

Cryptography: Block Ciphers and Encryption Modes

Fall 2010/Lecture 4

Why Block Ciphers?

- One thread of defeating frequency analysis
 - Use different keys in different locations
 - Example: one-time pad, stream ciphers
- Another way to defeat frequency analysis
 - Make the unit of transformation larger, rather than encrypting letter by letter, encrypting block by block
 - Example: block cipher

Block Ciphers

- An n-bit plaintext is encrypted to an n-bit ciphertext
 - *P*: {0,1}ⁿ
 - $C: \{0,1\}^n$
 - *K*: {0,1}^s
 - **E**: $K \times P \rightarrow C$: E_k: a permutation on {0,1} ⁿ
 - **D**: $K \times C \rightarrow P$: D_k is E_k^{-1}
 - Block size: n
 - Key size: s

Ideal block cipher

- An ideal block cipher is a substitution cipher from {0,1}ⁿ to {0,1}ⁿ i.e., a Random Permutation (RP)
- Total number of keys: 2ⁿ!
 - insecure when n is small
 - impractical when n is large $(2^{64}! \geq 2^{2^{71}})$
 - How much space is needed to represent the key?
- Solution: PseudoRandom Permutation (PRP)
 - Use a subset of the 2ⁿ! possible permutations
- A PRP cannot be distinguished from RP by any computationally bounded adversary

Data Encryption Standard (DES)

- Designed by IBM, with modifications proposed by the National Security Agency
- US national standard from 1977 to 2001
- De facto standard
- Block size 64 bits;
- Key size 56 bits
- 16-rounds
- Designed mostly for hardware implementations
- Considered insecure now
 - vulnerable to brute-force attacks

Attacking Block Ciphers

- Types of attacks to consider
 - known plaintext: given several pairs of plaintexts and ciphertexts, recover the key (or decrypt another block encrypted under the same key)
 - how would chosen plaintext and chosen ciphertext work?
- Standard attacks
 - exhaustive key search
 - dictionary attack
 - differential cryptanalysis, linear cryptanalysis
- Side channel attacks.

DES's main vulnerability is short key size.

Advanced Encryption Standard

- In 1997, NIST made a formal call for algorithms stipulating that the AES would specify an unclassified, publicly disclosed encryption algorithm, available royalty-free, worldwide.
- Goal: replace DES for both government and private-sector encryption.
- The algorithm must implement symmetric key cryptography as a block cipher and (at a minimum) support block sizes of 128-bits and key sizes of 128-, 192-, and 256-bits.
- In 1998, NIST selected 15 AES candidate algorithms.
- On October 2, 2000, NIST selected Rijndael (invented by Joan Daemen and Vincent Rijmen) to as the AES.

AES Features

- Designed to be efficient in both hardware and software across a variety of platforms.
- Not a Feistel Network
- Block size: 128 bits
- Variable key size: **128**, **192**, or **256** bits.
- Variable number of rounds (10, 12, 14):
 - 10 if K = 128 bits
 - 12 if K = 192 bits
 - 14 if K = 256 bits
- No known weaknesses

Need for Encryption Modes

- A block cipher encrypts only one block
- Needs a way to extend it to encrypt an arbitrarily long message
- Want to ensure that if the block cipher is secure, then the encryption is secure
- Aim at providing Semantic Security (Ciphertext indistinguishability)
 - i.e., if an adversary chooses two messages M_0 and M_1 , and is given $E_{\rm K}[M_{\rm b}]$, where b is randomly chosen from {0,1}, the adversary has little advantage in guessing b

Block Cipher Encryption Modes: ECB

- Message is broken into independent block;
- Electronic Code Book (ECB): each block encrypted separately.
- Encryption: c_i = E_k(x_i)
- Decrytion: x_i = D_k(c_i)

Properties of ECB

- Deterministic:
 - the same data block gets encrypted the same way,
 - reveals patterns of data when a data block repeats
 - when the same key is used, the same message is encrypted the same way
- Usage: not recommended to encrypt more than one block of data
- How to break the Semantic security (Ciphertext indistinguishability) of a block cipher with ECB?

DES Encryption Modes: CBC

- Cipher Block Chaining (CBC):
 - Uses a random Initial Vector (IV)
 - Next input depends upon previous output Encryption: $C_i = E_k (M_i \oplus C_{i-1})$, with $C_0 = IV$

Fall 2010/Lecture 4

Properties of CBC

- Randomized encryption: repeated text gets mapped to different encrypted data.
 - can be proven to provide semantic security assuming that the block cipher is PRP and that random IV's are used
- A ciphertext block depends on all preceding plaintext blocks; reorder affects decryption
- Usage: chooses random IV and protects the integrity of IV

Encryption Modes:CTR

- Counter Mode (CTR): A way to construct PRNG using a block cipher
 - Uses a random counter
 - $-y_i = E_k[counter+i]$
 - Sender and receiver share: counter (does not need to be secret) and the secret key.

Properties of CTR

- Gives a stream cipher from a block cipher
 - subject to limitations of stream ciphers (what are they?)
- Randomized encryption:
 - when starting counter is chosen randomly
- Random Access: decryption of a block can be done in random order, very useful for harddisk encryption.

Readings for This Lecture

- Required reading from wikipedia
 - Block Cipher
 - Data Encryption Standard
 - <u>Advanced Encryption</u>
 <u>Standard</u>
 - Block cipher modes of operation

Coming Attractions ...

 Cryptography: Cryptographic Hash Functions and Message Authentication

