Computer Security
CS 426
Lecture 4

Cryptography: Block Ciphers and Encryption Modes
Why Block Ciphers?

- One thread of defeating frequency analysis
 - Use different keys in different locations
 - Example: one-time pad, stream ciphers

- Another way to defeat frequency analysis
 - Make the unit of transformation larger, rather than encrypting letter by letter, encrypting block by block
 - Example: block cipher
Block Ciphers

- An n-bit plaintext is encrypted to an n-bit ciphertext
 - $P: \{0,1\}^n$
 - $C: \{0,1\}^n$
 - $K: \{0,1\}^s$
 - $E: K \times P \rightarrow C$: E_k: a permutation on $\{0,1\}^n$
 - $D: K \times C \rightarrow P$: D_k is E_k^{-1}
 - Block size: n
 - Key size: s
Ideal block cipher

- An ideal block cipher is a substitution cipher from \{0,1\}^n to \{0,1\}^n i.e., a Random Permutation (RP)
- Total number of keys: 2^n!
 - insecure when n is small
 - impractical when n is large (2^{64!} \geq 2^{2^{71}})
- How much space is needed to represent the key?

- Solution: PseudoRandom Permutation (PRP)
 - Use a subset of the 2^n! possible permutations
- A PRP cannot be distinguished from RP by any computationally bounded adversary

Block ciphers aim at providing a PRP.
Data Encryption Standard (DES)

- Designed by IBM, with modifications proposed by the National Security Agency
- US national standard from 1977 to 2001
- De facto standard
- Block size 64 bits
- Key size 56 bits
- 16-rounds
- Designed mostly for hardware implementations
- Considered insecure now
 - vulnerable to brute-force attacks
Attacking Block Ciphers

• Types of attacks to consider
 – known plaintext: given several pairs of plaintexts and ciphertexts, recover the key (or decrypt another block encrypted under the same key)
 – how would chosen plaintext and chosen ciphertext work?

• Standard attacks
 – exhaustive key search
 – dictionary attack
 – differential cryptanalysis, linear cryptanalysis

• Side channel attacks.

DES’s main vulnerability is short key size.
Advanced Encryption Standard

- In 1997, NIST made a formal call for algorithms stipulating that the AES would specify an unclassified, publicly disclosed encryption algorithm, available royalty-free, worldwide.
- Goal: replace DES for both government and private-sector encryption.
- The algorithm must implement symmetric key cryptography as a block cipher and (at a minimum) support block sizes of 128-bits and key sizes of 128-, 192-, and 256-bits.
- In 1998, NIST selected 15 AES candidate algorithms.
- On October 2, 2000, NIST selected Rijndael (invented by Joan Daemen and Vincent Rijmen) to as the AES.
AES Features

• Designed to be efficient in both hardware and software across a variety of platforms.
• Not a Feistel Network
• Block size: 128 bits
• Variable key size: 128, 192, or 256 bits.
• Variable number of rounds (10, 12, 14):
 – 10 if K = 128 bits
 – 12 if K = 192 bits
 – 14 if K = 256 bits
• No known weaknesses
Need for Encryption Modes

- A block cipher encrypts only one block
- Needs a way to extend it to encrypt an arbitrarily long message
- Want to ensure that if the block cipher is secure, then the encryption is secure
- Aim at providing Semantic Security (Ciphertext indistinguishability)
 - i.e., if an adversary chooses two messages M_0 and M_1, and is given $E_K[M_b]$, where b is randomly chosen from $\{0,1\}$, the adversary has little advantage in guessing b
Block Cipher Encryption Modes: ECB

• Message is broken into independent block;

• **Electronic Code Book (ECB):** each block encrypted separately.

• Encryption: $c_i = E_k(x_i)$
• Decryption: $x_i = D_k(c_i)$
Properties of ECB

- Deterministic:
 - the same data block gets encrypted the same way,
 - reveals patterns of data when a data block repeats
 - when the same key is used, the same message is encrypted the same way
- Usage: not recommended to encrypt more than one block of data
- How to break the Semantic security (Ciphertext indistinguishability) of a block cipher with ECB?
DES Encryption Modes: CBC

- **Cipher Block Chaining (CBC):**
 - Uses a random Initial Vector (IV)
 - Next input depends upon previous output

Encryption: $C_i = E_k (M_i \oplus C_{i-1})$, with $C_0 = IV$

Decryption: $M_i = C_{i-1} \oplus D_k (C_i)$, with $C_0 = IV$
Properties of CBC

- Randomized encryption: repeated text gets mapped to different encrypted data.
 - can be proven to provide semantic security assuming that the block cipher is PRP and that random IV’s are used
- A ciphertext block depends on all preceding plaintext blocks; reorder affects decryption
- Usage: chooses random IV and protects the integrity of IV
Encryption Modes: CTR

- **Counter Mode (CTR):** A way to construct PRNG using a block cipher
 - Uses a random counter
 - \(y_i = E_k[\text{counter}+i] \)
 - Sender and receiver share: counter (does not need to be secret) and the secret key.
Properties of CTR

- Gives a stream cipher from a block cipher
 - subject to limitations of stream ciphers (what are they?)

- Randomized encryption:
 - when starting counter is chosen randomly

- Random Access: decryption of a block can be done in random order, very useful for hard-disk encryption.
Readings for This Lecture

• Required reading from wikipedia
 • Block Cipher
 • Data Encryption Standard
 • Advanced Encryption Standard
 • Block cipher modes of operation
Coming Attractions …

- Cryptography: Cryptographic Hash Functions and Message Authentication