Ø

– E.g., {alice}, Ø, {bob, net}, {net}, …

Ø

{ t} { li } {b b}{net} {alice} {bob}

{ t li } { t b b} { li b b}{net,alice} {net, bob} {alice,bob}

{net alice bob}

CS426 Fall 2010/Lecture 29 11

{net,alice,bob}=

Integrity Levelg y

• For a process, the label contains principals
– Who MAY have gained control over the process

• For a file, the label contains principalsFor a file, the label contains principals
– who have changed the content stored in the file

12Fall 2010/Lecture 29CS426

Integrity Level Trackingg y g

• Track integrity levels using information flow• Track integrity levels using information flow
– p is newly created assign p’parent.IL to p.IL

p receives network communication add {net} to p IL– p receives network communication add {net} to p.IL
– p reads a file f add f.IL to p.IL

i IPC d t f ’ dd ’ IL t IL– p receives IPC data from p’ add p’.IL to p.IL
– p creates a file f assign p.IL to f.IL

it t fil f dd IL t f IL– p writes to a file f add p.IL to f.IL
– p logs in a user u add {u} to p.IL

• Initial integrity level labeling
– The first process init.IL = top (Ø)

13Fall 2010/Lecture 29CS426

Integrity Level Examplesg y p

F l• For example
– Web server’s IL = {net}
– Alice’s email client’s IL = {net, Alice}
– A file saved from Alice’s email attachment has IL =

{ t Ali }{net, Alice}
– pdf viewer’s IL = {Alice}

df i ’ IL ft il tt h t { t– pdf viewer’s IL after opens an email attachment = {net,
Alice}

14Fall 2010/Lecture 29CS426

File Protection Classes

• Each file has three protection classes
– Read protection class (rpc): who can read it
– Write protection class (wpc): who can write to it
– Admin protection class (apc): who can change its rpc

and wpc
– Each value is a set of principals

• Infer file protection classes from DAC policyp p y
– f.rpc

• If f is world-readable, f.rpc = p
• Otherwise, f.rpc = the set of users allowed to read f

– Same for wpc
– f.apc = {owner}

15Fall 2010/Lecture 29CS426

IFEDAC Policy

• An access is allowed if all principals in the process’sAn access is allowed if all principals in the process s
IL are authorized

• A process p requests to access a file fA process p requests to access a file f
– Allow reading, if p.IL f.rpc
– Allow writing, if p.IL f.wpcg, p p
– Allow changing f.rpc, f.wpc and f.apc, if p.IL f.apc

• File’s integrity level can be explicitly changed by g y p y g y
user
– Only the owner of the file can change a file’s integrity

level, and only up to the int. level of the current process
• I.e.,f.IL to IL’, if p.IL f.apc and p.IL IL’

16Fall 2010/Lecture 29CS426

Exceptions

D f lt li t t i t f l ld t d• Default policy too strict for real-world systems and
common practices
– it doesn’t assume any program to be correct

• In reality one has to trust the correctness of “some”
program, needs exceptions to the default policy

• Exceptions are associated with program binariesp p g
• Exceptions imply some form of trust for programs

– The trusts are strictly limited and can be clearlyThe trusts are strictly limited and can be clearly
specified

17Fall 2010/Lecture 29CS426

What Protection Does IFEDAC Offer?

• Achieve the protection objective of DAC, i.e., all p j , ,
allowed operations reflect the intention of
authorized users, under the following , g
assumptions
– Initially, the inferred file integrity levels are correcty, g y
– Initially, files are labeled with correct DAC policies
– Hardware is not compromisedHardware is not compromised
– Kernel cannot be exploited in a critical way
– When a legitimate user intends to upgrade a file’sWhen a legitimate user intends to upgrade a file s

integrity level (or update a file’s protection classes),
the decision is correct

– Exceptions are justified
18Fall 2010/Lecture 29CS426

Usage Case I: Email Client (cont’)g ()
• John saves an email attachment B to /home/john/download

B IL = {john net}– B.IL = {john, net}
• John wants to install B to the system, so executes B as BP

BP IL = {john net}– BP.IL = {john, net}
– BP cannot touch the system files, installation failed if

needs such accessneeds such access
– BP cannot access files that are not world accessible

(can change contents of B’s Internet directory)(g y)
• John really trusts B and wants to install it

– John login as an administrator (see below)g ()
– John explicitly upgrades B.IL to top

• John executes B as BP’

– BP’.IL = top, installation succeed
19Fall 2010/Lecture 29CS426

Usage Case II: Administrator Loging g
• Linux allows normal users to perform system administration

through the sudo tool (sudoer)
• IFEDAC allows specifying privileged users, called sudoers

– Process’s IL maintains when a sudoer logins

• Sudoers’ files have wpc at {u} or lower
– Except the shell startup scripts with wpc at top

• .bash_rc, .bash_profile, .bash_history

• When a sudoer John logins• When a sudoer John logins
– John gets a shell with IL at top
– John can perform system administration in the shellJohn can perform system administration in the shell
– Any descendant that reads john’s normal files will drop to IL {john}
– A utility program is provided to explicitly downgrade shell’s IL to {john}

20Fall 2010/Lecture 29CS426

Comparing IFEDAC with Biba (1)p g ()

In Biba an object has one integrity level• In Biba, an object has one integrity level
– Determines who can write to it, and how will it contaminates a

subject who readsj

• In IFEDAC, an object has
– An integrity level, records quality of info in the object, and

ensures correct contamination tracking
– A write protection class, determines who can write it and protects

integrity of the objectintegrity of the object
– A read protection class, determines who can read it and protects

confidentiality of the object

• IFEDAC infers protection classes from DAC permissions

21Fall 2010/Lecture 29CS426

Comparing IFEDAC with Bibap g

IFEDAC t f ll fi Bib li i• IFEDAC uses aspects of all five Biba policies
– Subject low water policy for majority of subjects
– Ring policy for selected subjects (i.e., RAP & LSP,

which are explicitly identifying trusted programs)
Obj t l t li h bj t h l it– Object low water policy when objects has low write
protection class (e.g., temporary files)
Strict integrity for objects that have high write– Strict integrity for objects that have high write
protection class (e.g., critical binaries and
configuration files)configuration files)

– Strict integrity protection for subject-subject interaction

22Fall 2010/Lecture 29CS426

Summary of IFEDACy

• DAC’s weakness lies in the enforcementDAC s weakness lies in the enforcement
– The origin includes a single principal
– Failed to identify the true origins of a requesty g q
– Vulnerable to Trojan horse and buggy software

• But DAC’s policy is goodp y g
– Easy and intuitive to specify
– Sufficient to preserve the system integrity

• The approach
– Keep the DAC’s policyp p y
– Fix the enforcement: identify the true origins of a

request

23Fall 2010/Lecture 29CS426

Windows Mandatory Integrity
ControlControl

S it f t i Vi t• Security feature since Vista
• Motivated by Biba
• Four integrity levels are used:

– Low, medium, high, system, , g , y
• Each process has an integrity level

– Process starts with medium by defaultProcess starts with medium by default
– Can get high with User Account Control
– Process can be configured to start as low (such as– Process can be configured to start as low (such as

browsers in protected mode)
• What they can do are greatly limitedy g y

CS426 Fall 2010/Lecture 29 24

Windows Mandatory Integrity
ControlControl

E h t t d bj t (fil i t k)• Each protected objects (files, registry keys) can
specify the minimal integrity level for updating

• No dynamic information flow trackingy g
– Even low-integrity can save files to exploit

CS426 Fall 2010/Lecture 29 25

Readings for This Lectureg

• Optional:
• Mao et al.: “Trojan Horse

R i t t Di ti AResistant Discretionary Access
Control” in SACMAT 2009.

CS426 Fall 2010/Lecture 29 26

Coming Attractions …g

R l B d A C t l• Role Based Access Control

CS426 Fall 2010/Lecture 29 27

