Computer Security
CS 426

L ecture 9

Iy T AR s

Unix Access Control

CS426 Fall 2010/Lecture 9 1

Roadmap

e Basic Concepts in Access Control & UNIX
Access Control Overview

* Files in UNIX
e Processes in UNIX

CS426 Fall 2010/Lecture 9

A ccess control

A reference monitor mediates all access to resources
— Tamper-proof:

— Complete mediation: control all accesses to
resources

— Small enough to be analyzable

Reference
monitor

>
access request

T

policy

CS426 Fall 2010/Lecture 9

O

N
(o))

ACCESS MATRIX MODEL

Objects (and Subjects)—
G

F
I N A A
I N
own

r'w
own

rights

Fall 2010/Lecture 9

ACCESS MATRIX MODEL

« Basic Abstractions
e Subjects
 Objects
* Rights
« The rights in a cell specify the access

of the subject (row) to the object
(column)

CS426 Fall 2010/Lecture 9

PRINCIPALS AND SUBJECTS

A subject is a program
(application) executing on behalf
of some principal(s)

* A principal may at any time be
Idle, or have one or more
subjects executing on its behalf

What are subjects in UNIX?
What are principals in UNIX?

CS426 Fall 2010/Lecture 9

OBJECTS

-

* An object is anything on which a subject can
perform operations (mediated by rights)

« Usually objects are passive, for example:
* File
e Directory (or Folder)
« Memory segment

But, subjects can also be objects, with operations
o Kkill

e suspend

e fesume

CS426 Fall 2010/Lecture 9

Basic Concepts of UNIX Access Control.
Users, Groups, Files, Processes

e Each user account has a unique UID
— The UID 0 means the super user (system admin)

* A user account belongs to multiple groups

e Subjects are processes

— associated with uid/gid pairs, e.g., (euid, eqgid), (ruid,
rgid), (suid, sqgid)

* Objects are files

CS426 Fall 2010/Lecture 9

CS426

USERS AND PRINCIPALS

USERS PRINCIPALS

Unit of Access Control
and Authorization

the system authenticates the human user to
a particular principal

Fall 2010/Lecture 9

Real World User

USERS AND PRINCIPALS

* There should be a one-to-many
mapping from users to principals

e a user may have many principals, but

» each principal is associated with an unique
user

e This ensures accountability of a user's
actions

What does the above imply in UNIX?

CS426 Fall 2010/Lecture 9 10

Roadmap

e Files In UNIX
e Processes in UNIX

CS426 Fall 2010/Lecture 9

11

Organization of Objects

* Almost all objects are modeled as files
— Files are arranged in a hierarchy
— Files exist in directories
— Directories are also one kind of files
* Each object has
— owner
— group
— 12 permission bits

* rwx for owner, rwx for group, and rwx for others
* suid, sgid, sticky

CS426 Fall 2010/Lecture 9

12

UNIX
Inodes:

Each file
corresponds
to an inode

CS426

Type/Mode Link Count

User Id Group Id

File size (in bytes)

h

\
\

10 Data Block Addresses
i

\

\

| —First Level Index Block Address

T

| —~Second Level Index Block Address

T.evel Index Block Addreas

Time [ast accessed

Time [aat modified

Time created

< 32 bits >

[node table

UNIX Directories

CS426

Fall 2010/Lecture 9

Chrectory
11 | namel
2 | namez
i | names
il | narned

14

Basic Permissions Bits on Files (Non-
directories)

* Read controls reading the content of a file
— 1.e., the read system call

* Write controls changing the content of a file
— 1.e., the write system call

« Execute controls loading the file in memory and
execute
— 1.e., the execve system call

CS426 Fall 2010/Lecture 9 15

Execution of afile

« Binary file vs. script file

e Having execute but not read, can one run a
pinary file?

e Having execute but not read, can one run a
script file?

Having read but not execute, can one run a
script file?

CS426 Fall 2010/Lecture 9 16

Permission Bits on Directories

Read bit allows one to show file names in a directory

« The execution bit controls traversing a directory
— does a lookup, allows one to find inode # from file name
— chdir to a directory requires execution

* Write + execution control creating/deleting files in the
directory
— Deleting a file under a directory requires no permission on the file

« Accessing a file identified by a path name requires
execution to all directories along the path

CS426 Fall 2010/Lecture 9 17

The suid, sgid, sticky bits

suid sgid sticky bit
non- no effect affect locking not used
executable (unimportant anymaore
files for us)
executable | change euid change egid not used
files when executing |when executing | anymore
the file the file
directories |no effect new files inherit | only the
group of the owner of a
directory file can
delete
—-E5426 Feat-2040f-ecttreS +8

Some Examples

 What permissions are needed to access a
file/directory?

— read afile: /d1/d2/f3
— write a file: /d1/d2/f3
— delete a file: /d1/d2/f3
— rename a file: from /d1/d2/f3 to /d1/d2/f4

* File/Directory Access Control is by System Calls

— e.g., open(2), stat(2), read(2), write(2), chmod(2),
opendir(2), readdir(2), readlink(2), chdir(2), ...

CS426 Fall 2010/Lecture 9 19

The Three sets of permission bits

e |ntuition:

— If the user Is the owner of a file, then the r/w/x bits for
owner apply

— otherwise, if the user belongs to the group the file
belongs to, then the r/w/x bits for group apply

— otherwise, the r/w/x bits for others apply

e Can one implement negative authorization, I.e.,
only members of a particular group are not
allowed to access a file?

CS426 Fall 2010/Lecture 9

20

Other Issues On Objectsin UNIX

« Accesses other than read/write/execute
— Who can change the permission bits?
 The owner can
— Who can change the owner?

e Only the superuser
« Rights not related to a file
— Affecting another process

— Operations such as shutting down the system,
mounting a new file system, listening on a low port

o traditionally reserved for the root user

CS426 Fall 2010/Lecture 9 21

Roadmap

e Processes in UNIX

CS426 Fall 2010/Lecture 9

22

Subjects vs. Principals

« Access rights are specified for users (accounts)
« Accesses are performed by processes (subjects)

 The OS needs to know on which users’ behalf a
process Is executing

CS426 Fall 2010/Lecture 9 23

Process User ID Model in Modern
UNIX Systems

* Each process has three user IDs
— real user ID (ruid) owner of the process

— effective user ID (euid) used in most access
control decisions

— saved user ID (suid)
« and three group IDs
— real group ID

— effective group ID
— saved group ID

CS426 Fall 2010/Lecture 9 24

Process User ID Model in Modern
UNIX Systems

 When a process is created by fork
— It inherits all three users IDs from its parent process

 When a process executes a file by exec

— It keeps its three user IDs unless the set-user-1D bit of
the file is set, in which case the effective uid and
saved uid are assigned the user ID of the owner of the
file

« A process may change the user ids via system
calls

CS426 Fall 2010/Lecture 9 25

The Need for suid/sgid Bits

¢ Some operations are not modeled as files and
require userid =0
— halting the system
— bind/listen on “privileged ports” (TCP/UDP ports below

1024)
— non-root users need these privileges

* File level access control is not fine-grained

enough

¢ System integrity requires more than controlling
who can write, but also how it is written

CS426 Fall 2010/Lecture 9 26

Security Problems of Programs with
suid/sgid

* These programs are typically setuid root

Violates the least privilege principle

— every program and every user should operate using
the least privilege necessary to complete the job

Why violating least privilege is bad?
 How would an attacker exploit this problem?
How to solve this problem?

CS426 Fall 2010/Lecture 9 27

Changing effective user I1Ds

* A process that executes a set-uid program can
drop its privilege; it can
— drop privilege permanently
e removes the privileged user id from all three user IDs
— drop privilege temporarily
e removes the privileged user ID from its effective uid but
stores it in its saved uid, later the process may restore

privilege by restoring privileged user ID in its effective
uid

CS426 Fall 2010/Lecture 9 28

Access Control in Early UNIX

« A process has two user IDs: real uid and
effective uid and one system call setuid

* The system call setuid(id)

— when euid is 0, setuid set both the ruid and the euid to
the parameter

— otherwise, the setuid could only set effective uid to
real uid

 Permanently drops privileges
e A process cannot temporarily drop privilege

Setuid Demystified, In USENIX Security © 02

CS426 Fall 2010/Lecture 9 29

System V

* Added saved uid & a new system call

* The system call seteuid
— If euid is O, seteuid could set euid to any user ID
— otherwise, could set euid to ruid or suid
« Setting to ruid temp. drops privilege
* The system call setuid Is also changed
— If euid i1s 0O, setuid functions as seteuid
— otherwise, setuid sets all three user IDs to real uid

CS426 Fall 2010/Lecture 9

30

BSD

« Uses ruid & euid, change the system call from
setuid to setreuid

— If euid is O, then the ruid and euid could be set to any
user ID

— otherwise, either the ruid or the euid could be set to
value of the other one

* enables a process to swap ruid & euid

CS426 Fall 2010/Lecture 9 31

Modern UNI X

« System V & BSD affect each other, both
Implemented setuid, seteuid, setreuid, with
different semantics

— some modern UNIX introduced setresuid

* Things get messy, complicated, inconsistent, and

buggy
— POSIX standard, Solaris, FreeBSD, Linux

CS426 Fall 2010/Lecture 9 32

Suggested Improved AP

e Three method calls

drop_priv_temp
drop_priv_perm
restore_priv

e Lessons from this?
« Psychological acceptability principle

CS426

“human interface should be designed for ease of
use”

the user’'s mental image of his protection goals
should match the mechanism

Fall 2010/Lecture 9

33

Readings for This Lecture

* Wiki
e Other readings

 UNIX File and Directory
Permissions and Modes

e Unix file permissions

CS426 Fall 2010/Lecture 9

/\
—/

34

Coming Attractions ...

o Software vulnerabilities

CS426 Fall 2010/Lecture 9

35

