
Computer Security
CS 426
Lecture 9

Unix Access ControlUnix Access Control

CS426 Fall 2010/Lecture 9 1

Roadmapp

B i C t i A C t l & UNIX• Basic Concepts in Access Control & UNIX
Access Control Overview

• Files in UNIX
• Processes in UNIX

CS426 Fall 2010/Lecture 9 2

Access control
• A reference monitor mediates all access to resources

– Tamper-proof:
– Complete mediation: control all accesses to p

resources
– Small enough to be analyzable

Reference
monitor

Resource
User

process access request ?

li

CS426 Fall 2010/Lecture 9 3

policy

ACCESS MATRIX MODELACCESS MATRIX MODEL

F
Objects (and Subjects)

G

U r wS rU ownu
b
j

r

V
j
e
c
t

r w
own

t
s

CS426 Fall 2010/Lecture 9 4

rights

ACCESS MATRIX MODEL

• Basic Abstractions
• Subjects

• ObjectsObjects

• Rights

• The rights in a cell specify the access
of the subject (row) to the object
(column)

CS426 Fall 2010/Lecture 9 5

PRINCIPALS AND SUBJECTS
• A subject is a program

(application) executing on behalf (pp) g
of some principal(s)

• A principal may at any time be• A principal may at any time be
idle, or have one or more
subjects executing on its behalfsubjects executing on its behalf

What are subjects in UNIX?What are subjects in UNIX?
What are principals in UNIX?

CS426 Fall 2010/Lecture 9 6

OBJECTSOBJECTS

• An object is anything on which a subject can
perform operations (mediated by rights)

• Usually objects are passive, for example:
• File
• Directory (or Folder)
• Memory segment

• But, subjects can also be objects, with operations
• killkill
• suspend
• resume

CS426 Fall 2010/Lecture 9 7

Basic Concepts of UNIX Access Control:
Users Groups Files ProcessesUsers, Groups, Files, Processes

E h t h i UID• Each user account has a unique UID
– The UID 0 means the super user (system admin)

• A user account belongs to multiple groups
• Subjects are processesj p

– associated with uid/gid pairs, e.g., (euid, egid), (ruid,
rgid), (suid, sgid)

• Objects are files

CS426 Fall 2010/Lecture 9 8

USERS AND PRINCIPALS

USERS PRINCIPALS

Real World User Unit of Access Control
and Authorization

the system authenticates the human user to
a particular principal

CS426 Fall 2010/Lecture 9 9

USERS AND PRINCIPALS
• There should be a one-to-many

mapping from users to principalsapp g o use s to p c pa s
• a user may have many principals, but
• each principal is associated with an unique• each principal is associated with an unique

user

• This ensures accountability of a user's• This ensures accountability of a user s
actions

What does the above imply in UNIX?

CS426 Fall 2010/Lecture 9 10

Roadmapp

B i C t i A C t l & UNIX• Basic Concepts in Access Control & UNIX
Access Control Overview

• Files in UNIX
• Processes in UNIX

CS426 Fall 2010/Lecture 9 11

Organization of Objectsg j

• Almost all objects are modeled as files• Almost all objects are modeled as files
– Files are arranged in a hierarchy

Files exist in directories– Files exist in directories
– Directories are also one kind of files

• Each object has• Each object has
– owner
– group– group
– 12 permission bits

• rwx for owner, rwx for group, and rwx for otherso o e , o g oup, a d o ot e s
• suid, sgid, sticky

CS426 Fall 2010/Lecture 9 12

UNIXUNIX
inodes:

Each file
dcorresponds

to an inode

CS426 Fall 2010/Lecture 9 13

UNIX DirectoriesUNIX Directories

CS426 Fall 2010/Lecture 9 14

Basic Permissions Bits on Files (Non-
directories)directories)

R d t l di th t t f fil• Read controls reading the content of a file
– i.e., the read system call

• Write controls changing the content of a fileg g
– i.e., the write system call

• Execute controls loading the file in memory and
executeexecute
– i.e., the execve system call

CS426 Fall 2010/Lecture 9 15

Execution of a file

Bi fil i t fil• Binary file vs. script file
• Having execute but not read, can one run a

binary file?
• Having execute but not read, can one run a g

script file?
• Having read but not execute, can one run aHaving read but not execute, can one run a

script file?

CS426 Fall 2010/Lecture 9 16

Permission Bits on Directories

• Read bit allows one to show file names in a directory• Read bit allows one to show file names in a directory
• The execution bit controls traversing a directory

– does a lookup allows one to find inode # from file namedoes a lookup, allows one to find inode # from file name
– chdir to a directory requires execution

• Write + execution control creating/deleting files in the g g
directory
– Deleting a file under a directory requires no permission on the file

• Accessing a file identified by a path name requires
execution to all directories along the path

CS426 Fall 2010/Lecture 9 17

The suid, sgid, sticky bits, g , y

suid sgid sticky bitsuid sgid sticky bit

non-
executable
fil

no effect affect locking
(unimportant

not used
anymore

files for us)
executable change euid change egid not used
files when executing

the file
when executing
the file

anymore

di t i ff t fil i h it l thdirectories no effect new files inherit
group of the
directory

only the
owner of a
file can

CS426 Fall 2010/Lecture 9 18

directory file can
delete

Some Examplesp

• What permissions are needed to access a• What permissions are needed to access a
file/directory?

read a file: /d1/d2/f3– read a file: /d1/d2/f3
– write a file: /d1/d2/f3
– delete a file: /d1/d2/f3delete a file: /d1/d2/f3
– rename a file: from /d1/d2/f3 to /d1/d2/f4
– …

• File/Directory Access Control is by System Calls
– e.g., open(2), stat(2), read(2), write(2), chmod(2),e.g., open(2), stat(2), read(2), write(2), chmod(2),

opendir(2), readdir(2), readlink(2), chdir(2), …

CS426 Fall 2010/Lecture 9 19

The Three sets of permission bitsp

• Intuition:• Intuition:
– if the user is the owner of a file, then the r/w/x bits for

owner applyowner apply
– otherwise, if the user belongs to the group the file

belongs to, then the r/w/x bits for group apply
– otherwise, the r/w/x bits for others apply

• Can one implement negative authorization, i.e.,
only members of a particular group are not

ll d t fil ?allowed to access a file?

CS426 Fall 2010/Lecture 9 20

Other Issues On Objects in UNIXj

A th th d/ it / t• Accesses other than read/write/execute
– Who can change the permission bits?

• The owner can
– Who can change the owner?

O l th• Only the superuser

• Rights not related to a file
– Affecting another process
– Operations such as shutting down the system,

fmounting a new file system, listening on a low port
• traditionally reserved for the root user

CS426 Fall 2010/Lecture 9 21

Roadmapp

B i C t i A C t l & UNIX• Basic Concepts in Access Control & UNIX
Access Control Overview

• Files in UNIX
• Processes in UNIX

CS426 Fall 2010/Lecture 9 22

Subjects vs. Principalsj p

A i ht ifi d f (t)• Access rights are specified for users (accounts)
• Accesses are performed by processes (subjects)
• The OS needs to know on which users’ behalf a

process is executingp g

CS426 Fall 2010/Lecture 9 23

Process User ID Model in Modern
UNIX SystemsUNIX Systems

E h h th ID• Each process has three user IDs
– real user ID (ruid) owner of the process
– effective user ID (euid) used in most access

control decisions
d ID (id)– saved user ID (suid)

• and three group IDs
– real group ID
– effective group ID
– saved group ID

CS426 Fall 2010/Lecture 9 24

Process User ID Model in Modern
UNIX S tUNIX Systems

Wh i t d b f k• When a process is created by fork
– it inherits all three users IDs from its parent process

• When a process executes a file by exec
– it keeps its three user IDs unless the set-user-ID bit of

the file is set, in which case the effective uid and
saved uid are assigned the user ID of the owner of the
filefile

• A process may change the user ids via system
llcalls

CS426 Fall 2010/Lecture 9 25

The Need for suid/sgid Bitsg

• Some operations are not modeled as files and• Some operations are not modeled as files and
require user id = 0

halting the system– halting the system
– bind/listen on “privileged ports” (TCP/UDP ports below

1024))
– non-root users need these privileges

• File level access control is not fine-grained g
enough

• System integrity requires more than controlling y g y q g
who can write, but also how it is written

CS426 Fall 2010/Lecture 9 26

Security Problems of Programs with
suid/sgidsuid/sgid

Th t i ll t id t• These programs are typically setuid root
• Violates the least privilege principle

– every program and every user should operate using
the least privilege necessary to complete the job

• Why violating least privilege is bad?
• How would an attacker exploit this problem?p p
• How to solve this problem?

CS426 Fall 2010/Lecture 9 27

Changing effective user IDsg g

A th t t t id• A process that executes a set-uid program can
drop its privilege; it can
– drop privilege permanently

• removes the privileged user id from all three user IDs
d i il t il– drop privilege temporarily

• removes the privileged user ID from its effective uid but
stores it in its saved uid later the process may restorestores it in its saved uid, later the process may restore
privilege by restoring privileged user ID in its effective
uid

CS426 Fall 2010/Lecture 9 28

Access Control in Early UNIX y

A h t ID l id d• A process has two user IDs: real uid and
effective uid and one system call setuid

• The system call setuid(id)
– when euid is 0, setuid set both the ruid and the euid to

the parameter
– otherwise, the setuid could only set effective uid to

l idreal uid
• Permanently drops privileges

A t t il d i il• A process cannot temporarily drop privilege

Setuid Demystified, In USENIX Security ‘ 02

CS426 Fall 2010/Lecture 9 29

y , y

System Vy

Add d d id & t ll• Added saved uid & a new system call
• The system call seteuid

– if euid is 0, seteuid could set euid to any user ID
– otherwise, could set euid to ruid or suid

• Setting to ruid temp. drops privilege

• The system call setuid is also changedy g
– if euid is 0, setuid functions as seteuid
– otherwise, setuid sets all three user IDs to real uid,

CS426 Fall 2010/Lecture 9 30

BSD

U id & id h th t ll f• Uses ruid & euid, change the system call from
setuid to setreuid

f– if euid is 0, then the ruid and euid could be set to any
user ID
th i ith th id th id ld b t t– otherwise, either the ruid or the euid could be set to

value of the other one
• enables a process to swap ruid & euid• enables a process to swap ruid & euid

CS426 Fall 2010/Lecture 9 31

Modern UNIX

S t V & BSD ff t h th b th• System V & BSD affect each other, both
implemented setuid, seteuid, setreuid, with
diff t tidifferent semantics
– some modern UNIX introduced setresuid

• Things get messy, complicated, inconsistent, and g g y p
buggy
– POSIX standard, Solaris, FreeBSD, Linux, , ,

CS426 Fall 2010/Lecture 9 32

Suggested Improved APIgg p

• Three method calls• Three method calls
– drop_priv_temp

drop priv perm– drop_priv_perm
– restore_priv

• Lessons from this?• Lessons from this?
• Psychological acceptability principle

“human interface should be designed for ease of– human interface should be designed for ease of
use”

– the user’s mental image of his protection goalsthe user s mental image of his protection goals
should match the mechanism

CS426 Fall 2010/Lecture 9 33

Readings for This Lectureg

• Wiki
• Filesystem Permissions

Oth di• Other readings
• UNIX File and Directory

Permissions and ModesPermissions and Modes
• http://www.hccfl.edu/pollock/AU

nix1/FilePermissions.htm
• Unix file permissions

• http://www.unix.com/tips-
tutorials/19060 unix filetutorials/19060-unix-file-
permissions.html

CS426 Fall 2010/Lecture 9 34

Coming Attractions …g

S ft l biliti• Software vulnerabilities

CS426 Fall 2010/Lecture 9 35

