STAT59800JN1/CS59000030 Statistical Network Analysis
Spring 2016: Class Schedule
January 11: Introduction and overview

Kolaczyk, Eric. D. (2009). Statistical Analysis of Network Data. Chapter 1: Introduction and Overview. online
January 13: Basic graph models I

Erdos, P. and A. Renyi (1959). On Random Graphs I. Publicationes Mathematicae. 6:290297. PDF

Watts, D. and S. Strogatz (1998). Collective dynamics of 'smallworld' networks. Nature 393:44042. PDF Example summary
January 18: No class; MLK day
January 20: Basic graph models II (S: Sait, T: Changping)

Chung, F. and L. Lu (2002). The average distances in random graphs with given expected degrees. Proceedings of the National Academy of Sciences. 99(25):1587982. PDF

Barabasi, A, and R. Albert (1999). Emergence of scaling in random networks. Science 286: 509512. PDF
January 25: Problems with scalefree (Part I: 431463) (S: Iman, T: Leonardo)

Li, L., D. Alderson, J. C. Doyle, and W. Willinger (2006). Towards a Theory of ScaleFree Graphs: Definition, Properties, and Implications. Internet Mathematics. Volume 2, Number 4 431523. PDF
January 27: Problems with scalefree (Part II: 463502) (S: John, T: Giselle)

Li, L., D. Alderson, J. C. Doyle, and W. Willinger (2006). Towards a Theory of ScaleFree Graphs: Definition, Properties, and Implications. Internet Mathematics. Volume 2, Number 4 431523. PDF
February 1: Exponential random graph models (S: Hogun, T: Jiasen)

Robins, G., P. Pattison, Y. Kalish, and D. Lusher (2007). An introduction to exponential random graph (p*) models for social networks. Social Networks 29:173191.
PDF

Handcock, M. (2002). Statistical models for social networks: Inference and degeneracy. National Academies Press.
PDF
February 3: Problems with ERGMs (S: Jihwan, T: Mohamed)
 Bhamidi, S., Bresler, G., and Sly, A. (2008). Mixing time of exponential random graphs. In FOCS, 2008. PDF
Optional:

Chatterjee, S., and P. Diaconis (2013). Estimating and understanding exponential random graph models. The Annals of Statistics, 41(5), 24282461.
PDF

Rinaldo, A., S. Fienberg, and Y. Zhou (2009). On the geometry of discrete exponential families with application to exponential random graph models. Electron. J. Statist. 3: 446484. PDF
February 8: SERGMs (S: Heqin, T: Sait)

Chandrasekhar, A., and M. Jackson (2014). Tractable and consistent random graph models. No. w20276. National Bureau of Economic Research. PDF
February 10: Problems with ERGMs (cont) (S: Leonardo, T: Guilherme)

Shalizi, C. and A. Rinaldo (2013). Consistency under sampling of exponential random graph models. The Annals of Statistics 41.2: 508535.
PDF
February 15: Kronecker product graph models (S: Jiasen, T: John)

J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, Z. Ghahramani (2010). Kronecker Graphs: An approach to modeling networks. Journal of Machine Learning Research. PDF
February 17: Analysis of KPGMs (S: Changping, T: Jihwan)

Pinar, A., C. Seshadhri, and T. Kolda (2012). The similarity between stochastic Kronecker and ChungLu graph models. SDM.
PDF
February 22: Class canceled; WSDM
February 24: Class canceled; WSDM
February 29: KPGMs (cont) (S: Mohamed, T: Hogun)

Moreno, S., J. Neville, and S. Kirshner (2013). Learning mixed kronecker product graph models with simulated method of moments. In KDD (pp. 10521060). ACM.
PDF

BodineBaron, E., B. Hassibi, and A. Wierman (2010). Distancedependent kronecker graphs for modeling social networks. Selected Topics in Signal Processing, IEEE Journal of, 4(4), 718731.
PDF
Mar 2: Analysis of KPGMs (cont) (S: Guilherme, T: Heqin)

Seshadhri, C. A. Pinar, and T. Kolda (2013). An indepth analysis of stochastic Kronecker graphs. J. ACM 60, 2, Article 13.
PDF
March 7: Stochastic block models (S: Giselle, T: Iman)

Nowicki, K., and Snijders, T. (2001). Estimation and prediction for stochastic blockstructures. Journal of the American Statistical Association, 96 (2001), 10771087. PDF
Optional:

Amini, A., A. Chen, P. Bickel, and E. Levina (2013). Pseudolikelihood methods for community detection in large sparse networks. The Annals of Statistics, 41(4), 20972122. PDF
March 9: Class canceled
March 14: Spring Break
March 16: Spring Break
March 21: Problems with finding communities (T: John, T: Giselle)

Leskovec, J., K. Lang, A. Dasgupta, and M. Mahoney (2009). Community structure in large networks: Natural cluster sizes and the absence of large welldefined clusters. Internet Mathematics, 6(1), 29123.
PDF
March 23: Class canceled
March 28: Mixed membership block models (T: Sait)

Airoldi, E., D. Blei, S. Fienberg, E. Xing (2007). Mixed Membership Stochastic Blockmodels. Journal of Machine Learning Research, 9 (2008) 19812014. PDF
March 30: Mixed membership block models (cont) (T: Hogun)

Anandkumar, A., R. Ge, D. Hsu, and S. Kakade (2014). A tensor approach to learning mixed membership community models. Journal of Machine Learning Research, 15(1), 22392312.
PDF
Optional:

Clauset, A., C. Moore, and M. Newman (2008). Hierarchical structure and the prediction of missing links in networks. Nature, 453(7191), 98101.
PDF

Kolda, T., A. Pinar, T. Plantenga, and C. Seshadhri (2014). A scalable generative graph model with community structure. SIAM Journal on Scientific Computing, 36(5), C424C452.
PDF
April 4: Latent space models (T: Jihwan, T: Heqin)

Hoff, P., A. Raftery, M. Handcock (2002). Latent Space Approaches to Social Network Analysis. Journal of the American Statistical Association, vol. 97, no. 460, 10901098. PDF

Young, S. and E. Scheinerman (2007). Random dot product graph models for social networks. In Algorithms and models for the webgraph (pp. 138149). Springer Berlin Heidelberg.
PDF
April 6: Latent space models (cont) (T: Leo)

Kim, M., and J. Leskovec (2012). Multiplicative attribute graph model of realworld networks. Internet Mathematics, 8(12), 113160.
PDF
Optional:

Miller, K., M. Jordan, and T. Griffiths (2009). Nonparametric latent feature models for link prediction. In NIPS (pp. 12761284). PDF
April 11: Network Comparison (T: Mohamed, T:Iman)

Asta, D., and C. Shalizi (2015). Geometric Network Comparison. UAI.
PDF

Moreno, S., and J. Neville (2013). Network hypothesis testing using mixed Kronecker product graph models. In ICDM (pp. 11631168). IEEE.
PDF
April 13: Network Comparison (cont) (T: Jiasen)

D'Amour, A., and E. Airoldi (2016). Misspecification, sparsity, and superpopulation inference for sparse social networks. In prep.
PDF
April 18: Goodness of fit (cont) (T: Changping)

Hunter, D., S. Goodreau, M. Handcock (2008). Goodness of Fit of Social Network Models. Journal of the American Statistical Association, 103(481). PDF

Van Duijn, M., K. Gile, and M. Handcock (2009). A framework for the comparison of maximum pseudolikelihood and maximum likelihood estimation of exponential family random graph models. Social Networks, 31(1), 5262.
PDF
April 20: Class rescheduled
April 25: Statistical frameworks (T: Gui)

Crane, H., & Dempsey, W. (2015). A framework for statistical network modeling. arXiv preprint arXiv:1509.08185. PDF
April 27: Class rescheduled
Mon May 2 (3:305pm, UNIV 303): Project presentations
 Iman, Jihwan, Gui, Changping, John, Giselle
Fri May 6 (3:305pm, UNIV 303): Project presentations
 Sait, Mohamed, Leo, Heqin, Jiasen, Hogun