Why Collective Inference
Improves Relational Classification

David Jensen, Jennifer Neville, and Brian Gallagher
Dept. of Computer Science
Univ. of Massachusetts Amherst
140 Governors Drive
Ambherst, MA 01003-9264

{jensen, jneville, bgallag}@cs.umass.edu

ABSTRACT

Procedures for collective inference make simultaneous statis-
tical judgments about the same variables for a set of related
data instances. For example, collective inference could be used
to simultaneously classify a set of hyperlinked documents or
infer the legitimacy of a set of related financial transactions.
Several recent studies indicate that collective inference can
significantly reduce classification error when compared with
traditional inference techniques. We investigate the underly-
ing mechanisms for this error reduction by reviewing past
work on collective inference and characterizing different types
of statistical models used for making inference in relational
data. We show important differences among these models, and
we characterize the necessary and sufficient conditions for
reduced classification error based on experiments with real and
simulated data.

Categories and Subject Descriptors
1.2.6 [Artificial Intelligence]: Learning; 1.5.1 [Pattern Recog-
nition]: Models.

General Terms
Algorithms, Performance, Design, Theory.

Keywords
Relational learning, probabilistic relational models, collective
inference.

1. INTRODUCTION

Recent research in relational learning has produced several
novel types of statistical models. These models estimate con-
ditional and joint probability distributions for graph-
structured data [1,4,12,15]. Researchers have evaluated their
performance on several domains, including classifying web
pages [1,15], tracking communicable diseases [6], and identi-
fying topics in scientific literature [12].

Some of this work focuses on collective inference — proce-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

KDD ‘04, August 22-25, 2004, Seattle, Washington, USA.

Copyright 2004 ACM 1-58113-888-1/04/0008...$5.00.

dures that make simultaneous statistical judgments about the
same variables for a set of related data instances. Collective
inference can exploit relational autocorrelation, a widely ob-
served characteristic of relational data in which the value of a
variable for one instance is highly correlated with the value of
the same variable on another instance [7]. Several studies
[1,10,16] have shown that, by making inferences about multi-
ple data instances simultaneously, collective inference can
significantly reduce classification error.

In this paper, we show that the reduced error attributed to col-
lective inference results from a clever factoring of the space of
possible statistical dependencies in relational data. This fac-
toring produces relational models with a parameter space only
incrementally larger that of their non-relational counterparts,
and thus the variance component of their error is roughly
equivalent. When relational information is not informative,
the bias component of their error is identical to those of non-
relational models, but when relational information is informa-
tive, bias is vastly reduced. Thus, the increased algorithmic
complexity of collective inference purchases a large increase
in representational power at minimum cost. Relational models
that do not exploit collective inference generally have much
larger parameter spaces and require much larger data samples
to learn relational models reliably.

2. PROBABILIS TIC RELIATIONALMODELS

Traditional graphical models such as Bayesian networks and
dependency networks assume that data consist of independent
and identically distributed (i.i.d.) instances, and inference
procedures for these models instantiate a separate network for
each data instance. No dependencies run between the networks,
because of the assumption that data instances are independent.

Algorithms for constructing probabilistic relational models
(PRMs) [4,12,15] remove the independence assumption, and
instantiate a single network that represents dependencies both
within and between the data instances in a given test set. This
procedure — often called rollout — is common to graphical
models that assume some form of instance dependence, includ-
ing PRMs, HMMs, and others. Examples of PRMs include
relational Bayesian networks (RBNs) [4], relational Markov
networks (RMNs) [15], relational dependency networks
(RDNs) [12], and Bayesian logic programs (BLPs) [8].

2.1 Types of Relational Models

The process of rollout is sufficiently general that it can be
applied to a wide variety of graphical models for relational
data. Each type of model imposes different constraints on the

possible dependencies in the network. Only some of these
types make collective inference possible.

For example, consider a data graph with a regular structure of
n’ objects arranged in an # x n lattice. Each object in the lattice
links to each of its immediate neighbors. With the exception
of objects along the outer boundary, each object links to four
others positioned above, below, left, and right. All links are
undirected. Each object is characterized by a set of variables
that includes a single probabilistic variable C (a class label)
and several other variables A; (one or more attributes) whose
values are known with certainty. The task is to construct a
joint model of the probability distribution over all the values
of the class labels.

Given this task, multiple models could be used to infer the
values of C. We will focus on five such models in our experi-
ments:

Intrinsic — For a given object, the Intrinsic model estimates
the joint distribution of the class label and attributes on that
object. It assumes that objects are i.i.d., and thus corresponds
to traditional models used in many knowledge discovery ap-
plications. The model is depicted graphically in figure la us-
ing the plate notation common in the graphical modeling
community. The inner box, along with the edge connecting 4
and C, indicates that m different versions of node 4 (corre-
sponding to m attributes 4;) each depend on C. The outer box
indicates that the model creates N different versions of the
network, each containing a single node C. For example, this
model would indicate that the words on a web page (the attrib-
utes 4;) depend only on the topic of that page (C) and are inde-
pendent of the topic and words on any other page.

(a) Intrinsic (b) R1 (c) R2

~ —

o] |[é | @k

m m m
N N N

Figure 1: Relational models

Relational 1 (R1) — The model R1 is a simple relational model
indicating that the attributes of an object depend on the class
label of that object as well as the class labels of objects one
link away. Figure 1b shows this model using a modified plate
notation in which the integer within the diamond-shaped an-
notation (“1”) indicates the graph distance of neighboring
objects and the multiplier on the edge (“4x™) indicates the
number of such neighboring objects. The path of the annotated
edge outside the outer box emphasizes the dependence on the
class labels of adjoining objects. Here, the value of each 4;
depends on five different parents C, four of which are from
neighboring objects. For example, this model would indicate
that the words on a web page depend on the topic of that page
and the topics of four adjoining pages.

Relational 2 (R2) — A somewhat more complex relational
model R2 indicates that the attributes of an object depend on
the class label of that object and the class labels of objects up
to two links away (Figure 1c¢).

None of these three models allows interdependence among
class labels, which is a prerequisite for collective inference. We
examine two additional models that do allow for such depend-
ence:

Collective Inference (CI) — The model CI, shown in figure 2a,
provides the same type of dependence as Intrinsic, but adds
dependence between the class label of an object and the class
label of adjoining objects. This is equivalent to specifying
that the topics of web pages depend on those of adjoining
pages (and also determine the words on the page).

Relational Collective Inference (RCI) — The model RCI, shown
in figure 2b, extends the R/ model by adding dependence
among class labels of neighboring objects one link away.

{b) RCI

©

m

@cl
N
©

Figure 2: Collective models

N N

These models are relatively simple because the example data
are highly regular and contain only a single object and link
type. More heterogeneous data might require models with
longer and more complex paths among objects. For example,
paths connecting autocorrelated objects might pass through
one or more intervening objects of specified types. However,
the simplicity of this example allows us to focus on the criti-
cal aspects of learning and inference in relational data.

2.2 Previous Performance Comparisons
Collective inference has been a small but active area of re-
search in relational learning for at least six years, since the
publication of Chakrabarti, Dom, and Indyk's detailed study of
hypertext categorization strategies [1]. Several more recent
studies of collective inference have extended and broadened
this work [9,12,14,15,17]. Finally, some work has extended the
basic paradigm of collective inference to incorporate selecting
among a range of possible actions. For example, Domingos
and Richardson's work on mining the network value of cus-
tomers incorporates collective inference into a larger approach
to "viral marketing" [3]. Table 1 summarizes the types of mod-
els evaluated in seven key papers.

Many studies of collective inference have reported large reduc-
tions in error when the method is applied. For example, Chak-
rabarti et al [1] report large reductions in classification error,
including one drop in error of over 70% (from 68% to 21%). In
previous work, two of the authors reported significant accu-
racy gains from a relatively simple technique for collective
inference [10]. Macskassy and Provost show how models that
consider only autocorrelation in class labels (equivalent to CI/
without attributes) can perform very well when only a small
fraction of the class labels are known [9].

Several studies have also pointed out that collective inference
of various types can also reduce accuracy. For example, Chak-
rabarti et al. [1] discuss an experiment where including rela-

tional information about web pages actually reduces accuracy.
They hypothesize that the additional features meant that the
learning and inference scheme was "overwhelmed by the signal
to noise ratio".

Table 1: Previous Work Categorization.

Paper INTR R1 CI R2 RCI

Chakrabarti et al. [1] v v
Slattery & Mitchell [14]
Neville & Jensen [10]
Taskar et al. [16]
Taskar et al. [15]
Macskassy & Provost [9]
Neville & Jensen [12]

ARG
R R

RN
AR NS

2.3 Why Collective Models Work Well

Based on these results, it appears clear that collective inference
is capable of significantly improving probabilistic inferences
in relational data. Important questions remain, however: why
and under what circumstances does collective inference im-
prove the accuracy of relational models?

One reasonable explanation is that the power of collective
inference lies merely in the larger feature-space provided by
models such as C/. These models consider features that their
less expressive cousins (e.g., R1) do not. In experiments below,
we will show that this explanation is inadequate to explain the
power of collective inference.

Instead, we show that methods for collective inference benefit
from a clever factoring of the space of dependencies. The
models CI and RCI have substantially smaller parameter spaces
than the model R2, yet they can benefit from information
propagated from outside of their local neighborhood. Predic-
tions about the class label C on other objects essentially
“pbundle information” about the graph beyond the immediate
neighborhood. In addition, collective models can make use of
known class labels (e.g., known topics of web pages) to im-
prove inferences about unknown labels. This provides a new,
and often highly reliable, additional feature for learning and
inference.

This increased representational power is purchased with only
an incremental increase in the parameter space. In this way, C/
and RCI emulate other robust techniques such as simple Baye-
sian classifiers and linear regression models. Even when their
assumptions are violated, CI and RCI often perform well.

3. METHODS

To evaluate different models and inference methods, we con-
ducted experiments with both real and synthetic data.

3.1 Yeast Protein Experiments

Our empirical experiments considered relational data about the
yeast genome, containing information about 1,243 genes and
1,734 interactions among their associated proteins
(http://www.cs.wisc.edu/~dpage/kddcup2001/). Both gene
location and function are autocorrelated in this dataset [11] so
we expect it to be a good testbed for investigating the relative
performance of the various relational models.

The learning task was to predict gene localization in the cell.
There are 15 locations ranging from mitochondria to plasma
membrane, with a default error rate of 0.57. In addition to gene

location, each gene has 13 boolean attributes indicating gene
function. Each gene may have as many as six functions.

For non-collective models, we used relational Bayesian classi-
fiers (RBCs) [13] to predict gene location given the function
attributes. The Intrinsic model considered the 13 function
attributes on the genes themselves. The R/ model added an-
other 13 function attributes for genes one link away (through
interactions) for a total of 26 attributes. The R2 model then
added another 13 attributes for genes two links away, for a
total of 39 attributes. For collective models, we used relational
dependency networks (RDNs) [12] with RBCs to represent the
component conditional probability distributions. The CI
model considered the location attribute of genes one link
away, in addition to the 13 function attributes of the genes in
isolation. The RCI model added in the 13 function attributes
for genes one link away for a total of 27 attributes. The RDNs
used 250 Gibbs iterations and all models used Laplace correc-
tion for zero-values.

To compare the five approaches, we evaluated zero-one loss
over ten-fold cross validation trials. We report average error
over the ten folds and use two-tailed, paired t-tests to assess
the significance of the results.

3.2 Synthetic Experiments

To generate synthetic data, we extended the example presented
in section 2.1. We generated data with a regular two-
dimensional lattice structure. The first and last two rows and
columns make up the “frame” of the lattice. Objects in the
frame are not used to train models, and objects in the frame are
not used for loss estimates, although inference is performed
over all objects in the lattice, including the frame. Thus, train-
ing or test sets of size S° correspond to a lattice of (S+4) x
(S+4) objects, and models are trained or evaluated on the S’
objects in the core of the lattice.

Each object in a given dataset contains the same set of attrib-
utes. In every dataset, objects contain a class label C and a
single attribute Aj, that is correlated with C. Depending on
dataset generation parameters, objects may also contain up to
14 additional attributes, none of which are correlated with C.

We generated the values of attributes and class labels in two
ways, which we label “relational” and “collective”. Both use
parameters given in Table 2. For collective data generation, we
begin by assigning each object in the lattice an initial class
label with P(C=1) = 0.5. We then perform Gibbs sampling over
the entire lattice. The class labels assigned to each object after
200 iterations are used as the final labels. To assign class la-
bels during Gibbs sampling, we use a manually specified
model that assigns class labels to each object based on the
class values of neighboring objects one link away. The pa-
rameters of this model are varied to produce different levels of
autocorrelation among neighboring class labels. Once class
labels are assigned, a value for the A; attribute is randomly
drawn from a distribution conditioned on the class label of the
object — derived from the P(C|4;) and P(4,;) data generation
parameters. Finally, random values are assigned to all other
attributes with P(4;) = 0.5. Once a dataset is generated, we
measure the proportion of objects with positive class labels,
and any dataset with a value outside the range [0.4, 0.6] is dis-
carded and replaced with a new dataset. This ensures consis-
tency in P(C) across datasets and reduces variance in estimated
model performance.

Table 2: Data Generation Parameters.
Bold numbers in the value column indicate default values.

Name Description Values

TrainSize Number of core objects in training 25,49, 100, 225,
set. 484, 1024, 5041

TestSize Number of core objects in test set. 484

NumAttrs Number of Attributes 1,3,5,10,15

PropLabel Proportion of objects with known 0.0, 0.1, 0.3, 0.5,
class labels 0.7,0.9

Autocorr Autocorrelation of class labels for 0.01, 0.27, 0.49,
neighboring object (see text). 0.75, 0.98

P(4,) Prior probability of P(A;=1). 0.1,0.3,0.5

P(C|4,). Conditional probability of 0.6, 0.75, 0.9

P(C=1]A,=1).

For relational data generation, we begin by training the pa-
rameters of an R2 model on a large dataset consisting of 100
lattices of 1000 objects each. The attributes and class labels on
the objects of each lattice are determined by the collective data
generation method described above. We also train a univariate
model of P(4;) for each attribute A;. We create a lattice of ob-
jects in the usual way, assign attribute values randomly to
each object based on the learned model of P(4;), and assign
class labels to each object based on the attribute values of
itself and all neighboring objects up to two links away using
the learned R2 model.

We measured bias and variance for each model using the de-
composition defined for squared-loss by Domingos [2]. Loss
is decomposed into three factors: bias, variance and noise.
Although calculation of variance is straightforward for rela-
tional data, calculation of bias is not. Fortunately for the syn-
thetic data experiments, we know the probabilities from the
generative model and can use these as the optimal predictions.
Bias and variance estimates are calculated for each test exam-
ple using 10 different training sets and averaged over the en-
tire test set. This was repeated for 20 test sets to calculate aver-
age test set bias and variance.

4. ANALYZING COLLECTIVE INFERENCE

4.1 Baseline Inference Accuracy

Figure 3a shows squared loss as a function of training set size
for all models. Data for figure 3a were produced using the col-
lective generator, so it is not unexpected that CI rapidly con-
verges to a relatively low loss. R2 continues to reduce its loss

(a) (b)
<
S
S &
(=]
«
N
[S]
o
g3 g gl
a =2 ol
g e g ||
e o © [
5 3 A R2
3 o a ||
S Q| gt
S Q- mdnsie TS -
3 [N
sl - | | Tgg—m—=m———__
Cl-true R,Z,'lf“e RCl — —--
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
TrainSize TrainSize

Figure 3: Squared loss for (a) collective data generation,
and (b) relational data generation.

as TrainSize increases. At TrainSize=5000, none of the mod-
els achieve minimum error, corresponding to the CI/ model
provided with perfect class information, but R2 continues to
reduce loss at a steady rate. For all points with TrainSize >
100, the 95% confidence intervals are less than 0.004

Figure 3b shows the same type of results for the relational data
generator. Even though they do not match the data generator,
CI and RCI outperform other models when TrainSize is small.
R2 continues to have corresponding high loss, though it will
eventually drop below CI and RCI as it declines to the optimal
value of loss at high TrainSize. R1 performs similarly, drop-
ping below CI at around TrainSize=3000. For TrainSize >
100, the 95% confidence intervals are less than 0.004.

We obtained similar results with experiments on the yeast
protein data, shown in Table 3. CI resulted in the lowest zero-
one loss and its loss was significantly different than the zero-
one loss of all other models.

Table 3: Yeast protein data zero-one loss results.

Model Attributes Zero-one loss p-value
Intrinsic 13 0.446 0.000
RI 26 0.439 0.000
R2 39 0.455 0.000
CI 14 0.306 --
RCI 27 0.337 0.009

What is responsible for the low error of CI models? We meas-
ured bias and variance for the probability estimates of each
model to compare their decomposed loss as a function of
TrainSize. Figures 4a and b show the results for the relational
generator. For the collective generator, the variance results
were qualitatively similar and the bias varied only slightly
across the range of TrainSize.

For all models except R2, bias quickly becomes nearly level.
The bias of R2 continues to decline as data slowly accumulate
in joint distributions and overcome the prior (an initial
Laplace correction to prevent zero probabilities). Variance is
level for Intrinsic and CI, but continues to decline for R2, and
less so for RI and RCI, between TrainSize values of 1000 and
5000. For all points with TrainSize > 100, the 95% confidence
intervals are less than 0.002.

Thus, the large initial gap in loss between CI and R2 appears
directly attributable to the size of R2’s parameter space, and
the difficulty of making good estimates with sparse data. This
difference between CI/ and R2 is pronounced even though ob-
jects in the data contain only three attributes. If the number of
attributes on each object is increased, as shown in figure 5, the
loss of R2 soars compared to other models, including CI,
whose loss remains nearly constant. Even R/ and RCI show
marked increases in loss, though to a much smaller extent than
R2. The results for data produced by collective generation are
qualitatively similar.

This growth in the number of attributes is modest compared to
some of the most common applications of relational learning
algorithms, such as classifying web pages, in which objects
have hundreds or thousands of attributes (e.g., words on a web
page). For these applications, the ability of CI to provide a
built-in factoring of the feature space may be almost essential.

(a) (b)

0.0!

Bias
Variance

0 1000 2000 3000 4000 5000 © 0 1000 2000 3000 4000 5000

TrainSize TrainSize

Figure 4: Loss decomposition into (a) bias, and (b) vari-
ance, for relational data generation.

The negative effect of large parameter spaces on R2 and RCI is
a plausible explanation for the results of our experiments with
the yeast protein data. Both R2 and RCI perform worse than CI.

4.2 Strength of Probabilistic Dependence

Our data generation procedures use two parameters P(4;) and
P(C|A;) to determine the strength of probabilistic dependence
between the attribute 4; and the class label C. The relative per-
formance of models differs based on the strength of this de-
pendence. Figure 6 depicts how the quantity
loss(R2)—loss(CI) varies as a function of P(4;) and P(C|4,).

The largest difference between the two models occurs when
P(4,) is uniformly distributed and the dependence of 4 and C
is weakest. That is, CI performs best, in relative terms, when
few correlations exist other than autocorrelation of class la-
bels. The relative advantage of CI disappears as more informa-
tion is available to R2. However, if no attributes are useful then
only CI would be able to attain non-random performance.

0.30
A
\

0.25

0.057 0.052

Squared Loss
A

0.75

NumAttrs

BATIC)
Figure 6: Relative error of
R2 over CI as correlation
varies.

Figure S: Loss as a func-
tion of AttrCount.

4.3 Strength of Autocorrelation

Relational autocorrelation refers to the correlation among the
values of the same variable on several related objects. The
widespread occurrence of autocorrelation is one of the strong-
est motivations for relational inference of any kind. Its effects
have been noted and explored by several researchers in collec-
tive inference, including Macskassy & Provost [9], Taskar et
al. [15], and Yang et al. [17].

Figure 7 shows the effect of increasing levels of autocorrela-
tion on the relative performance of different models. All mod-
els we consider, except Intrinsic, are greatly aided by autocor-

0.20
]
~

’
7
’
0.20
’

N
Intrinsic N S\-de’aull

°~ N
~ ~

0.18

~ N ~
RCl-default™ - _~ |
~

0.15

RCI At
=

Squared Loss
Squared Loss
0.16

0.10

Cl-true

0.05

0.12

00 o0z 04 06 08 10 52 o4 G 8

Autocorr PropLabel

Figure 8: Loss as a func-
tion of percentage of data
labeled.

Figure 7: Loss as a func-
tion of autocorrelation.

relation, though their relative ordering changes slightly. R/ is
aided least by autocorrelation while R2 is aided most.

These results reveal another advantage of CI. Even when auto-
correlation is entirely absent, CI’s performance is equal to that
of Intrinsic. CI can exploit autocorrelation when present, but
is not significantly impaired by its absence.

4.4 Proportion of Known Values

The core of collective inference is that inferences about one
object can inform inferences about another. This capability is
particularly useful when some values are known with certainty.
For example, predictions about the topic of a previously un-
visited webpage may be aided by considering the known top-
ics of previously visited pages.

Figure 8 shows how varying the proportion of labeled data
affects CI and RCI, and how their performance compares to an
alternative inference scheme for these models (labeled de-
fault). Rather than conducting full collective inference, de-
fault models terminate inference after the first round of Gibbs
sampling. These results indicate the advantage of collective
inference over non-collective, holding all other factors con-
stant. As shown in figure 8, the relative advantage of collective
inference is reduced as more of the data are labeled. That is,
collective inference procedures become less and less necessary
as the percentage of true labels increases.

While only a few studies [1,9,16] have actively varied the per-
centage of known labels, the results above closely parallel
those of Macskassy and Provost [9], who show that the relative
advantage of an iterative inference procedure over a non-
iterative procedure reduces as the percentage of labeled data
increases. They show that, in general, their collective inference
procedure performs better when class skew is present or when
few labels are known with certainty.

We also evaluated this effect using the yeast protein data, ob-
taining the results shown in table 4. For each of the ten-fold
cross-validation partitions, we learned a CI model on the 90%
training partition and applied the model to the entire dataset.
During collective inference, we varied the proportion of the
data that was labeled—the test partition was always unlabeled
but the training partition was labeled at the following levels
{1.0,0.55,0.11} to produce overall levels of {0.9,0.5,0.1}. Ac-
curacy was measured on the unlabeled instances and averaged
over the ten folds. Loss increases significantly when only 10%
of the data are labeled, but there is no significant difference in
performance between 50% and 90% labeled.

Table 4: Yeast protein data results with partial labeling.

Percent Zero-one p-value
Model Labeled loss
CI 0.90 0.306 --
CI 0.50 0.296 0.474
CI 0.10 0.360 0.010

5. CONCLUSIONS

Our experiments with real and synthetic data indicate that the
reduced error attributed to collective inference results primar-
ily from a clever factoring of the space of statistical dependen-
cies in relational data. Models that represent this factoring,
when combined with algorithms for collective inference, can
greatly reduce bias in data with strong autocorrelation with the
minimum possible increase in variance. When autocorrelation
is absent, the models have practically equivalent error to their
non-relational counterparts.

6. ACKNOWLEDGMENTS

Amy McGovern and Agustin Schapira provided technical as-
sistance with experiments. This effort is supported under a
AT&T Labs Graduate Research Fellowship and by AFRL under
contract number F30602-01-2-0566. The U.S. Government is
authorized to reproduce and distribute reprints for governmen-
tal purposes notwithstanding any copyright notation hereon.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements either expressed or
implied, of AFRL or the U.S. Government.

7. REFERENCES

[1] Chakrabarti, S., B. Dom & P. Indyk. Enhanced Hypertext
Classification Using Hyper-Links, In Proc. ACM SIGMOD
Conference, pp. 307-318, 1998.

[2] Domingos, P. A Unified Bias-Variance Decomposition for
Zero-One and Squared Loss. In Proc. of the 17th National
Conference on Artificial Intelligence, pp. 564-569, 2000.

[3] Domingos, P. & M. Richardson. Mining the Network
Value of Customers. In Proc. of the 7th International

Conference on Knowledge Discovery and Data Mining,
pp. 57-66, 2001.

[4] Getoor, L., N. Friedman, D. Koller, & A. Pfeffer. Learning
Probabilistic Relational Models. In Relational Data Min-
ing, S. Dzeroski and N. Lavrac, Eds., Springer-Verlag,
2001.

[5] Getoor, L., E. Segal, B. Taskar, & D. Koller. Probabilistic
Models of Text and Link Structure for Hypertext Classifi-

cation. In Proc. IJCAIOI Workshop on Text Learning: Be-
yond Supervision, 2001.

[6] Getoor, L., J. Rhee, D. Koller, & P. Small. Understanding
Tuberculosis Epidemiology using Probabilistic Rela-
tional Models. Journal of Artificial Intelligence in Medi-
cine, vol. 30, pp. 233-256, 2004.

[7] Jensen, D. & J. Neville. Linkage and Autocorrelation
Cause Feature Selection Bias in Relational Learning. In
Proc. of the 19th International Conference on Machine
Learning, pp. 259-266, 2002.

[8] Kersting, K. & L. De Raedt. Basic principles of learning
Bayesian logic programs. Technical Report No. 174, Insti-
tute for Computer Science, University of Freiburg, Ger-
many, June 2002.

[9] Macskassy, S. & F. Provost. A Simple Relational Classi-
fier. In Proc. KDD-2003 Workshop on Multi-Relational
Data Mining (MRDM-2003), pp. 64-76, 2003.

[10] Neville, J. & D. Jensen. Iterative Classification in Rela-
tional Data. In Proc. AAAI-2000 Workshop on Learning
Statistical Models from Relational Data, pp. 13-20, 2000.

[11] Neville, J. & D. Jensen. Supporting Relational Knowledge
Discovery: Lessons in Architecture and Algorithm De-
sign. In Proc. ICML2002 Data Mining Lessons Learned
Workshop, pp. 57-64, 2002.

[12] Neville, J., & Jensen, D. Collective Classification with
Relational Dependency Networks. In Proc. KDD-2003
Workshop on Multi-Relational Data Mining (MRDM-
2003), pp. 77-91, 2003.

[13] Neville, J., D. Jensen & B. Gallagher. Simple Estimators
for Relational Bayesian Classifiers. In Proc. of the 3rd
IEEE International Conference on Data Mining, pp. 609-
612, 2003.

[14] Slattery, S., & T. Mitchell. Discovering Test Set Regulari-
ties in Relational Domains. In Proc. 17th International
Conference on Machine Learning, pp.895-902, 2000.

[15] Taskar, B., P. Abbeel & D. Koller. Discriminative Probabil-
istic Models for Relational Data. In Proc. 18th Conference
on Uncertainty in Artificial Intelligence, pp. 485-492,
2002.

[16] Taskar, B., E. Segal & D. Koller. Probabilistic Classifica-
tion and Clustering in Relational Data. In Proc. 17th In-
ternational Joint Conference on Artificial Intelligence,
pp. 870-878, 2001.

[17] Yang, Y, S. Slattery & R. Ghani. A Study of Approaches to
Hypertext Categorization. Journal of Intelligent Informa-
tion Systems. 18(2-3): 219-241. 2002.

