Integrity Protection: Biba, Clark Wilson, and Chinese Wall
Plan for this lecture

• Biba
• Clark-Wilson
• Chinese Wall
What is integrity?

- Attempt 1: Critical data do not change.
- Attempt 2: Critical data changed only in “correct ways”
 - E.g., in DB, integrity constraints are used for consistency
- Attempt 3: Critical data changed only through certain “trusted programs”
- Attempt 4: Critical data changed only as intended by authorized users.
The Biba Model

• Motivated by the fact that BLP does not deal with integrity
Biba: Integrity Levels

- Each subject (program) has an integrity level
- Each object has an integrity level
- Integrity levels are totally ordered

- Integrity levels different from security levels in confidentiality protection
 - a highly sensitive data may have low integrity
 - What is an example of a piece of data that needs high integrity, but no confidentiality?
Five Mandatory Policies in Biba

- Strict integrity policy
- Subject low-water mark policy
- Object low-water mark policy
- Low-water mark Integrity audit policy
- Ring policy
Strict Integrity Policy (BLP reversed)

- **Rules:**
 - s can read o iff $i(s) \leq i(o)$
 - no read down
 - stops indirect sabotage by contaminated data
 - s can write to o iff $i(s) \geq i(o)$
 - no write up
 - stops directly malicious modification

- **Fixed integrity levels**
- **No information path from low object/subject to high object/subject**
Subject Low-Water Policy

• Rules
 – s can always read o; after reading
 \[i(s) \leftarrow \min[i(s), i(o)] \]
 – s can write to o iff \(i(s) \geq i(o) \)

• Subject’s integrity level decreases as reading lower integrity data

• No information path from low-object to high-object
Object Low-Water Mark Policy

• Rules
 – s can read o; iff \(i(s) \leq i(o) \)
 – s can always write to o; after writing
 \[i(o) \leftarrow \min[i(s), i(o)] \]

• Object’s integrity level decreases as it is contaminated by subjects

• Objects with high labels are not contaminated
Low-Water Mark Integrity Audit Policy

• Rules
 – s can always read o; after reading
 \[i(s) \leftarrow \min[i(s), i(o)] \]
 – s can always write to o; after writing
 \[i(o) \leftarrow \min[i(s), i(o)] \]

• Tracing, but not preventing contamination
• Similar to the notion of tainting
The Ring Policy

• Rules
 – Any subject can read any object
 – s can write to o iff i(s) ≥ i(o)

• Integrity levels of subjects and objects are fixed.

• Intuitions:
 – subjects are trusted to process low-level inputs correctly
Object Integrity Levels

- The integrity level of an object may be based on
 - Quality of information (levels may change)
 - Degree of trustworthiness
 - Contamination level:
 - Importance of the object (levels do not change)
 - Degree of being trusted
 - Protection level: writing to the objects should be protected

- What should the relation between the two meanings, which one should be higher?
Integrity vs. Confidentiality

<table>
<thead>
<tr>
<th>Confidentiality</th>
<th>Integrity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control reading</td>
<td>Control writing</td>
</tr>
<tr>
<td>• preserved if confidential info is not read</td>
<td>• preserved if important obj is not changed</td>
</tr>
<tr>
<td>For subjects who need to read, control writing after reading is sufficient, no need to trust them</td>
<td>For subjects who need to write, has to trust them, control reading before writing is not sufficient</td>
</tr>
</tbody>
</table>

Integrity requires trust in subjects!
Key Difference between Confidentiality and Integrity

• For confidentiality, controlling reading & writing is sufficient
 – theoretically, no subject needs to be trusted for confidentiality; however, one does need trusted subjects in BLP to make system realistic

• For integrity, controlling reading and writing is insufficient
 – one has to trust all subjects who can write to critical data
Impacts of The Need to Trust Subjects

- A small security kernel is no longer possible
- No need to worry about covert channels for integrity protection
- How to establish trust in subjects becomes a challenge.
The Clark-Wilson Model

- Military policies focus on preventing disclosure
- In commercial environment, integrity is paramount
 - no user of the system, even if authorized, may be permitted to modify data items in such a way that assets or accounting records of the company are lost or corrupted
Two High-level Mechanisms for Enforcing Data Integrity

• Well-formed transaction
 – a user should not manipulate data arbitrarily, but only in constrained ways that preserve or ensure data integrity
 • e.g., use a write-only log to record all transactions
 • e.g., double-entry bookkeeping
 • e.g., passwd

Can manipulate data only through trusted code!
Two High-level Mechanisms for Enforcing Data Integrity

• Separation of duty
 – ensure external consistency: data objects correspond to the real world objects
 – separating all operations into several subparts and requiring that each subpart be executed by a different person
 – e.g., the two-man rule
Implementing the Two High-level Mechanisms

- Mechanisms are needed to ensure
 - control access to data: a data item can be manipulated only by a specific set of programs
 - program certification: programs must be inspected for proper construction, controls must be provided on the ability to install and modify these programs
 - control access to programs: each user must be permitted to use only certain sets of programs
 - control administration: assignment of people to programs must be controlled and inspected
The Clarke-Wilson Model for Integrity

- Unconstrained Data Items (UDIs)
 - data with low integrity
- Constrained Data Items (CDIs)
 - data items within the system to which the integrity model must apply
- Integrity Verification Procedures (IVPs)
 - confirm that all of the CDIs in the system conform to the integrity specification
- Transformation Procedures (TPs)
 - well-formed transactions
Differences from MAC

- A data item is not associated with a particular security level, but rather with a set of TPs
- A user is not given read/write access to data items, but rather permissions to execute certain programs
Comparison with Biba

- Biba lacks the procedures and requirements on identifying subjects as trusted

- Clark-Wilson focuses on how to ensure that programs can be trusted
The Chinese Wall Security Policy

- **Goal:** *Avoid Conflict of Interest*
- **Data are stored in a hierarchical arranged system**
 - the lowest level consists of individual data items
 - the intermediate level group data items into company data sets
 - the highest level group company datasets whose corporation are in competition
From http://www.gammassl.co.uk/topics/chinesewall.html
Simple Security Rule in Chinese Wall Policy

• Access is only granted if the object requested:
 – is in the same company dataset as an object already accessed by that subject, i.e., within the Wall,
 or
 – belongs to an entirely different conflict of interest class.
Readings for This Lecture

- **Required Readings:**

- **Optional Readings:**
Coming Attractions …

- Integrity protection in operating systems