

Cryptography: Cryptographic Hash Function

Data Integrity and Source Authentication

- Encryption does not protect data from modification by another party.
- Need a way to ensure that data arrives at destination in its original form as sent by the sender and it is coming from an authenticated source.

Cryptographic Hash Functions

- A hash function maps a message of an arbitrary length to a m-bit output
 - output known as the fingerprint or the message digest
 - if the message digest is transmitted securely, then changes to the message can be detected
- A hash function is a many-to-one function, so collisions can happen.

Security Requirements for Cryptographic Hash Functions

Given a function $h: X \rightarrow Y$, then we say that h is:

- preimage resistant (one-way):
 if given y ∈ Y it is computationally infeasible to find a value x ∈ X s.t. h(x) = y
- 2-nd preimage resistant (weak collision resistant): if given x ∈ X it is computationally infeasible to find a value x' ∈ X, s.t. x'≠x and h(x') = h(x)
- collision resistant (strong collision resistant): if it is computationally infeasible to find two distinct values x',x ∈ X, s.t. h(x') = h(x)

Uses of hash functions

- Software integrity
 - E.g., tripwire
- Timestamping
 How?
- Message authentication
- One-time Passwords
- Digital signature

Bruteforce Attacks on Hash Functions

- Attacking one-wayness
 - Goal: given h:X \rightarrow Y, y \in Y, find x such that h(x)=y
 - Algorithm:
 - pick a random value x in X, check if h(x)=y, if h(x)=y, returns x; otherwise iterate
 - after failing q iterations, return fail
 - The average-case success probability is

$$\varepsilon = 1 - \left(1 - \frac{1}{|Y|}\right)^q \approx \frac{q}{|Y|}$$

– Let $|Y|=2^{m}$, to get ϵ to be close to 0.5, q $\approx 2^{m-1}$

Bruteforce Attacks on Hash Functions

- Attacking collision resistance
 - Goal: given h, find x, x' such that h(x)=h(x')
 - Algorithm: pick a random set X₀ of q values in X for each x∈X₀, computes y_x=h(x) if y_x=y_{x'} for some x'≠x then return (x,x') else fail
 - The average success probability is $1 e^{-\frac{q(q-1)}{2|Y|}}$
 - Let |Y|=2^m, to get ϵ to be close to 0.5, q $\approx\!\!2^{m/2}$
 - This is known as the birthday attack.

Well Known Hash Functions

- MD5
 - output 128 bits
 - collision resistance completely broken by researchers in China
- SHA1
 - output 160 bits
 - no collision found yet, but method exist to find collisions in less than 2^80
 - considered insecure for collision resistance
 - one-wayness still holds
- SHA2 (SHA-224, SHA-256, SHA-384, SHA-512)
 - outputs 224, 256, 384, and 512 bits, respectively
- NIST is having an ongoing competition of new standard hash algorithms, 14 algorithms currently considered

Choosing the length of Hash outputs

- Because of the birthday attack, the length of hash outputs in general should double the key length of block ciphers
 - SHA-224 matches the 112-bit strength of triple-DES
 - SHA-256, SHA-384, SHA-512 match the new key lengths (128,192,256) in AES

Readings for This Lecture

- Wikipedia
 - <u>Cryptographic Hash</u>
 <u>Function</u>

Coming Attractions ...

• Cryptography: Message Authentication Code.

