

Quantum Cryptography

Fall 2010/Lecture 27

Quantum Cryptography

- based on a survey by Hoi-Kwong Lo.
 <u>http://www.hpl.hp.com/techreports/97/HPL-97-</u>
 <u>151.html</u>
- And on

http://en.wikipedia.org/wiki/Quantum_key_distribution

Quantum Mechanics & Cryptography

- Quantum communication
 - protecting communication using principles of physics
- Quantum computing
 - building quantum computers
 - developing quantum algorithms
 - e.g., Shor's efficient algorithm for factoring

Properties of Quantum Information

- Heisenberg Uncertainty Principle (HUP)
 - If there is a particle, such as an electron, moving through space, it is impossibly to measure both its position and momentum precisely.
- A quantum state is described as a vector
 - e.g., a photon has a quantum state,
 - quantum cryptography often uses photons in 1 of 4 polarizations (in degrees): 0, 45, 90, 135

Encoding 0 and 1	Basis	0	1
	+ (rectilinear)	\uparrow	\rightarrow
under two basis	× (diagonal)	7	Ы

Properties of Quantum Information

- No way to distinguish which of $\neg \uparrow \rightarrow \lor$ a photon is
- Quantum "no-cloning" theorem: an unknown quantum state cannot be cloned.
- Measurement generally disturbs a quantum state
 - one can set up a rectilinear measurement or a diagonal measurement
 - a rectilinear measurement disturbs the states of those diagonal photons having 45/135
- Effect of measuring

Basis	\uparrow	\rightarrow	7	<u> </u>
+	\uparrow	\rightarrow	\uparrow or \rightarrow	\uparrow or \rightarrow
×	7 or 1	7 or 1	7	Ы

Quantum Key Agreement

- Requires two channels
 - one quantum channel (subject to adversary and/or noises)
 - one public channel (authentic, unjammable, subject to eavesdropping)
 - Protocol does not work without such a channel

The Protocol [Bennet & Brassard'84]

- 1. Alice sends to Bob a sequence of photons, each of which is chosen randomly and independently to be in one of the four polarizations
 - Alice knows their states
- 2. For each photon, Bob randomly chooses either the rectilinear based or the diagonal base to measure
 - Bob record the bases he used as well as the measurement

The Protocol [Bennet & Brassard'84]

- 3. Bob publicly announces his basis of measurements
- 4. Alice publicly tells Bob which measurement basis are correct and which ones are not
 - For the photons that Bob uses the correct measurement, Alice and Bob share the same results

See the following page for an example:

http://en.wikipedia.org/wiki/Quantum_key_distribution

The Protocol [Bennet & Brassard'84]

- 5. Alice and Bob reveals certain measurement results to see whether they agree
 - to detect whether an adversary is involved or the channel is too noisy
- Why attackers fail
 - Any measurement & resending will disturb the results with 50% probability

Additional Steps

- Information reconciliation
 - Figure out which bits are different between Alice and Bob
 - Conducted over a public channel
- Privacy amplification
 - Reducing/eliminating Eve's partial knowledge of a key