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Abstract

Theoretical analysis of structured learning
methods has focused primarily on domains
where the data consist of independent (albeit
structured) examples. Although the statisti-
cal relational learning (SRL) community has
recently developed many classification meth-
ods for graph and network domains, much of
this work has focused on modeling domains
where there is a single network for learn-
ing. For example, we could learn a model
to predict the political views of users in an
online social network, based on the friend-
ship relationships among users. In this exam-
ple, the data would be drawn from a single
large network (e.g., Facebook) and increas-
ing the data size would correspond to ac-
quiring a larger graph. Although SRL meth-
ods can successfully improve classification in
these types of domains, there has been lit-
tle theoretical analysis addressing the issue
of single network domains. In particular, the
asymptotic properties of estimation are not
clear if the size of the model grows with the
size of the network. In this work, we focus on
outlining the conditions under which learn-
ing from a single network will be asymptot-
ically consistent and normal. Moreover, we
compare the properties of maximum likeli-
hood estimation (MLE) with that of gener-
alized maximum pseudolikelihood estimation
(MPLE) and use the resulting understanding
to propose novel MPLE estimators for single
network domains. We include empirical anal-
ysis on both synthetic and real network data
to illustrate the findings.
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1 Introduction

Statistical relational learning methods aim to exploit
the relationships among instances, which naturally ex-
ist in network data, to improve both descriptive and
predictive modeling performance compared to conven-
tional learning methods that assume independent and
identically distributed (i.i.d.) instances. Relational
modeling techniques have been applied in many ap-
plication domains, such as social networks, the world-
wide web, and citation analysis, with great empirical
success. However, there has been relatively little the-
oretical analysis of the properties of relational models,
nor has there been much focus on precisely defining
the estimation and learning tasks.

From the breadth of past work on real-world applica-
tions, it is clear that there are two distinct learning
scenarios that are implicitly considered by relational
learning researchers and analysts. In the first scenario,
the domain consists of a population of independent
graph samples (e.g., chemical compounds). Here each
graph is structured, but the domain consists of a set
of independent graphs, so we can reason theoretically
about the characteristics of algorithms in the limit, as
the number of available graph samples increases. In
the second scenario, the domain consists of a single,
large graph (e.g., Facebook). In this case, an increase
in dataset size corresponds to acquiring a larger sam-
ple from the network. Since relational models typically
focus on modeling the joint distribution of attributes
(e.g., class labels) over a specific network structure,
the asymptotic properties of the methods (as the size
of the network grows) are not clear. Although many
relational applications focus on learning and predic-
tion in a single network, theoretical analysis of the
models has focused on the former scenario (i.e., with
multiple, independent network samples). In this work,
we attempt to close this gap, by outlining the condi-
tions under which learning from a single network will
be asymptotically consistent and normal.

The purpose of our asymptotic analysis is two fold.
First, the asymptotic consistency argument provides
theoretical justification for current relational learning
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approaches that practitioners have been applying to
network data comprised of a single graph. Moreover,
our analysis provides some theoretical insight into a
central question in relational learning as to whether
joint learning over the full data graph outperforms
disjoint learning over subgraphs from the original net-
work, and if so, to what extent, and in which situa-
tions? Our asymptotic normality and efficiency results
illustrate how disjoint and joint learning approaches
exploit the relational dependencies in the data differ-
ently, and this understanding points to a spectrum of
learning approaches in between, by varying the level
of joint learning.

More specifically, we investigate this tradeoff through
a comparative analysis of maximum likelihood estima-
tors (MLE) and generalized maximum pseudolikeli-
hood estimators (MPLE). To the best of our knowl-
edge, this is the first formal analysis of MLE and
MPLE in the machine learning community for the
context of single-network estimation. Although the
asymptotic behavior of MLE and MPLE has been well
studied for i.i.d. data, the analysis for network data re-
quires different techniques and careful specification of
modeling assumptions. Since probabilistic limit the-
orems do not hold in full generality for dependent
data, asymptotic consistency and normality of rela-
tional learners can only be established under certain
assumptions about the relational structure. Previous
work in the statistical physics community has ana-
lyzed the asymptotic behavior of estimators for Gibbs
measures on lattice data under various structural as-
sumptions (see e.g. Comets, 1992). However, the typ-
ical assumptions made for lattice data, such as shift
invariance, are not applicable to relational learning
on heterogenous networks. Alternatively, we base our
analysis on two assumptions that are more suitable for
single-network domains. First, we assume that node
degrees remain bounded as the size of the data graph
grows. Second, we formalize the intuition that corre-
lation decays rapidly in the model as graph distance
increases, with a notion of weak dependence which re-
quires that the total correlation of each clique with all
other cliques across the network is finite.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe a templated Markov network model
for relational data, state our modeling assumptions,
and prove basic convergence. In Section 3, we prove
the asymptotic consistency and normality for MLE
and MPLE in the single-network scenario. We also
compare the asymptotic efficiency of MLE with differ-
ent MPLE’s. In Section 4, we illustrate the findings
with an empirical study on both synthetic data and
a real world social network. Finally, we conclude the
paper with a review of related work and a discussion.

2 Model Formulation
In this paper, our analysis is based on the framework of
Markov networks. We chose a Markov network frame-
work for the following reasons: (1) their formulations
are used widely in relational learning, (2) their rich
representation ability (e.g., Markov networks can nat-
urally translate data relationships into a model of pos-
sibly cyclic probabilistic dependencies), (3) their abil-
ity to derive a consistent global distribution from local
specifications, which is essential for consistent learn-
ing from subgraphs drawn from an unknown, larger
population graph, and (4) their amenability to theo-
retical analysis due to the desirable analytical prop-
erties of exponential families. While we will use the
general terminology of Markov networks throughout
this paper, our formulation encompasses a rich class of
undirected graphical model-based relational learners,
including relational Markov networks (Taskar et al.,
2002), Markov logic networks (Richardson and Domin-
gos, 2006), relational dependency networks (Neville
and Jensen, 2007), conditional random fields for rela-
tional learning (Sutton and Mccallum, 2006), and P*
models (Robins et al., 2007).
2.1 Templated Markov Networks
Templated Markov Networks for relational
data can be generally written as: PG(y|x) =
1
Z

Q
T∈T

Q
C∈CT (G) ΦT (xC ,yC ; θT ), where T is the set

of clique templates, and Z is the partition function.
Each clique C is defined on a small subgraph of the
whole data graph, while the parameters of cliques
within the same template T are tied, denoted by
θT . Therefore, we use a single potential function
ΦT for each template T . Each potential is further
formulated as a log-linear function of a set of features
φT . φT are computed from the vector of attributes(x)
and labels(y) within the corresponding clique C:
ΦT = exp

nD
θT ,φT (xC ,yC)

Eo
.

Throughout this paper, to keep the notation simple,
we assume that only one template is defined, although
the analysis can easily be generalized for a finite num-
ber of templates. As such, we drop the subscript T in
the above formulation. Furthermore, let n denote the
number of cliques in graph G, i.e., n = |C(G)|. Then
the model can be compactly written as follows.

P (y|x) =
1

Zn(θ; x)
exp

8<:
*

θ,
X

C∈C(G)

φ(xC ,yC)

+9=; (1)

where the partition function is Zn(θ; x) =R
YG exp

D
θ,
P
c∈C(G) φ(xC ,yC)

E
dy.

Within this model, we consider learning over train-
ing graphs with increasing number of cliques n → ∞.
Depending on the model specification, as the size of
the graph grows, n can grow in the order of the num-
ber of nodes (e.g., node-centric clique specifications),
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Eθ: expectation taken w.r.t. Pθ

G: training graph
C ∈ C(G): template potential cliques
n: number of cliques(|C(G)|)
S ∈ S(G): template pseudolikelihood components
m: number of pseudolikelihood components(|S(G)|)
Ln(θ; x): the conditional log-likelihood

L̃m(θ; x): the conditional log-pseudolikelihood

fn (f̃m): the gradient of the Ln(L̃m)
yR (xR): joint instantiation of y(x) over the node set R
φC = φ(xC ,yC): features in the potential function

θ̂n: the maximum likelihood estimate

θ̃m: the maximum pseudolikelihood estimate

Table 1: Notations used in this paper

the number of edges (e.g., pairwise clique specifica-
tions), or higher. The MLE θ̂ can be written as:
θ̂n = argmaxθ Ln(θ; x), where the normalized1 log-
likelihood function is:

Ln(θ; x) =

*
θ,

1

n

X
C∈C(G)

φC
+
− 1

n
logZn(θ; x) (2)

Instead of optimizing the joint distribution over the
whole training graph, the generalized maximum pseu-
dolikelihood estimator (MPLE) partitions the graph
into small subgraph components. In this paper, we
use a templating formulation, similar to that of the po-
tential cliques C(G), for the MPLE components S(G),
where {S : ∪S = G} and each component S intersects
with mS cliques. Let m denote the number of pseu-
dolikelihood components in G, i.e., m = |S(G)|. Since
mS << n, m = O(n). Let ∂S be the set of cliques which
intersect with S’s Markov blanket, i.e., ∂S = {C : C ∈
C(G) and C∩S 6= ∅ and ∃v /∈ S s.t. v ∈ C}. The MPLE
objective is defined as a product of local conditional
probabilities:

PL(θ; x) =
Y

S∈S(G)

P (yS |yG\S ,x) =
Y

S∈S(G)

P (yS |y∂S ,x)

=
Y

S∈S(G)

1

Z̃S(θ; x)
exp

*
θ,

X
C:C∩S 6=∅

φ(xC ,yC)

+
(3)

where the partition function is Z̃S(θ; x) =R
YS exp

D
θ,
P
C:S∩C 6=∅ φ(xC ,yC)

E
dy.

The MPLE can be written as: θ̃n = argmaxθ L̃n(θ; x),
where the normalized log-peudolikelihood function is:

L̃m(θ; x)=
1

m

X
S∈S(G)

X
C:C∩S 6=∅

“D
θ,φC

E
−log Z̃S(θ; x)

”
(4)

Clearly, the key difference of the two estimators lies
in the partition function. The MLE does not partition

1We normalize the log-likelihood because the unnormal-
ized value goes to infinity as n→∞. The normalized ver-
sion is also convenient to work with for proving consistency.

the graph and needs to enumerate all y variables jointly
in G in the partition function. In general, the space
on which the MLE integral is taken grows exponen-
tially with the training data size n—which alludes to
the computational infeasibility of MLE for relational
learning, distinguishing it from i.i.d. learning. In con-
trast, the MPLE partitions the graph into components
of bounded sizes and only enumerates the variables
within each component. Therefore, the domain of the
MPLE integral remains fixed as the training data size
grows. The common practice in relational learning of
considering subgraphs from the training data as i.i.d.
samples and learning from them independently is thus,
in effect, MPLE learning.

By standard results on exponential families (see, e.g.
Wainwright and Jordan, 2008), the gradient of Ln and
L̃m, denoted by fn and f̃m respectively, are:

fn(θ) =
1

n

X
C∈C(G)

φC − Eθ[φ|x] (5)

f̃m(θ) =
1

m

X
S∈S(G)

X
C:C∩S 6=∅

“
φC − Eθ

h
φ|y∂S ,x

i”
(6)

2.2 Weak Dependence and Convergence
We provide theoretical justification of learning from
subgraphs by studying the asymptotic behavior of the
estimators. To this end, we first need the notion
of Markov networks of infinite size. Based on stan-
dard arguments in probability theory (see also Singla
and Domingos, 2007), the following local finiteness as-
sumptions are sufficient for our model (1) to be well
defined at infinity.

Definition 1 (Local finiteness). The infinite Markov
network is locally finite if the number of variables in
each variable v’s Markov blanket is bounded, i.e., there
exists 0 < d < ∞ such that

P
C:v∈C |C| ≤ d for every

v ∈ G. In addition, the feature values must be bounded
as well: φ(·) ≤M <∞.

A further sufficient condition for the learners to be
well-behaved is a notion of weak dependence. The data
are weakly dependent if the total covariance of any
clique with all other cliques in the network is finite.

Definition 2 (Weak dependence). The Markov
network satisfies the weak dependence condi-
tion if limn→∞Eθ[V [φ]] exists, where V [φ] =
1
n

P
C1∈C(G)

P
C2∈C(G) Cov

h
φC1 ,φC2

i
is the auto-

covariance of feature values across the whole network.

In the literature, various forms of weak depen-
dence (see e.g. Dedecker et al., 2007) have been used
to prove limit theorems for dependent data. The def-
inition presented herein differs from past definitions
in two main aspects. First, previous definitions usu-
ally involve testing all bounded functions, while we
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relax it to only consider the covariance of the feature
function φ, which suffices for our purpose. Second, in
related work, weak dependence conditions are primar-
ily considered for time series and lattice data. These
conditions can be adapted for graphs of subexponen-
tial growth to give sufficient conditions of our weak de-
pendence assumption. For example, exponential decay
in correlation (with respect to graph distance) implies
that Definition 2 holds. While it is computationally
infeasible to check weak dependence conditions empir-
ically, part of our current work is deriving sufficient
conditions for weak dependence which are convenient
to work with while remains wide applicability.

Throughout this paper, we focus on networks where
weak dependence holds. We note that infinite Markov
networks which fail to satisfy the weak dependence
condition are not well behaved in general and the cor-
responding learning algorithm will tend to perform
poorly. For example, perturbation of values at a sin-
gle node may cause global label changes, which could
make the algorithm oscillate between very different
labelings. The break of weak dependence is closely
related (although not identical) to the phenomenon
of phase transition in statistical physics (Dobruschin,
1968). Loosely speaking, phase transitions in infinite
Markov networks occur when different configurations
at the boundary cause different probability distribu-
tions over inner nodes. In many application areas of
relational learning like social networks and web graphs,
such dramatic long range influence is not likely.

An immediate consequence of the weak dependence
condition is the following law of large numbers for in-
terdependent feature values.

Proposition 1. Assuming weak dependence and the
true parameter vector θ, the following holds:

i) 1
n

P
C∈C(G) φC

P→Eθ[φ].

ii) V(θ) ≡ limn→∞Eθ[Vn[φ|x]] exists.

iii) Eθ

h
φ|xGn

i
P→Eθ[φ].

Proof Sketch
i): For any t > 0, by Markov’s inequality,

P (|| 1
n

X
C∈C(G)

φC − Eθ[φ]||2 ≥ t)

≤ 1

t

Z
X ,Y
|| 1
n

X
C∈C(G)

φ(xC ,yC)− Eθ[φ]||2d(x,y)

=
1

tn
V [φ]

Letting n→∞, P (|| 1n
P
C∈C(G) φC − Eθ[φ]||2 ≥ t)→ 0.

ii): By the law of total covariance, Eθ[V [φ|x]] ≤
Eθ[V [φ]]. Thus, the increasing sequence {Eθ[V [φ|x]]}

is bounded, and its limit exists.
iii) is proved in the same way as i).

3 Asymptotic Analysis of Estimators

In this section, we establish asymptotic consistency
and normality arguments for MLE and MPLE, in order
to theoretically justify relational learning from a single
network. We also analyze the efficiency of the learners
by comparing their asymptotic variance. Throughout
this section, compactness of the parameter space and
identifiability of parameters2 are assumed for the con-
venience of theoretical analysis.

3.1 Asymptotic Consistency
We use the following lemma, which appears in van der
Vaart (2000, Theorem 5.7) to prove consistency of the
estimators.

Lemma 1. Let θ̂n be a sequence of estimators, Mn be
random functions, M be a fixed function of θ such that
for every δ > 0,

sup
θ
|Mn(θ)−M(θ)| P→ 0, (7)

sup
θ:||θ−θ0||≥δ

M(θ) < M(θ0) (8)

Mn(θ̂n) ≥Mn(θ0)− ε(n) (9)

where ε(n)
P→ 0. Then θ̂n

P→ θ̂0.

In order to discuss consistency, we need to consider
the generative distribution for the data, which is the
full Markov network parameterized by θ0:

Pθ0(x,y) =
1

Zn(θ0)
exp

8<:
*

θ0,
X

C∈C(G)

φ(xC ,yC)

+9=;
(10)

where Zn(θ0)=
R
XG,YG exp

D
θ0,
P
c∈C(G) φ(xC ,yC)

E
d(x,y).

Our general conditional model (1) differs from the
generative distribution (10) in that while the gener-
ative distribution is over the whole space (XG,YG),
the conditional learner only varies over YG. We thus
relate the estimate based on the conditional likelihood
(resp. pseudolikelihood) to that based on the full
generative likelihood (resp. pseudolikelihood). The
log partition function of the generative likelihood
(resp. pseudolikelihood) is denoted by A(θ) (resp.
Ã(θ)) in the following proofs. Weak dependence, local
finiteness and the convexity of log partition functions
are instrumental in establishing the conditions of
Lemma 1.

2Nonidentifiable parameterization could be useful in
practice due to interpretability. In such circumstances the
validity of learning needs to be established based on equiv-
alence class arguments.
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Proposition 2. Let θ̂n be the maximum likelihood es-
timator based on graph G with n cliques, generated
from Pθ0

(as defined by Equation 10). Then θ̂n is
asymptotically consistent: θ̂n

P→θ0.

Proof Sketch
Let An(θ) = 1

n log
R
XG,YG exp

D
θ,
P
c∈C(G) φC

E
d(x,y).

Given local finiteness, {An(θ)} is bounded and its limit
exists, which we denote by A(θ) = limn→∞An(θ). Fur-
thermore, An(θ) is convex and we denote its conjugate
function by A∗n, i.e., A∗n(φ) = supθ 〈θ,φ〉 − An(θ). In
Lemma 1, let Mn(θ) =

D
θ, 1

n

P
C∈C(G) φC

E
−An(θ), and

M(θ) = 〈θ, Eθ[φ]〉−A(θ). We prove the consistency by
checking each of the assumptions. Equation (7) follows
from Proposition 1 and the compactness of parameter
space. Moreover, for ∀δ > 0, ∀θ s.t. ||θ − θ0|| ≥ δ:

M(θ0)−M(θ)= lim
n→∞

1

n
Eθ0

h
logPθ0(yG|xG)−logPθ(yG|xG)

i
(11)

which is the limit of the KL divergence (rescaled by
1
n ) between the distributions parameterized by θ0 and
θ. To show this limit is strictly positive, pick a largest
subset of cliques Ǧ from G, such that ∀Ci, Cj ∈ Ǧ, Ci ∩
Cj = ∅. Due to local finiteness, |Ǧ| ≥ dn/d2e. Define
Ḡ = G \ Ǧ. Furthermore, let Pθ(R) denote Pθ(xR,yR)

and Pθ(R|T ) denote Pθ(xR,yR|xT ,yT ) for any node
sets R and T . We rewrite Equation (11) as

1

n
KL

`
Pθ0

(G)||Pθ(G)
´

=
1

n
KL

`
Pθ0

(Ǧ|Ḡ)||Pθ(Ǧ|Ḡ
´

+ KL(Pθ0
(Ḡ||Pθ(Ḡ))

≥ 1

n
KL

`
Pθ0

(Ǧ|Ḡ)||Pθ(Ǧ|Ḡ)
´

≥ 1

d2
KL

`
Pθ0

(C|∂C)||Pθ(C|∂C)
´

Note that due to the identifiability of parame-
ters, the KL divergence between the local prob-
abilities is positive, i.e., ∃η > 0 such that
M(θ0) − M(θ) ≥ 1

d2
KL

`
Pθ0

(C|∂C)||Pθ(C|∂C)
´
≥

η
d2

> 0 i.e., Equation (8) holds. Finally, we
check Equation (9). By Equation (5) E

θ̂n
[φ|x] =

1
n

P
C∈C(G) φC

P→Eθ0
[φ], while 1

n

P
C∈C(G) φC

P→Eθ0

by Proposition 1, so E
θ̂n

[φ|x]
P→Eθ0

[φ]. On the other

hand, E
θ̂n

[φ|x]
P→E

θ̂n
[φ]. Therefore, E

θ̂n
[φ]

P→Eθ0
[φ].

Mn(θ0) − Mn(θ̂n) = A∗n(Eθ0
[φ]) − A∗n(E

θ̂n
[φ]) +D

θ̂n, Eθ̂n
[φ]
E
−
˙
θ0, Eθ0

[φ]
¸
. Since E

θ̂n
[φ]

P→Eθ0
[φ],

A∗n(E
θ̂n

[φ])
P→A∗n(Eθ0

[φ]) by continuous mapping the-
orem. θ0 and θ̂n are bounded. Therefore, the RHS
converge to 0. We thus get Equation (9).

Proposition 3. Let θ̃m be the maximum pseudolike-
lihood estimator based on graph G with m pseudolike-
lihood components, generated from Pθ0

. Then θ̃m is
asymptotically consistent: θ̃m

P→θ0.

Proof Sketch
Similar to the previous proof, let Ãm(θ) =
1
m

P
S∈S(G) log

R
XS ,YS exp

D
θ,
P
C:C∩S 6=∅ φC

E
d(x,y),

and Ã(θ) = limm→∞ Ãm(θ). In Lemma 1, let
Mm(θ) = 1

m

P
S∈S(G)

P
C:C∩S 6=∅ φC − Ãm(θ), and

M(θ) =
˙
θ, Eθ0

[φ]
¸
− Ã(θ). Then Equation (7) and

(9) are verified in the same way as the MLE case.
We only check Equation (8) here. For ∀δ > 0, ∀θ s.t.
||θ − θ0|| ≥ δ:

M(θ0)−M(θ)

=
˙
θ, Eθ0

[φ]
¸
− Ã(θ0)−

“˙
θ, Eθ0

[φ]
¸
− Ã(θ)

”
= lim
m→∞

1

m

X
S∈S(G)

Eθ0

`
logPθ0

(S|∂S)− logPθ(S|∂S)
´

= lim
m→∞

1

m

X
S∈S(G)

KL
`
Pθ0

(S|∂S)||Pθ(S|∂S)
´

where again the local KL divergence is positive due to
identifiability of the parameters. Due to local finite-
ness of the graph and boundedness of pseudolikelihood
components, as m increases, all possible pseudolikeli-
hood components can be divided into a finite num-
ber of isometric classes. Since the number of different
pseudolikelihood classes is finite, there exists η such
that for any S, KL

`
Pθ0

(S|∂S)||Pθ(S|∂S)
´
≥ η > 0.

Therefore, M(θ0)−M(θ) ≥ η > 0.

Our consistency results justify both joint and disjoint
learning over observed subgraphs from the underlying
whole graph.
3.2 Asymptotic Normality
To establish asymptotic normality for relational esti-
mators, we need appropriate forms of central limit the-
orems for dependent data. Lemma 2 and 3 serve for
this purpose (see appendix for proofs).

Lemma 2. Let f be the gradient of log-likelihood func-
tion, as defined in Equation 5, and V(θ0) as defined in
Proposition 1. Then

√
nfn(θ0)

D→N (0,V(θ0)).

Proposition 4. Assuming weak dependence, the max-
imum likelihood estimator is asymptotically normal:

√
n(θ̂n − θ0)

D→N
“
0,V(θ0)−1

”
(12)

Proof Sketch
We apply the method describe in van der Vaart
(2000, Section 5.3). Apply Taylor expansion to fn,
and note that the MLE θ̂n is the zero point of
fn(θ): 0 = fn(θ̂n) = fn(θ0) + (θ̂n − θ0)∇fn(θ0) +

o(||θ̂n − θ0||2) Reagrranging the terms, and multi-
plying both sides by

√
n, we get

√
n(θ̂n − θ0) =

−∇fn(θ0)−1√nfn(θ0)−o(||θ̂n−θ0||2). Since ∇fn(θ0)→
−V(θ0), and fn(θ0)

D→N (0,V(θ0)) by Lemma 2, Equa-
tion (12) follows.
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Next, we consider the maximum pseudolikelihood es-
timator. The asymptotic normality of the MPLE is
closely related to two covariance matrices. Intuitively,
they can be viewed as the “within component” auto-
covariance and the ”across network” covariance. The
autocovariance of feature values within each compo-
nent is: Ṽ(θ) = Eθ

h
Ṽ [φ|S,x]

i
, where:

Ṽ [φ|S,x] =
1

m

X
S∈S

X
C1:C1∩S 6=∅

X
C2:C2∩S 6=∅

Cov
h
uC1 ,uC2

i

and uCi = φCi −Eθ

h
φ|y∂S ,x

i
. We further denote the

covariance of component conditional values of features
across the network by C(θ) = Eθ [C[φ|x]], where:

C[φ|x]=
1

m

X
S1,S2∈S(G)

X
C1:C1∩S1 6=∅

X
C2:C2∩S2 6=∅

Cov
h
uC1,uC2

i
=

1

m

X
C1,C2:C1./C2

Cov
h
uC1 ,uC2

i
Here C1 ./ C2 refers to the set of C where ∃S ∈
S(G) s.t. C1 ∩ (S ∪ ∂S) 6= ∅ and C2 ∩ (S ∪ ∂S) 6= ∅. The
second equality follows from the fact that cliques out-
side of the Markov blanket of each other are condition-
ally independent.

We are now ready to state the following central limit
theorem for f̃m, and consequently the asymptotic nor-
mality of MPLE.

Lemma 3.
√
mf̃m(θ0)

D→N (0, C(θ0)).

Proposition 5. The maximum pseudolikelihood es-
timator is asymptotically normal:
√
m(θ̃m − θ0)

D→N
“
0, Ṽ(θ0)

−1C(θ0)Ṽ(θ0)
−1
”

(13)

Proof Sketch
Similar to the proof for MLE, we apply Taylor expan-
sion to f̃n:

0 = f̃m(θ̃m) = f̃m(θ0)+(θ̃m−θ0)∇f̃m(θ0)+o(||θ̃m−θ0||2)

Observe that ∇f̃m(θ0) → −Eθ0

h
Ṽ [φ|S,x]

i
= −Ṽ(θ0).

Combined with Lemma 3, this gives Equation 13.

Although MLE can be regarded as MPLE with just
one component, for which Ṽ and C are well defined,
and the resulting asymptotic variance coincides with
V−1, Proposition 4 and Proposition 5 are based on
two extremely different conditions: the former a single
component of infinite size, while the latter infinitely
many components with fixed size. In practice, due to
the intractability of MLE on large networks, we tend to
use a finite number of small subgraphs for estimation.
In this case, the asymptotic variance of MPLE suggests
that partitioning the graph so as to maximize within-
component variance Ṽ would make the learner perform

better as it reduces the asymptotic variance. This will
be further discussed in Section 4.

In addition, when the pseudolikelihood components
are independent of each other, then Ṽ = 1

mC = 1
nV and

the asymptotic variance of the MLE and MPLE be-
come identical. Thus, the asymptotic normality results
of both MLE and MPLE naturally generalize those of
the i.i.d. case. In general, however, the MLE is asymp-
totically more efficient than the MPLE in the sense
of matrix determinant comparison. See appendix for
proof.

Proposition 6. The MLE is asymptotically more ef-
ficient than the MPLE, i.e.,

det

„
1

n
V−1

«
≤ det

„
1

m
Ṽ−1CṼ−1

«
(14)

Finally, we compare maximum pseudolikelihood esti-
mators with different component partitions. Consider
two pseudolikelihood estimators θ̃1 and θ̃2, which con-
sist of components S1(G) and S2(G) respectively. We
say that S2(G) is a finer partition compared to S1(G),
if for every S2 ∈ S2, there is some S1 ∈ S2 s.t. S2 ⊆ S1.
See appendix for proof.

Proposition 7. If S2(G) is finer than S1(G), then θ̃1

is asymptotically more efficient than θ̃2, i.e.,

det

„
1

m1
Ṽ−1

1 C1Ṽ
−1
1

«
≤ det

„
1

m2
Ṽ−1

2 C2Ṽ
−1
2

«
(15)

4 Experiments

In this section, we investigate the empirical perfor-
mance of relational learners on finite data. Since MLE
is not tractable on networks of moderate to large sizes,
we only demonstrate its performance on small syn-
thetic data. Our main focus is on comparing different
generalized MPLEs. For high order MPLE compo-
nents, different constructions will result in different
covariance structures, and thus their form is expected
to impact the performance (i.e., convergence) of the
model. According to Proposition 5, in order to maxi-
mize performance, component construction should aim
to maximize the within-component covariance Ṽ and
to minimize the between-component covariance C.3

However, it is computationally intractable to directly
optimize either of these covariance matrices in prac-
tice because the evaluation would involve running in-
ference across the whole network while varying each
clique. Therefore, we need to resort to some heuristic
choice of components to approximate the analytical
objective. Since network links directly affect compo-
nent covariance, it may appear that graph clustering
could be used as a heuristic to select components that

3Minimizing C is generally a secondary concern, but
usually it can be optimized simultaneously with Ṽ.
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satisfy this objective. However, we note that conven-
tional graph clustering algorithms are not immediately
applicable since we are mainly interested in small, and
possibly overlapping, subgraphs for the MPLE compo-
nents. As such, we investigate the following methods
of component construction:

• Singleton: Each node in the network forms a com-
ponent.

• Edgewise: Each pair of nodes connected by an
edge in the network forms a component.

• Random: Starting from edgewise components, we
randomly expand each component to a particular
size. The component is expanded with a random
choice of BFS or DFS at each step.

• Heuristic: Starting from edgewise components,
we greedily expand each component by choosing,
at each step, to add the node with maximum num-
ber of links to the nodes already in the compo-
nent, with a discount to reflect the number of
times that the node (and edge) have already ap-
peared in other components. This approach is a
heuristic designed to maximize Ṽ.

4.1 Experiments on Synthetic Data
We use synthetic data to directly evaluate the qual-
ity of parameter estimation under two levels of net-
work connectivity and two levels of model dependence.
These experiments are intended to provide further in-
sights into model performance in practical situations
when only limited data is available and to explore
whether behavior in the finite data region matches that
predicted by the asymptotic analysis.

We use the Erdos-Renyi random graph model to gen-
erate synthetic network structures with high and low
linkage (average degree of 10 and 5 respectively). Then
we used a manually-specified Markov network model
to generate a binary attribute and class label on the
nodes, exploring both high and low interaction param-
eters. Details are in the appendix.

For all learners we use the BFGS optimizer. For MLE
we use Gibbs Sampling to compute the gradient and
value of likelihood function in each optimization step,
while we perform exact computation by brute force
enumeration for all MPLE components. We report
mean squared error (MSE= E||θ−θ0||2) for evaluation.
Figure 1 plots MSE as training data size increases, av-
eraged over [200, 200, 80, 20] trials for network sizes
[100, 400, 1000, 5000] respectively. In general, the
learning algorithms converge more quickly when both
the level of linkage and local interactions are low, while
they converge most slowly when both the linkage and
interaction levels are high. This is due to the fact that
both denser graph structure and larger interaction pa-
rameters result in higher component variance. In all

but the high linkage, high interaction case, the behav-
ior of the learners is consistent with the asymptotic
analysis. While the MLE attains lowest estimation er-
ror, it is only feasible for small networks. The heuris-
tic component construction achieves the lowest error
among all pseudoliklihood methods. In the exceptional
high linkage, high interaction case, the performance of
the learners in the small data regime seems to con-
tradict the asymptotic prediction. While the heuristic
approach still achieves best performance at large net-
work sizes, the random construction attains the best
performance for small to moderate network sizes. This
is because when both linkage and interaction levels are
high, the covariance across the network is too large rel-
ative to the network size and our assumption of weak
dependence is violated, hence the asymptotic analysis
is no longer applicable. While the empirical results
seems to suggest that MPLE components based on
random construction are more stable in such scenar-
ios, this warrants further investigation before making
this conclusion.

4.2 Experiments on Facebook Data
We next apply the relational learners to data from a
large “University” Facebook network. The data in-
clude friendship links, transactions among user (e.g.,
wall posts), as well as user profile attributes. We divide
the network into 8 articulated subnetworks of com-
parable sizes for training and testing (e.g., “Class of
2008”) and evaluate performance on four different clas-
sification tasks (predicting profile attributes based on
other profile attributes and connections in the friend-
ship network). See appendix for details.

The classification results are shown in Figure 2. We
use one test subnetwork for evaluation, while varying
the number of subnetworks used for training, and re-
port average results over the 8 subnetworks. As a
baseline for comparison, we also include an indepen-
dent learning approach which treats each user as an
i.i.d. instance. As the size of the training graph
grows, the independent learning curve remains rela-
tively flat, while the relational learners improve their
performance. This is due to the fact that relational
models explore the covariance structure of the data,
and take more training instances to converge to their
optimum. When the autocorrelation in the data is
high (as is the case for the tasks “gender” and “polit-
ical view”), the relational learners perform constantly
better than i.i.d. learning. When the autocorrelation
is low (as is the case for the tasks “relationship status”
and “religious view”), the relational estimates tend to
be biased for small dataset sizes, but still outperform
independent learning as more data becomes available.
Similar to the synthetic data results, the heuristic com-
ponent construction achieves superior performance in
most cases among all the relational learners. While the
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(a) Low linkage, low interaction (b) Low linkage, high interaction (c) High linkage, low interaction (d) High linkage, high interaction

Figure 1: Average estimation MSE over randomly-generated synthetic-data training networks (log-log scale).

computational cost is the same, the random construc-
tion performs much worse. This demonstrate the ben-
efit of exploiting the structure of the graph in the com-
ponent construction. The singleton and pairwise ap-
proaches are inferior to high-order constructions when
only moderate amount of training data is available.
However, we observe that they eventually converge
to almost the same optimum as the high-order ap-
proaches at the maximum size of training network.

(a) Gender: male? (b) Relationship status: single?

(c) Political view: conservative? (d) Religious view: Christian?

Figure 2: Classification results on Facebook, as the
number of training subnetworks K is varied.

5 Related Work
Markov networks that tie parameters through tem-
plating is a popular approach to model relational and
network data. Our analysis builds upon the mod-
els and learning algorithms proposed by Taskar et al.
(2002), Richardson and Domingos (2006), and Neville
and Jensen (2007). These algorithms have been suc-
cessfully applied in single-network settings. However
to date, the theoretical issues of model convergence,
consistency and efficiency in single-network domains
with data interdependence have not been explored.

Asymptotic analysis for i.i.d. estimators and its im-

plication in finite data learning have received consid-
erable attention in the machine learning community.
In (Liang and Jordan, 2008), the asymptotic analysis
is motivated by comparing the performance of gener-
ative, discriminative and pseudolikelihood estimators.
Dillion and Lebanon (2009) exploited an understand-
ing of the asymptotic variance to make better choice
of the pseudolikelihood component weights. In rela-
tional domains, analyzing the asymptotic covariance
provides us with additional insights as to how the co-
variance structure of the network affects learning, and
how to exploit that understanding to construct better
pseudolikelihood components.

6 Conclusion
In this paper, we have performed an asymptotic anal-
ysis of relational learning methods applied to a single
network. We illustrate the findings with an empir-
ical exploration of the performance of MPLEs with
different component construction schemes in various
conditions. This provides a starting point for more
sophisticated approaches to constructing MPLE com-
ponents and controlling the level of joint learning in
network data. We believe that further exploration in
this direction is important for the relational learning
community, since relational models grow with the size
of the training data, making full MLE intractable to
apply in practice.

As part of future work, we plan to explore other impor-
tant theoretical issues which have not been addressed
in this paper. One of particular interest is the ac-
count for model mis-specification, i.e., how the learn-
ers perform when the true underlying distribution falls
outside of the model family. While our experimental
results on Facebook data seem to suggest MPLE based
on heuristic component construction is quite robust, it
is worth pursuing a formal analysis of this setting.
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A APPENDIX—SUPPLEMENTARY
MATERIAL

A.1 Proofs of Central Limit Theorems

To prove the essential central limit theorems, we use
a standard technique for dependent data, developed
by Bolthausen (1982), which is based on the well-known
Stein’s method(Stein (1972)).

Proof Sketch of Lemma 2

Let a be any nonzero vector of the same di-
mension as fn, uk =

˙
a,φ(xCk ,yCk )

¸
− Eθ0 [φ|x],

zn ≡ 1
σn

Pn
k=1 uk = 1

σn
〈a, nfn〉, where σ2

n ≡

Eθ0

h`Pn
k=1 uk

´2i → naTV(θ0; x)a. The proof then re-

duces to showing that zn is asymptotically standard nor-
mal. By Lemma 2 in Bolthausen (1982), it suffices to show,
for any λ ∈ R,

lim
n→∞

Eθ0 [(iλ− zn) exp(iλzn)] = 0 (16)

Apply the decomposition

(iλ− zn) exp(iλzn) = Q1 +Q2

where

Q1 = iλ exp(iλzn)

 
1− 1

σn

nX
k=1

ukzn

!

Q2 =
1

σn
exp(iλzn)

nX
k=1

uk(iλzn − 1)

We have

Eθ0 |Q1| ≤ cEθ0

˛̨̨̨
˛1− 1

σn

nX
k=1

ukzn

˛̨̨̨
˛ = 0

and Eθ0 |Q2| ≤ cEθ0

˛̨̨
1
σn

Pn
k=1 ukzn

˛̨̨
+c′Eθ0

˛̨̨
1
σn

Pn
k=1 uk

˛̨̨
.

Note that σn = O(n) and Eθ0

˛̨Pn
k=1 ukzn

˛̨
→

aTV(θ0; x)a. Therefore we get Eθ0 |Q2| → 0.

Proof Sketch of Lemma 3

Similarly, let uk =
D
a,
P
C:C∩Sk 6=∅

φ(xC ,yC)
E
−

mSkEθ0 [φ|y∂Sk ,x], zm ≡ 1
σm

Pm
k=1 uk = 1

σm

D
a,mf̃m

E
,

where σ2
m ≡ Eθ0

h`Pm
k=1 uk

´2i→ maT C(θ0; x)a. Further-

more, define zm,k = 1
σm

P
j:Sj∩Sk 6=∅

uk. zm,k is bounded

by local finiteness. We show Equation (16) based on the
follow decomposition.

(iλ− zm) exp(iλzm) = Q1 +Q2 +Q3

where

Q1 = iλ exp(iλzm)

 
1− 1

σm

mX
k=1

ukzm

!

Q2 =
1

σm
exp(iλzm)

mX
k=1

uk(iλzm,k + exp(−iλzm,k)− 1)

Q3 = − 1

σm

mX
k=1

uk exp (iλ(zm − zm,k))

Again, Eθ0 |Q1| = 0 holds. Furthermore,

Eθ0 |Q2| ≤ cEθ0

˛̨̨̨
˛ 1

σm

mX
k=1

uk
(λzm,k)2

2

˛̨̨̨
˛
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where we have used an identity |iv + exp(−iv) − 1| ≤ v2

2
.

Since zm,k = O( 1
m

),

Eθ0 |Q2| ≤ c′Eθ0

˛̨̨̨
˛ 1

σm

mX
k=1

uk

˛̨̨̨
˛→ 0

Finally, since uk is independent of zm − zm,k, Eθ0 |Q3| =

Eθ0

˛̨̨
1
σm

uk

˛̨̨
Eθ0 |exp (iλ(zm − zm,k))| = 0.

A.2 Asymptotic Efficiency Proofs

Proof Sketch of Proposition 6

We consider the autocovariance of the joint vector of like-

lihood and pseudolikelihood gradients h =

„
f

f̃

«
:

E [Var [h|S,x]] (17)

=

„
E[Var[f |x]] E[Cov[f , f̃ |S,x]]

E[Cov[f̃ , f |S,x]] E[Var[f̃ |S,x]]

«
Since the above covariance matrix is positive semidefinite,
we have:

det (E[Var[f |S,x]]) ≥
det
“
E[Cov[f , f̃ |S,x]]E[Cov[f̃ , f |S,x]

”
det
“
E[Var[f̃ |S,x]]

”
(18)

Also recognize that:

Var[f |x] =
1

n2

X
C1,C2

Cov(φC1 ,φC2 |x) =
1

n
V [φ|x] (19)

Var[f̃ |S,x] =
1

m2
Var

24X
S∈S

X
C:C∩S 6=∅

uC

35
=

1

m2

X
C1,C2:C1./C2

Cov
“
uC1 ,uC2

”
=

1

m
C[φ|x]

(20)
Cov[f , f̃ |S,x] = Cov[f̃ , f |S,x]

=
1

nm

X
C1∈C

X
S∈S

X
C2:C2∩S 6=∅

Cov
h
φC1 ,uC2

i
=

1

nm

X
S∈S

X
C1:C1∩S 6=∅

X
C2:C2∩S 6=∅

Cov
h
uC1 ,uC2

i
=

1

n
Ṽ [φ|S,x] (21)

Plugging Equations (19)-(21) into (18) and rearranging fac-
tors, we obtain (14).

Proof Sketch of Proposition 7

Again consider the covariance matrix of joint feature vector
as in Equation (17), by the law of total covariance, we
have Var[h1|S1,x] ≤ Var[h2|S2,x]. Using a block matrix
representation, we have:

det
“
E
h
Cov[f , f̃ |S1,x]

i
E
h
Cov[f̃ , f |S1,x]

i”
det
“
E
h
Var[f̃ |S1,x]

i”
≤
det
“
E
h
Cov[f , f̃ |S2,x]

i
E
h
Cov[f̃ , f |S2,x]

i”
det
“
E
h
Var[f̃ |S2,x]

i”
By applying Equation (20) and (21) and rearranging fac-
tors, we get (15).

A.3 Dataset Information

Synthetic Data Generation

For the synthetic data experiments we used an Erdos-Renyi
random graph model to generate synthetic network struc-
tures and then generated a binary attribute and class la-
bel on the nodes use Markov network model specified be-
low. In the Erdos-Renyi model, we generate a network of
N nodes by including an edge between each N(N − 1)/2
pair of nodes independently at random with probability

p =
davg

N(N−1)/2
. In this work, we considered davg = 5 for

the low linkage setting and davg = 10 for the high link-
age setting. In the Markov network, we specified two
clique types: a singleton clique defined on each node:
Φy=k = exp{θkI(x = k)} for k = 1, 2, and an interac-
tion clique defined on each edge (i, j): Φyi=yj = exp θ3.
The attributes (x) and labels (y) are then generated by
Gibbs sampling of 1000000 iterations. For the low interac-
tion setting we used θ3 = 0.1 and for the high interaction
setting we use θ3 = 0.3. The singleton clique parameters
were constant in all experiments at θ1 = 1.2, θ2 = 0.8.

Facebook Data and Model

The Facebook dataset consists of 7,315 nodes and 46,817
edges, which comprises all the students and alumni, with
public profiles, from a large “University” network. The
data includes user profile attributes (gender, relationship
status, political view and religious view), as well as friend-
ship links and transactions (wall posting and picture tag-
ging) between users. We divide the network into 8 artic-
ulated subnetworks of comparable sizes for training and
testing (e.g., “Class of 2008”).

For classification, we build a pairwise Markov network
based on friendship links. Two types of cliques are
specified: the singleton clique is a linear weighting of

node attributes: Φy=k = exp
nPm

j=1 θ
node
jk I(x = k)

o
,

and the edgewise clique is a linear weighting of
transactions between users i and j: Φyi=yj=k =

exp
nPt

l=1 θ
edge
lk sk(i, j) + θedge0k

o
where sl(i, j) denotes the

strength of the transaction l. We perform classification
tasks based on the four aforementioned profile attributes.
When classifying each attribute y, the model is conditioned
on the remaining 3 attributes x1, x2, x3. The two afore-
mentioned transactions are applied in the model, and the
strength sl(i, j) is computed as the logarithm of the total
count of transaction type l occurred between i and j.


