Computer Security CS 426 Lecture 2

Announcements

Join class mailing list:

CS426_Fall2010@cs.purdue.edu

Security Goals

- Confidentiality (secrecy, privacy)
 - only those who are authorized to know can know
- Integrity
 - only modified by authorized parties and in authorized ways
- Availability
 - those authorized to access can get access

Tools for Information Security

- Cryptography
- Access control
- Hardware/software architecture for separation
- Processes and tools for developing more secure software
- Monitoring and analysis
- Recovery and response

Goals of Cryptography

- The most fundamental problem cryptography addresses: ensure security of communication over insecure medium
- What does secure communication mean?
 - confidentiality (privacy, secrecy)
 - only the intended recipient can see the communication
 - integrity (authenticity)
 - the communication is generated by the alleged sender
- What does insecure medium mean?
 - the adversary can eavesdrop
 - the adversary has full control over the communications

Approaches to Secure Communication

Steganography

- "covered writing"
- hides the existence of a message
- depends on secrecy of method

Cryptography

- "hidden writing"
- hide the meaning of a message
- depends on secrecy of a short key, not method

Cryptography, cryptanalysis, and cryptology

- Cryptography,
 - Traditionally, designing algorithms/protocols
 - Nowadays, often synonym with cryptology
- Cryptanalysis
 - Breaking cryptography
- Cryptology: both cryptography & cryptanalysis
 - Becoming less common,

History of Cryptography

- 2500+ years
- An ongoing battle between codemakers and codebreakers
- Driven by communication & computation technology
 - paper and ink
 - cryptographic engine & telegram, radio
 - modern cryptography: computers & digital communication

Basic Terminology

Plaintext original message

Ciphertext transformed message

Key secret used in transformation

Encryption

Decryption

Cipher algorithm for encryption/decryption

Shift Cipher

- The Key Space:
 - **–** [1 .. 25]
- Encryption given a key K:
 - each letter in the plaintext P is replaced with the K'th letter following corresponding number (shift right)
- Decryption given K:
 - shift left

History: K = 3, Caesar's cipher

Shift Cipher: Cryptanalysis

- Can an attacker find K?
 - YES: by a bruteorce attack through exhaustive key search,
 - key space is small (<= 26 possible keys).
- Once K is found, very easy to decrypt

General Mono-alphabetic Substitution Cipher

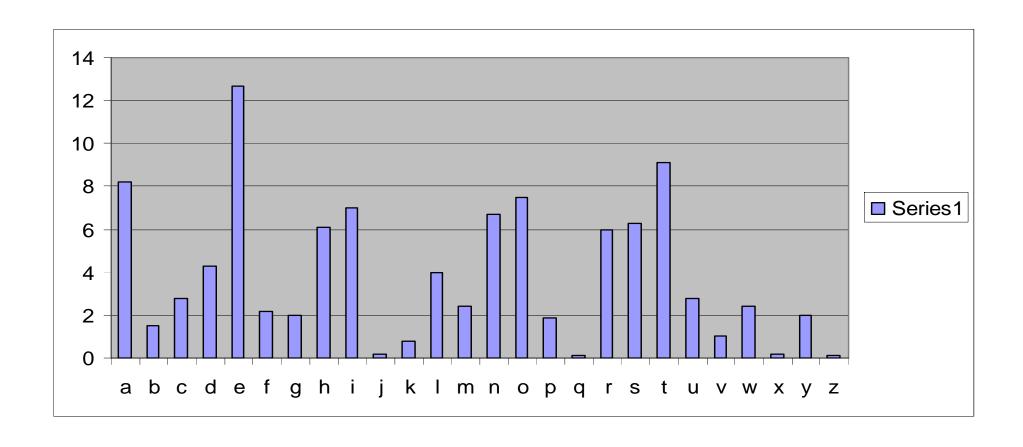
- The key space: all permutations of $\Sigma = \{A, B, C, ..., Z\}$
- Encryption given a key π:
 - each letter X in the plaintext P is replaced with $\pi(X)$
- Decryption given a key π:
 - each letter Y in the cipherext P is replaced with $\pi^{-1}(Y)$

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z $\pi = \texttt{B} \ \texttt{A} \ \texttt{D} \ \texttt{C} \ \texttt{Z} \ \texttt{H} \ \texttt{W} \ \texttt{Y} \ \texttt{G} \ \texttt{O} \ \texttt{Q} \ \texttt{X} \ \texttt{S} \ \texttt{V} \ \texttt{T} \ \texttt{R} \ \texttt{N} \ \texttt{M} \ \texttt{L} \ \texttt{K} \ \texttt{J} \ \texttt{I} \ \texttt{P} \ \texttt{F} \ \texttt{E} \ \texttt{U}$

BECAUSE → AZDBJSZ

Strength of the General Substitution Cipher


- Exhaustive search is difficult
 - key space size is 26! \approx 4×10²⁶
- Dominates the art of secret writing throughout the first millennium A.D.
- Thought to be unbreakable by many back then

Cryptanalysis of Substitution Ciphers: Frequency Analysis

Basic ideas:

- Each language has certain features: frequency of letters, or of groups of two or more letters.
- Substitution ciphers preserve the language features.
- Substitution ciphers are vulnerable to frequency analysis attacks.

Frequency of Letters in English

Security Principles

- Security by obscurity doesn't work
- Should assume that the adversary knows the algorithm; the only secret the adversary is assumed to not know is the key

Readings for This Lecture

Required readings:

Cryptography on Wikipedia

Optional Readings:

- Security in Computing
 - Chapter 2: Basic Encryption and Decryption

Interesting reading

 The Code Book by Simon Singh

Coming Attractions ...

 Cryptography: One-time Pad, Informational Theoretical Security, Stream Ciphers

