
Computer Security
CS 426
Lecture 28

SELinux & UMIPSELinux & UMIP

CS426 Fall 2010/Lecture 28 1

Security Enhanced Linux
(SELin)(SELinux)

D l d b N ti l S it A (NSA)• Developed by National Security Agency (NSA)
and Secure Computing Corporation (SCC) to

t MAC t h l ipromote MAC technologies
• MAC functionality is provided through the FLASK

architecture
• Policies based on type-enforcement modelyp
• Integrated into 2.6 kernels
• Available in many Linux distributions (e g• Available in many Linux distributions (e.g.,

Fedora, Redhat Enterprise, Debian, Ubuntu,
Hardened Gentoo openSUSE etcHardened Gentoo, openSUSE, etc.

CS426 2Fall 2010/Lecture 28

FLASK

• Flux Advanced Security Kernel• Flux Advanced Security Kernel
• Developed over the years (since 1992) in several

j t DTM h DTOS Fl kprojects: DTMach, DTOS, Fluke
• General MAC architecture
• Supports flexible security policies, “user friendly”

security language (syntax)y g g (y)
• Separates policies from enforcement
• Enables using more information when making• Enables using more information when making

access control decisions
E g User ids Domains/Types Roles– E.g., User ids, Domains/Types, Roles

CS426 3Fall 2010/Lecture 28

Type Enforcement (or Domain
T pe Enforcement)Type Enforcement)

T f t fi t d b W E• Type enforcement first proposed by W. E.
Boebert and R. Y. Kain.
– A Practical Alternative to Hierarchical Integrity

Policies. In In Proceedings of the 8 National
Computer Security Conference 1985Computer Security Conference, 1985.

– Aim at ensuring integrity
Key Idea for Type Enforcement:• Key Idea for Type Enforcement:
– Use the binary being executed to determine

accessaccess.
– What do DAC and MAC use?

CS426 Fall 2010/Lecture 28 4

Rationale of Type Enforcement (1)yp ()

I t it l l h ld b i t d ith• Integrity level should be associated with programs
(rather than processes)

f– Trust in programs is required for integrity
• Examples of assured pipelines:

– Labeling: All printouts of documents must have
security labels corrected printed by a labeller.

– Encrypting: Before sending certain data to an output
channel, it must be encrypted by an encryption module

• Data must pass certain transforming system
before going to certain outputs

CS426 Fall 2010/Lecture 28 5

Rationale of Type Enforcement (2)yp ()

T d i li i l t d• To ensure assured pipelines are implemented
correctly, needs to show

f– Transforming subsystems cannot be bypassed
– Transformations cannot be undone

• This and above are global properties, must be enforced
by access control policies

Transformations must be correct– Transformations must be correct
• Use program proofing techniques

CS426 Fall 2010/Lecture 28 6

Rationale of Type Enforcement (3)yp ()

F th l b li l t t• For the labeling example, want to ensure
1. Only the labeler module produces labeled data
2. Labeled data cannot be modified
3. Output module accepts labeled data only

• What integrity levels to use for labeled &
unlabeled data?
– Only reasonable choice is to labeled data have

higher integrity
– Implies: the labeling module must be trusted

CS426 Fall 2010/Lecture 28 7

Domain-type Enforcement: High-
le el Idealevel Idea

Add t i• Add a new access matrix
– One row for each subject domain (more or less)
– One column for each pair (object type, security class)
– Each cell contains all operations the subject can

f bj t f ti l t d itperform on objects of a particular type and security
class

CS426 8Fall 2010/Lecture 28

Domain-type Enforcement (1)yp ()

E h bj t i l b l d b t• Each object is labeled by a type
– Object semantics

Example:– Example:
• /etc/shadow etc_t
• /etc/rc.d/init.d/httpd httpd script exec t/etc/rc.d/init.d/httpd httpd_script_exec_t

• Objects are grouped by object security classes
– Such as files sockets IPC channels capabilitiesSuch as files, sockets, IPC channels, capabilities
– The security class determines what operations can be

performed on the object
• Each subject (process) is associated with a domain

– E.g., httpd_t, sshd_t, sendmail_t

CS426 9Fall 2010/Lecture 28

Domain-type Enforcement (2)yp ()

A t l d i i• Access control decision
– When a process wants to access an object
– Considers the following: process domain, object type,

object security class, operation

• Example: access vector rules
– allow sshd_t sshd_exec_t: file { read execute

entrypoint }
– allow sshd_t sshd_tmp_t: file { create read write

getattr setattr link unlink rename }

CS426 10Fall 2010/Lecture 28

Limitations of the Type
Enforcement ModelEnforcement Model

R lt i l li i• Result in very large policies
– Hundreds of thousands of rules for Linux
– Difficult to understood

• Using only programs, but not information flow
tracking cannot protect against certain attacksg p g
– Consider for example: httpd -> shell -> load kernel

module

CS426 Fall 2010/Lecture 28 11

SELinux in Practice

Theoretically can be configured to provide high security• Theoretically, can be configured to provide high security.
• In practice, mostly used to confine daemons like web

serversservers
– They have more clearly defined data access and activity rights.
– They are often targets of attacksy g
– A confined daemon that becomes compromised is thus limited in

the harm it can do.

• Ordinary user processes often run in the unconfined
domain

not restricted by SELinux but still restricted by the classic Linux– not restricted by SELinux, but still restricted by the classic Linux
access rights.

CS426 Fall 2010/Lecture 28 12

UMIP

U bl M d t I t it P t ti f• Usable Mandatory Integrity Protection for
Operating Systems

C– Ninghui Li, Ziqing Mao, and Hong Chen
In IEEE Symposium on Security and Privacy, May
20072007.

CS426 Fall 2010/Lecture 28 13

Motivation

H t i b t k b d tt k i• Host compromise by network-based attacks is
the root cause of many serious security

blproblems
– Worm, Botnet, DDoS, Phishing, Spamming

• Why hosts can be easily compromised
– Programs contain exploitable bugs
– The discretionary access control mechanism in the

operating systems was not designed to take buggy
software in mind

CS426 Fall 2010/Lecture 28 14

Six design principles for usable
access control s stems <1>access control systems <1>

Principle 1: Provide “good enough” security with a high• Principle 1: Provide “good enough” security with a high
level of usability; rather than “better” security with a low
level of usabilitylevel of usability
– Need to trade off “theoretical security” for usability

• Principle 2: Provide policy, not just mechanism
– Go against the UNIX “mechanism-but-not-policy” philosophy

• Principle 3: Have a well-defined security objective
Si lif li ifi ti hil hi i th bj ti– Simplify policy specification while achieving the objective

CS426 Fall 2010/Lecture 28 15

Six design principles for usable
access control s stems <2>access control systems <2>

• Principle 4: Carefully design ways to support exceptions
in the policy model
– Design exception mechanisms to the global MAC policy rules to

minimize attack surface

• Principle 5: Rather than trying to achieve “strict least
privilege”, aim for “good-enough least privilege”privilege , aim for good enough least privilege
– Aim also at minimizing policy specifications

• Principle 6: Use familiar abstractions in policy
specification interface

CS426 Fall 2010/Lecture 28 16

– Design for psychological acceptability

The UMIP Model: Security
Objecti eObjective

Protect against network based attacks• Protect against network-based attacks
– Network servers and client programs contain bugs
– Users may make careless mistakes e g downloading maliciousUsers may make careless mistakes, e.g., downloading malicious

software and running them
– Attacker does not have physical access to the host

• The security property we want to achieve
– The attacker cannot compromise the system integrity (except

through limited channels)through limited channels)
• E.g, install a RootKit, gain the root privileges

– The attacker can get limited privilegesg p g
• Run some code

– After a reboot, the attacker does not present any more

CS426 Fall 2010/Lecture 28 17

The UMIP Model: Usability
Objecti esObjectives

E li fi ti d d l t• Easy policy configuration and deployment

• Understandable policy specification

• Nonintrusive: existing applications and common
usage practices can still be usedusage practices can still be used

CS426 Fall 2010/Lecture 28 18

Basic UMIP Model

• Each process is associated with one bit to denote its
integrity level, either high or low
– A process having low integrity level might have been

contaminated

• A low-integrity process by default cannot perform any• A low integrity process by default cannot perform any
sensitive operations that may compromise the system

• Three questionsThree questions
– How to do process integrity tracking?
– What are sensitive operations?
– What kinds of exceptions do we need?

CS426 Fall 2010/Lecture 28 19

Process Integrity Trackingg y g

B d i f ti fl• Based on information flow

CS426 Fall 2010/Lecture 28 20

File Integrity Trackingg y g

N di t fil h i t it t ki• Non-directory files have integrity tracking
– use the sticky bit to track whether a file has been

contaminated b a lo integrit processcontaminated by a low-integrity process
– a file is low integrity if either it is not write-protected, or

its sticky bit is setits sticky bit is set
– the sticky bit can be reset by running a special utility

program in high integrityprogram in high integrity
• allow downloading and installing new programs

CS426 Fall 2010/Lecture 28 21

Sensitive Operations: Capabilitiesp p

N fil iti ti• Non-file sensitive operations
– E.g., loading a kernel module, administration of IP

fire allfirewall,…

U i th C bilit t• Using the Capability system
– Break the root privileges down to smaller pieces
– In Linux Kernel 2.6.11, 31 different capabilities

• Identify each capability as one kind of non-file
sensitive operation

CS426 Fall 2010/Lecture 28 22

Sensitive Operations: File Accessp

A ki t l b l ll fil i l b i t i d• Asking users to label all files is a labor intensive and
error-prone process

• Our Approach: Use DAC information to identify sensitive
files

• Read-protected files
Owned by system accounts and not readable by world– Owned by system accounts and not readable by world

– E.g., /etc/shadow

• Write-protected files
– Not writable by world

Including files owned by non system accounts

CS426 Fall 2010/Lecture 28 23

– Including files owned by non-system accounts

Exception Policies: Process Integrity
TrackingTracking
• Default policy for process integrity tracking• Default policy for process integrity tracking

• Exceptions:

• Examplesp
– RAP programs: SSH Daemon
– LSP programs: X server, desktop manager

CS426 Fall 2010/Lecture 28 24

Exception Policies: Low-integrity
Processes Performing Sensitive OperationsProcesses Performing Sensitive Operations

Some low integrity processes need to perform sensitive• Some low-integrity processes need to perform sensitive
operations normally

• Exception:• Exception:

• Examples:
– FTP Daemon Program: /usr/sbin/vsftpdFTP Daemon Program: /usr/sbin/vsftpd
– Use capabilities: CAP_NET_BIND_SERVICE,

CAP_SYS_SETUID, CAP_SYS_SETGID, CAP_SYS_CHROOT
f / /– Read read-protected files: /etc/shadow

– Write write-protected files: /etc/vsftpd, /var/log/xferlog

CS426 Fall 2010/Lecture 28 25

Implementation & Performancep

I l t d i Li S it M d l• Implemented using Linux Security Module
– no change to Linux file system

• Performance
– Use the Lmbench 3 and the Unixbench 4.1

benchmarks
– Overheads are less than 5% for most benchmark

results

CS426 Fall 2010/Lecture 28 26

Part of the Sample Policyp y

CS426 Fall 2010/Lecture 28 27

Differences with Other Integrity
ModelsModels

Use multiple policies from the Biba model• Use multiple policies from the Biba model
– subject low water for most subjects/processes
– ring policy for some trusted subjectsring policy for some trusted subjects

• e.g., ssh daemon, automatic update programs
– object low water for some objects

• Each object has a separate protection level and integrity
level
– integrity level for quality information
– protection level for important

• read protection level inferred from DAC permissions on read• read protection level inferred from DAC permissions on read
• write protection level inferred from DAC permissions on write

CS426 Fall 2010/Lecture 28 28

Differences with Other Integrity
ModelsModels

Oth ti t f l i t it l• Other exceptions to formal integrity rules
– low integrity objects can be upgraded to high by a high

integrit s bjectintegrity subject
– low integrity subjects can access high protected

objects via exceptionsobjects via exceptions

CS426 Fall 2010/Lecture 28 29

Readings for This Lectureg

• Boebert & Jain: A Practical
Alternative to Hierarchical
Integrity Policies

• Li et al: Usable Mandatory
Integrity Protection

CS426 Fall 2010/Lecture 28 30

Coming Attractions …g

IFEDAC & Wi d I t it• IFEDAC & Windows Integrity
Protection

CS426 Fall 2010/Lecture 28 31

