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Collective classification models exploit the dependencies in a network of
objects to improve predictions. For example, in a network of web pages, the
topic of a page may depend on the topics of hyperlinked pages. A relational
model capable of expressing and reasoning with such dependencies should
achieve superior performance to relational models that ignore such
dependencies. In this paper, we present relational dependency networks
(RDNs), extending recent work in dependency networks to a relational setting.
RDNs are a collective classification model that offers simple parameter
estimation and efficient structure learning. On two real-world data sets, we
compare RDNs to ordinary classification with relational probability trees and
show that collective classification improves performance.

1  Introduction

In this paper, we show how autocorrelation can be used to improve the accuracy of
statistical models of relational data. Autocorrelation is a statistical dependency
between the values of the same variable on related entities and is a common
characteristic of many relational data sets. In previous work, we have shown how
autocorrelation can cause bias in learning algorithms (Jensen & Neville 2002),
particularly when it appears with concentrated linkage, another common
characteristic of relational data sets. However, this work explores methods which
exploit autocorrelation to improve model accuracy. In particular, we demonstrate this
can be accomplished with a relatively simple approach to structure learning in a class
of undirected graphical models that we call relational dependency networks (RDNs).

It is relatively easy to understand how autocorrelation could be used to improve the
predictions of statistical models. For example, consider the problem of automatically
predicting the topic of a technical paper (e.g., neural networks, reinforcement
learning, genetic algorithms). One simple method for predicting paper topics would
look at the position of a paper within a citation graph. It may be possible to predict a
given paper's topic with high accuracy based on the topics of neighboring papers in
this graph. This is possible only because we expect high autocorrelation in the citation
graph—papers tend to cite other papers with the same topic.



However, such a scheme for prediction assumes that all the labels of related
entities (e.g., topics of referenced papers) are known. In many cases, the topics of an
entire set of papers may need to be inferred simultaneously. This approach, called
collective classification (Taskar, Abbeel & Koller 2002) requires both models and
inference procedures that can use inferences about one entity in a relational data set to
influence inferences about related entities. Similar approaches have been used in
several recent applications (Neville & Jensen 2000; Chakrabarti, Dom & Indyk 1998).

In this paper, we introduce relational dependency networks (RDNs), an undirected
graphical model for relational data. We show how RDNs can be learned and how
RDNs and Gibbs sampling can be used for collective classification. Because they are
undirected graphical models, RDNs can represent the cyclic dependencies required to
express autocorrelation, and they can express a joint probability distribution, rather
than only a single conditional distribution. In addition, they are relatively simple to
learn and easy to understand.

We show preliminary results indicating that collective inference with RDNs offers
improved performance over non-collective inference that we term "individual
inference." We also show that RDNs applied collectively can perform near the
theoretical ceiling achieved if all labels of neighbors are known with perfect accuracy.
These results are very promising, indicating the potential utility of additional
exploration of collective inference with RDNs.

2  Classification Models of Relational Data

Many relational models are used for "individual inference," where inferences about
one instance are not used to change the inference of related instances. For example,
some work in inductive logic programming (ILP) and relational learning uses
relational instances that can be represented as disconnected subgraphs (e.g.,
molecules), thus removing the need (and the opportunity) for collective inference.
Such models can cope with complex relational structure of an instance, but they do
not attempt to model the relational structure among instances.

Even learning relational models for individual inference can be difficult because
learning in relational data differs substantially from learning in propositional settings.
For example, work in ILP has long considered difficult representational issues such as
recursion, aggregation, variables, quantification, and other aspects of first-order and
higher-order logics. In addition, some of our recent work has examined the unique
statistical properties of relational data, and the influence of these characteristics on
learning algorithms. We have shown how concentrated linkage and relational
autocorrelation can bias relational learners toward particular features (Jensen &
Neville 2002). We have also shown how degree disparity can cause misleading
correlations in relational data, leading learning algorithms to add excessive structure
to learned models (Jensen, Neville & Hay 2003).

To address the challenges of relational learning, new learning algorithms are
necessary. For example, probabilistic relational models (PRMs) (Getoor, Friedman,
Koller & Pfeffer 2001) are a form of directed graphical model thatextend Bayesian
networks to support reasoning in complex relational domains. Unfortunately, PRMs



are a directed model in which autocorrelation cannot be represented due to acyclicity
constraints.1

As another example, we have recently developed relational probability trees
(RPTs), a method for learning tree-structured models that encode conditional
probability distributions for a class label that depend on both the attributes of related
instances and the features of the surrounding structure (Neville, Jensen, Friedland &
Hay 2003). Our methods for learning RPTs adjust for the sources of bias mentioned
above. As a result, the learned RPTs are a relatively compact and parsimonious
representation of conditional probability distributions in relational data. Until
recently, we had only applied these models for individual inference. The algorithm for
learning RPTs adjusts for statistical biases caused by autocorrelation, but our
inference techniques have not made use of autocorrelation to improve inference.

This is unfortunate, because autocorrelation is a nearly ubiquitous phenomenon in
relational data. We have observed relatively high levels of autocorrelation in
relational data sets. For example, in analysis of the 2001 KDD Cup data we found that
the proteins located in the same place in a cell (e.g., mitochondria or cell wall) had
highly autocorrelated functions (e.g., transcription or cell growth). Autocorrelation
has been identified by other investigators as well. For example, fraud in mobile phone
networks has been found to be highly autocorrelated (Cortes, Pregibon & Volinsky
2001). The topics of authoritative web pages are highly autocorrelated when linked
through directory pages that serve as “hubs” (Kleinberg 2001).

We also know that exploiting autocorrelation can result in significant increases in
predictive accuracy. Several recent developments in relational learning have focused
on exploiting autocorrelation. For example, the relational vector-space (RVS) model
(Bernstein, Clearwater & Provost 2003) uses weighted adjacency vectors to construct
classifiers. The model is extremely simple, but it produces accurate classifiers in data
with strong autocorrelation. Other examples include work with web pages
(Chakrabarti et al. 1998) that uses the hyperlink structure to produce smoothed
estimates of class labels and our own prior work (Neville & Jensen 2000) that uses an
iterative classification scheme to improve accuracy by exploiting the inferred class
labels of related instances.

Recently, undirected graphical models capable of representing and reasoning with
autocorrelation have been explored for the task of modeling relational data. Domingos
and Richardson (2001) represent market entities as social networks and develop
Markov random field models to model the influence in purchasing patterns
throughout the network. Taskar et al. (2002) use relational Markov networks (RMNs),
based on conditional random fields for sequence data (Lafferty, McCallum & Pereira
2001), to model the dependencies among web pages to predict page type. Undirected
models have proved to be successful for collective classification of relational data.
However, research into these models has focused primarily on parameter estimation
and inference procedures. Model structure is not learned automatically, it is pre-
specified by the user. Also, the models do not automatically identify which features
are most relevant to the task. For relational tasks, which are likely to have a large

                                                            
1 An exception is where autocorrelation is structured by some additional information such as

temporal constraints. (Getoor et al. 2001)



number of features, this lack of selectivity will make the model more difficult to
interpret and understand.

3  Relational Dependency Networks

Relational dependency networks extend recent work on dependency networks
(Heckerman, Chickering, Meek, Rounthwaite, and Kadie 2000) to a relational setting.
Dependency networks (DNs) are graphical models of probabilistic relationships—an
alternative to Bayesian networks and Markov random fields. DNs are easy to learn
and have been shown to perform well for a number of propositional tasks so we
expect them to offer similar advantages when used in a relational setting. We begin by
reviewing the details of dependency networks for propositional data and then describe
how to extend dependency networks for use with relational data.

3.1  Dependency Networks

Like Bayesian networks and Markov random fields, dependency networks encode
probabilistic relationships among a set of variables. Dependency networks are an
alternative form of graphical model that approximate the full joint distribution with a
set of conditional distributions that are learned independently. DNs combine
characteristics of both undirected and directed graphical models. The dependencies
among variables are represented with an undirected graph, so conditional
independence can be interpreted using graph separation. However, as with directed
models, dependencies are quantified using conditional probability distributions
(CPDs) of a variable given its parents. The primary distinction between DNs and
other graphical models is that DNs are an approximate model. Because the CPDs are
learned independently, DN models are not guaranteed to specify a coherent
probability distribution (see Learning section below for details).

DNs offer several advantages over conventional Bayesian networks, but also have
several disadvantages (Heckerman et al. 2000). Unlike Bayesian networks, DNs are
difficult to construct using a knowledge-based approach and they cannot represent
causal relationships. However, DN models can encode predictive relationships (i.e.
dependence and independence) and there are simple techniques for parameter
estimation and structure learning of DNs.

The characteristics that distinguish DN models from Bayesian networks make them
similar to Markov random fields. Both DNs and Markov random fields use undirected
graphs to represent dependencies among variables. When the causal relationships
among variables are unknown, undirected models are often more interpretable than
directed models which require d-separation reasoning to assess conditional
independencies. Undirected graphical models also have straightforward techniques for
parameter estimation and structure learning (e.g. Della Pietra, Della Pietra and
Lafferty 1997). DN conditional probability distributions will generally be easier to
inspect and understand than Markov network clique potentials, but DNs approximate
the full joint distribution and therefore Markov networks may produce more accurate
probabilities.



Representation.  The DN model consists of a set of conditional probability
distributions (CPDs), one for each variable given its parents. Consider the set of
variables X=(X1,...,Xn)  with a joint distribution p(x)=p(x1,...,xn). A dependency
network for X is represented by a graph G where each node in G corresponds to an
XiŒX. The parents of node Xi, denoted pai, consist of the nodes in its Markov blanket:
This specifies that, given its parents, a node is conditionally independent of the rest of
the nodes in the graph:

† 

p(xi | pai) = p(xi | x \ xi)
The undirected edges of the graph connect each node xi to each of its parents (the
nodes in pai). Furthermore, each node in the graph contains a local CPD, pi=p(xi|pai).
Together these CPDs specify the joint distribution over X.

For example, the DN in figure 1 could be used to model the set of variables
X=(X1,X2,X3,X4,X5).  Each node is conditionally independent of the other nodes in the
graph given its parents. For example, X1 is conditionally independent of X2 and X4
given X3 and X5.  Each node contains a CPD, which specifies a probability distribution
over possible values given the values of its parents. The full joint probability is the
product of the local CPDs:

† 

p(X) = p(X1 | X3,X5)p(X2 | X3,X4 )p(X3 | X1,X2)p(X4 | X2,X3)p(X5 | X1)
Notice that the model may have cycles. For example, X2, X3 and X4 form a clique in
the graph. This necessitates the use of approximate inference techniques (see
Inference section below for details). Also, notice that X4 is dependent on X3, but the
reverse is not true. An undirected edge is placed between two nodes if either of the
nodes is dependent on the other. In this case, a node’s parents will still form a Markov
blanket, but they won’t be the minimal set (e.g. p3=p(x3|x1,x2,x4)= p(x3|x1 ,x2)).

Fig. 1. Sample dependency network.

Learning.  As with any graphical model, there are two components to learning a DN:
structure learning and parameter estimation. Both structure learning and parameter
estimation is accomplished through learning the local CPDs of each variable. The
structure of a DN model is defined by the components of the local CPDs, much as
feature specifications define the structure of a undirected graphical model. The edges
of the graph connect a node to each of the variables in its local CPD. The parameters
of the model correspond to the parameters of the local CPDs.



The DN learning algorithm learns a separate CPD for each variable, conditioned on
the other variables in the data. For the DN model to be less than fully connected, a
selective learning algorithm should be used. Any selective modeling technique can be
used, however, to build a parsimonious DN model it is desirable to use a selective
learner that will learn small, accurate CPDs.

For example, an algorithm for learning relational probability trees could be used to
model X1 given X 2,X3,X4,X5. The variables included in the tree would then be
designated as X1’s parents in the network, the appropriate edges would be added to the
graph (e.g. X1 to X3 and X1 to X5) and the tree itself would be used as the local CPD for
X1. Learning the full DN in figure 1 would require learning five models, one tree for
each variable in the graph.

Although the DN approach to structure learning is simple, it can result in an
inconsistent network, both structurally and numerically—there may be no joint
distribution from which each of the CPDs can be obtained using the rules of
probability. Learning each local CPD independently may result in an inconsistent
network where there is an edge between two variables but one is not dependent on the
other (e.g. X 4 is dependent on X 3 but not vice versa). Independent parameter
estimation may also result in inconsistencies where the overall joint distribution does
not sum to 1.  However, Heckerman et al. (2000) show that DNs will be “nearly”
consistent if learned from large data sets.  That is, the data serve a coordinating
function that ensures some degree of consistency among the CPDs.

Inference.  Unlike Bayesian networks, the dependency network graphs are potentially
cyclic. This is due to the nature of the structure-learning algorithm where there is no
restriction on the form of the CPDs. Cyclic dependencies necessitate the use of
approximate inference techniques such as Gibbs sampling (e.g. Neal 1993) or loopy
belief propagation (e.g. Murphy, Weiss and Jordan 1999). Heckerman et al. use Gibbs
sampling to combine the models to approximate the full joint distribution and extract
probabilities of interest. In practice, DNs have produced good approximations to the
joint distributions represented by directed graphical models (Heckerman et al. 2000).

3.2  Relational Dependency Networks

Relational dependency networks (RDNs) extend DNs to work with relational data.
The extension is similar to the way in which probabilistic relational models (Getoor et
al. 2001) extend Bayesian networks for relational data.

Representation.  RDNs specify a probability model over a network of instances.
Given a set of objects and the links between them, a RDN defines a full joint
probability distribution over the attribute values of the objects. Attributes of an object
can depend probabilistically on other attributes of the object, as well as on attributes
of objects in its relational neighborhood.

Instead of defining the dependency structure over attributes, as in DNs, RDNs
define a generic dependency structure at the level of object types. Each attribute Ai
associated with object type X is linked to a set of parents that influence the value of



Ai. Parents of Ai are either (1) other attributes associated with type X, or (2) attributes
associated with objects of type Y where objects Y are linked to objects X. For the latter
type of dependency, if the relation between X and Y is one-to-many, the “parent”
consists of a set of attribute values. In this situation, RDNs uses aggregated features to
map sets of values into single values.

For example, Figure 2 contains an example dataset from the movie domain. There
are three types of objects—movies, studios and actors. Each object type has a number
of associated attributes that will be each be modeled in the RDN. Consider the
attribute actor.hasAward—the set of potential parents for this attribute consists of
actor.gender, movie.receipts and studio.country. Notice that an actor can star in
multiple movies and thus be associated indirectly with multiple studios.

Fig. 2. Sample relational data graph.

The full RDN model is potentially much larger than the original data graph. To
model the full joint distribution there must be a separate node (and CPD) for each
attribute value in the data graph. Consequently, the total number of nodes in the
model graph will be ÂT NTAT where NT is the number of objects of type T in the data
graph and AT is the number of attributes for objects of that type. To make the models
tractable, the structure and parameters of the CPDs are tied—the RDN model contains
a single CPD template for each attribute of each type of object.  For the example
above, the model would consist of four CPDs, one for actor.gender, actor.hasAward,
movie.receipts and studio.country.

To construct the model graph, the set of template CPDs is rolled-out over the entire
data graph. Each object-attribute pair gets a separate, local copy of the appropriate
CPD. This facilitates generalization across data graphs of varying size. We can learn
the CPD templates from one data graph and apply the model to a second data graph
with a different number of objects by rolling-out more CPD copies. This approach is
analogous to other graphical models that tie distributions across the network (e.g.
hidden Markov models, PRMs).

Figure 3 contains a possible RDN model graph for the example discussed above. It
shows dependencies between actor .gender  and actor.hasAward, between
actor.hasAward and movie.receipts, and between movie.receipts and studio.country.
Furthermore, there is a dependency between movie.receipts of related movies. Notice



the hyper-edges between movies and associated actor awards. This indicates that
movie receipts is dependent on an aggregated feature of actor.hasAward (e.g.
EXISTS(actor.hasAward=Y)). Aggregation is one approach to ensure the template
CPDs are applicable across data graphs of varying structure. Each movie may have a
different number of actor award values, so aggregation is used to map these sets of
values into single values.

Learning.  Learning an RDN model again consists of two tasks: learning the
dependency structure, and estimating the parameters of the conditional probability
distributions. The RDN learning algorithm is much like the DN learning algorithm,
except we use a selective relational classification algorithm to learn a set of
conditional models. We use relational probability trees (RPTs) for the CPD
components of the RDN. RPTs extend standard probability estimation trees to a
relational setting in which data instances are heterogeneous and interdependent
(Neville et al. 2003). RPT models estimate probability distributions over possible
class label values in the same manner as conventional classification trees, but the
algorithm looks beyond the attributes of the item for which the class label is defined
and considers the effect of the local relational neighborhood on the probability
distribution. RPT models represent a series of questions to ask about an item and the
objects/links in its relational neighborhood.

Fig. 3. Sample RDN model graph.

The RPT learning algorithm (Neville et al. 2003) uses a novel form of
randomization tests to adjust for biases towards particular features due to the
characteristics of the relational data (e.g. degree disparity, autocorrelation). We have
shown that RPTs learned with randomization tests, build significantly smaller trees
than other models and achieve equivalent, or better, performance. This characteristic
of the RPTs is crucial for learning parsimonious RDN models—the collection of RPT
models will be used during Gibbs sampling so the size of the models will have a
direct impact on inference efficiency.

Given a data graph, an object type and a target attribute—an RPT is learned to
predict the attribute given (1) the other attributes of the object, and (2) the attributes



of other objects and links in the relational neighborhood. In our current approach, the
user specifies the size of relational neighborhood to be considered by the RPT
algorithm in (2). For efficiency reasons, we’ve limited the algorithm to consider
attributes of objects one or two links away in the data graph. However, it is possible
for the RPT models to consider attributes of much more "distant" objects (in the sense
of a graph neighborhood).

Figure 4 shows an example RPT learned on data from the IMDb to predict whether
a movie’s opening-weekend receipts are more than $2million, given the attributes of
movies and everything up to two links away—actors, directors, producers and studios,
as well as movies associated with those objects (see Section 4 for experimental
details). The tree indicates that movie receipts depend on the receipts of other movies
made by the same studio, as well as actor age and movie genre. The root node of this
tree asks whether more than 60% of the other movies made by the studio (e.g. Studio
Movie objects) have receipts=Y. If this is not the case, the model moves to the next
node on the right branch and asks whether the movie has more than 5 actors born after
1958. If the answer to this question is also no, a prediction of P(Y)=0.01 is returned.

Fig. 4. Example RPT learned for the IMDb dataset to predict movie receipts given the labels of
related movies.

Inference.   As in the case of DNs, we use Gibbs sampling for inference in RDN
models. For classification tasks, we want to estimate the full joint distribution over the
target attributes in the graph. During inference, the model graph consists of a rolled-
out network with both observed and unobserved variables. For example, we may want
to use the network in Figure 3 to predict movie.receipts given studio.country,
actor.gender and actor.hasAward. In this case, all attribute values are observed except
movie.receipts. The values of the target variable are initialized to values drawn from



the prior distribution (e.g. default distribution of movie.receipts in the training set).
Gibbs sampling then proceeds iteratively, estimating the full joint distribution in
cycles. For each target variable, the RPT model is used to return a probability
distribution given the current attribute values in the rest of the graph. A new value is
drawn from the distribution, assigned to the variable and recorded. This process is
repeated for each unobserved variable in the graph. After a sufficient number of
iterations, the values will be drawn from a stationary distribution and we can use the
samples to estimate the full joint distribution. There are many implementation issues
that could improve the estimates obtained from a Gibbs sampling chain, such as
length of “burn in” and number of samples. We have not yet investigated the effects
of these decisions on RDN performance. For the experiments reported in this paper
we do not use a burn-in period and we use a fixed length chain of 2000 samples.

4  Experiments

This paper focuses on evaluation of RDNs in a classification context, where only a
single attribute is unobserved in the test set—others are assumed to be observed and
are not modeled with CPDs.

The experiments reported below are intended to evaluate two assertions. The first
claim is that dependencies among instances can be used to improve model accuracy.
We evaluate this claim by comparing the performance of two models. The first model
is a conventional RPT model—an individual classification model that does not use
labels of related instances, reasoning about each instance independently from other
instances. We call this model RPT-indiv. The second model is a collective
classification RDN model that exploits additional information available in labels of
related instances and reasons about networks of instances collectively.

The second claim is that the RDN models, using Gibbs sampling, can effectively
infer labels for a network of instances. To evaluate this claim, we include two more
models for comparison. The third model is a conventional RPT model in which we
allow the true labels of related instances to be used during both learning and
inference. We call this model RPT-ceiling. This model is included as a ceiling
comparison for the RDN model. It shows the level of performance possible if the
model knew the true labels of related instances. The fourth model is intended to
assess the need for a collective inference procedure. We call this model RPT-default.
It reports the performance achieved on the first round of Gibbs sampling. This is
equivalent to learning a conventional RPT model with the true labels of related
instances, then randomly assigning labels according to the prior distribution of labels
to use for inference. Since the test sets have connections to labeled instances in the
training set (see next section for details), it is possible that these labels could provide
enough information for accurate inferences, making Gibbs sampling unnecessary.

4.1  Tasks

The first data set is drawn from the Internet Movie Database (IMDb)
(www.imdb.com). We gathered a sample of all movies released in the United States



from 1996 through 2000, with opening weekend receipt information. The resulting
collection contains 1383 movies.  In addition to movies, the data set contains
associated actors, directors, producers, and studios.  In total, the data set contains
46,000 objects and 68,000 links.  The learning task was to predict movie opening-
weekend box office receipts. We discretized the attribute so that a positive label
indicates a movie that garnered more than $2 million in opening-weekend box office
receipts (receipts) (P(Y)=0.45).

We created training set/test set splits by temporal sampling into five sets, one for
each year. Links to the future were removed from each sample. For example, the
sample for 1997 contains links to movies from 1996, but not vice versa. We trained
on the movies from one year (e.g. 1996) and tested on movies from the following year
(e.g. 1997). Notice that during inference, there are links from the test set to fully
labeled instances in the training set. This approach to sampling is intended to
reproduce the expected domain of application for these models.

The RPT learning algorithm was applied to subgraphs centered on movies. The
subgraphs consisted of movies and everything up to two links away—actors,
directors, producers and studios, as well as movies associated with those objects. Nine
attributes were supplied to the models, including studio country, actor birth-year and
the class label of related movies two links away. Figure 4 shows an example RPT
learned with the class labels of related movies. For a given movie x, the objects
tagged “Studio Movie” refer to the other movies made by the primary studio
associated with x.

The second data set is drawn from Cora, a database of computer science research
papers extracted automatically from the web using machine learning techniques
(McCallum, Nigam, Rennie and Seymore 1999). We selected the set of 1478
machine-learning papers published from 1994 through 1998, along with associated
authors, journals, books, publishers, institutions and references. The resulting
collection contains 11,500 objects and 26,000 links.  The prediction task was to
identify paper topic. Machine learning papers are divided into seven topics
{Reinforcement Learning, Case-Based Reasoning, Probabilistic Methods, Theory,
Genetic Algorithms, Neural Networks, and Rule Learning}.

As with the IMDb, we created training set/test set splits by temporal sampling into
five sets, one for each year. The RPT learning algorithm used subgraphs centered on
papers. The subgraphs consisted of papers, authors, journals, books, publishers,
institutions and references, as well as papers associated with the authors. Twelve
attributes were available to the models, including the journal affiliation, paper venue,
and the topic of papers one link away (references) and two links away (through
authors). Figure 5 shows an example RPT learned with the topics of related papers.

The RPT learning algorithm used randomization tests for feature selection and a
Bonferroni-adjusted p-value growth cutoff of a=0.05. The RDN algorithm used a
fixed number of Gibbs sampling iterations (2000).

4.2  Results and Discussion

Table 1 shows accuracy results for each of the four models on the IMDb classification
tasks. On the IMDb, the RDNs models perform comparably to the RPT-ceiling



models. This indicates that the RDN model realized its full potential, reaching the
same level of performance as if it had access to the true labels of related movies.

In addition, the performance of the RDN models is superior to both the RPT-indiv
models (RPT learned without labels) and the RPT-default models (RPT learned with
labels and tested with a default labeling for the class values of related instances). In
the example RPT in Figure 4 we can see that two of the five features refer to the
target label on related movies. This indicates that autocorrelation is both present in the
data and identified by the RPT models. The performance improvement over RPT-
indiv is due to successful exploitation of this autocorrelation.

Fig. 5. Example RPT learned for the Cora dataset to predict paper topic given the topics of
related papers.

We used two-tailed, paired t-tests to assess the significance of the accuracy results
obtained from the four trials. The t-tests compare the RDN results to each of the three
other models. The null hypothesis is that there is no difference in the accuracies of the
two models; the alternative is that there is a difference. The resulting p-values are
reported in the bottom row of the table, in the column of the model being compared to
the RDN. The results support our conclusions above that the RDN results are
significantly better than both RPT-indiv and RPT-default. Although the average



performance of the RDNs is slightly lower than the RPT-ceiling models, the t-test
indicates that this difference is not significant.

Table 1: Accuracy results for IMDb task
RPT-indiv RPT-ceiling RPT-default RDN

1 0.7148 0.8303 0.7473 0.8628
2 0.7500 0.8052 0.7370 0.8084
3 0.6893 0.8357 0.7429 0.7857
4 0.7103 0.8318 0.7383 0.8224

Avg 0.7161 0.8258 0.7414 0.8198
t-Test 0.0113 0.7529 0.0137

On the Cora classification task, shown in Table 2, the RDN models show
significant gains over the RPT-indiv and RPT-default models. This indicates that most
of the predictive information lies in the topics of related pages. Nearly 90% of the
features selected for the trees involved the topic of referenced papers. (Recall that
reference topic was one of twelve attributes available to the model to form features.)

In this experiment, RDN models did not achieve the level of performance possible
if the true label of related papers were known. However, the improvement from RPT-
indiv and RPT-default models is notable. This is due to the paucity of predictive
attributes other than the target label, clearly showing how autocorrelation can be
exploited to improve model accuracy.

Table 2: Accuracy results for Cora task
RPT-indiv RPT-ceiling RPT-default RDN

1 0.2813 0.7437 0.4429 0.6852
2 0.2456 0.7646 0.4429 0.7013
3 0.2619 0.8027 0.5374 0.7313
4 0.2689 0.8571 0.5630 0.7983

Avg 0.2644 0.7920 0.4966 0.7290
t-Test 0.0004 0.0002 0.0004

The difference in accuracy between the RDN and RPT-ceiling models may indicate
that Gibbs sampling had not converged within the 2000 trials. To investigate this
possibility we tracked accuracy throughout the Gibbs sampling procedure. Figure 6
shows curves for each of the tasks based on number of Gibbs iterations. The four lines
represent each of the trials. Although we used 2000 iterations, we limit the graph
because the accuracy plateaus within the first 150 iterations. Accuracy improves very
quickly, leveling within the first 50 iterations. This shows that the approximate
inference techniques employed by the RDN may be quite efficient to use in practice.
We are currently experimenting with longer Gibbs chains, random restarts and
convergence metrics to fully assess this aspect of the model.



Fig. 6. Accuracy vs. number of Gibbs iterations. Each curve represents a separate trial.

If we can conclude from the learning curves that the Gibbs chain had converged,
why didn’t the RDN model perform as well as the RPT-ceiling model on Cora? One
possible explanation is the lack of predictive attributes other than topic. The Gibbs
chain may mix slowly, making the procedure unlikely to jump to distant portion of the
labeling space. The inference procedure will suffer when there are no predictive
attributes known with certainty to drive the mixing process in the right direction.

5  Conclusions and Future Work

These results indicate that collective classification with RDNs can offer significant
improvement over non-collective approaches to classification when autocorrelation is
present in the data. The performance of RDNs can approach the performance that
would be possible if all the class labels of related instances were known. In addition,
RDNs offer a relatively simple method for learning the structure and parameters of a
graphical model, and they allow us to exploit existing techniques for learning
conditional probability distributions. Here we have chosen to exploit our prior work
on RPTs, which construct particularly parsimonious models of relational data, but we
expect that the general properties of RDNs would be retained if other approaches to
learning conditional probability distributions were used, given that those approaches
are both selective and accurate.
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