CS 555: Cryptography

Constructing Secure Encryption Schemes against Eavesdropper
Constructing Secure Encryption Schemes

Building Blocks:

- Pseudorandom Generators
- Stream Ciphers
A PRG (call it G) uses a short random string s (called seed) to generate a long "random-looking" string G(s).

How to measure quality of G?

Old way: Use a set of statistical tests, in which a statistical test D would output 1 if G passes that particular test.

- No guarantee that G will not fail some future newly invented test.
Modern quality requirement for a PRG

- Applies to any efficient statistical test D, even future yet-to-be-invented tests:

For any efficient statistical test D (henceforth called a distinguisher), the probability that D returns 1 when given the output of the PRG should be close to the probability that D returns 1 when given a uniform string of the same length.
Security of a PRG

- **Input:** *Short* random seed \(s \in \{0,1\}^n \)
- **Output:** Longer “pseudorandom” string \(G(s) \in \{0,1\}^{\ell(n)} \) with \(\ell(n) > n \)
 - \(\ell(n) \) is called expansion factor
- **PRG Security:** For all PPT distinguishers \(D \) there is a negligible function \(\text{negl}(\cdot) \) s.t
 \[
 \left| \Pr_{s \in \{0,1\}^n}[D(G(s)) = 1] - \Pr_{R \in \{0,1\}^{\ell(n)}}[D(R) = 1] \right| \leq \text{negl}(n)
 \]
- **Concrete Security:** We say that \(G(.) \) is a \((t(n), \varepsilon(n))\)-secure PRG if for all attackers running in time at most \(t(n) \) we have
 \[
 \left| \Pr_{s \in \{0,1\}^n}[D(G(s)) = 1] - \Pr_{R \in \{0,1\}^{\ell(n)}}[D(R) = 1] \right| \leq \varepsilon(n)
 \]
PRG Security as Game against D

- Seed $s \in \{0,1\}^n$ is uniformly generated
- s is used to obtain $m_1 = G(s)$
- $m_0 \in \{0,1\}^{\ell(n)}$ is uniformly generated
- Random bit b is generated
- m_b is used as input to D, returning bit b'
- If $b' = b$ then D has won the game

Security: $\Pr(D \text{ wins}) \leq 0.5 + \operatorname{negl}(n)$
How far from uniform is G’s output?

- The output of G is far from being uniform
 - Even though it is indistinguishable from uniform for a PPT distinguisher D
- If, for example, $\ell(n) = 2n$, then at most 2^n of the 2^{2n} strings of length $2n$ can be output by G
 - This is only a tiny fraction (1 out of 2^n) of the strings of length $2n$
- What if D is not PPT?
What if D is not limited to PPT?

- Suppose D can use exponential time computation in the previous example of $\ell(n) = 2n$
- Such a D can afford to try all values of s and return $b' = 1$ if m_b is $G(s)$ for some s
 - If b is 1 then it returns $b' = 1$ with probability 1
 - If b is 0 then it returns $b' = 1$ with probability 2^{-n}
 - The difference in probabilities is ~ 1 (not negligibly small)
- But a practical D has to be PPT (luckily)
One-Time-Pads + PRGs

- Encryption:
 - Secret key is the seed ($K=s$)
 $$\text{Enc}_s(m) = G(s) \oplus m$$
 $$\text{Dec}_s(c) = G(s) \oplus c$$
 - **Advantage**: $|m| = \ell(n) > |s| = n$
 - Computational Security vs perfect security
 - **Disadvantage**: Still can only send one message

Theorem If G is a PRG then the above encryption scheme has indistinguishable encryptions in the presence of an eavesdropper
Stream Cipher

- PRG produces its output all at once, whereas a stream cipher outputs the bits as a stream (one bit at a time and “on demand”, which is more efficient if few bits are needed)

- PRG outputs a fixed number of bits, whereas a stream cipher is not limited to a fixed number of bits (has greater flexibility)
Stream Cipher

- Two deterministic algorithms
 - Init
 - GetBits
- Init
 - Input: seed s, initialization vector IV (optional)
 - Output: an initial state s_{t_0}
- GetBits
 - Input: a state s_{t_i}
 - Output: a bit y and an updated state $s_{t_{i+1}}$
Stream Cipher

- Iterating a stream cipher \(\ell \) times gives an \(\ell \) bit output, defining a function \(G_\ell \):

\[
\begin{align*}
st_0 & := \text{Init}(s,IV) \\
\text{For } i=1 \text{ to } \ell: & \quad (y_i, st_i) := \text{GetBits}(st_{i-1}) \\
\text{Output stream: } y_1, \ldots, y_\ell
\end{align*}
\]

- The stream cipher is secure if it takes no IV and, for any polynomial \(\ell \), the above function \(G_\ell \) is a PRG of expansion factor \(\ell \)
The RC4 Stream Cipher

- A proprietary cipher owned by RSA, designed by Ron Rivest in 1987
- Simple and effective design.
- Variable key size (typical 40 to 256 bits)
- Output unbounded number of bytes
- Widely used (SSL/TLS, wireless WEP)
- **Newer Versions**: RC5 and RC6
The RC4 Cipher

- The cipher internal state consists of
 - a 256-byte array S containing permutation of size 256 (number of possible states is $256! \approx 2^{1700}$)
 - two indexes: i, j

\[
i = j = 0
\]

Loop
\[
i = (i + 1) \pmod{256}
\]
\[
j = (j + S[i]) \pmod{256}
\]
\[
\text{swap}(S[i], S[j])
\]
\[
\text{output } S[S[i] + S[j]] \pmod{256}
\]
End Loop
Limitations of Security Def. Used so Far

- Assumes adversary observes one ciphertext, can be weak if adversary observes 2 of them
 - For example, if the 2 ciphertexts are
 \[c_1 = \text{Enc}_s(m_1) = G(s) \oplus m_1 \]
 \[c_2 = \text{Enc}_s(m_2) = G(s) \oplus m_2 \]
 then adversary can compute \(c_1 \oplus c_2 = m_1 \oplus m_2 \)
 - Doesn’t prevent adversary from modifying c, m
 - For example, if \(c = G(s) \oplus m \) an adversary A can flip a bit and change the amount in
 \[m = \text{“Pay to A the amount (USD) of: 000000101”} \]
The multiple-message eavesdropping experiment \(\text{PrivK}^{\text{mult}}_{A,\Pi}(n) \):

1. The adversary \(A \) is given input \(1^n \), and outputs a pair of equal-length lists of messages \(\vec{M}_0 = (m_{0,1}, \ldots, m_{0,t}) \) and \(\vec{M}_1 = (m_{1,1}, \ldots, m_{1,t}) \), with \(|m_{0,i}| = |m_{1,i}| \) for all \(i \).

2. A key \(k \) is generated by running \(\text{Gen}(1^n) \), and a uniform bit \(b \in \{0,1\} \) is chosen. For all \(i \), the ciphertext \(c_i \leftarrow \text{Enc}_k(m_{b,i}) \) is computed and the list \(\vec{C} = (c_1, \ldots, c_t) \) is given to \(A \).

3. \(A \) outputs a bit \(b' \).

4. The output of the experiment is defined to be 1 if \(b' = b \), and 0 otherwise.
Extend Definition to Multiple Messages

For scheme $\Pi = (Gen, Enc, Dec)$ define a random variable:

$$PrivK_{A,\Pi}^{mult}(1^n) = \begin{cases} 1 & \text{if } b = b' \\ 0 & \text{otherwise} \end{cases}$$

Π has indistinguishable multiple encryptions in the presence of an eavesdropper if for all PPT adversaries A there is a negligible function μ such that

$$\Pr[PrivK_{A,\Pi}^{mult}(1^n) = 1] \leq \frac{1}{2} + \mu(n)$$
Multiple vs Single Encryptions

If \(\Pi \) has *indistinguishable multiple encryptions* in the presence of an eavesdropper

then

\(\Pi \) also has *indistinguishable encryptions* in the presence of an eavesdropper

Question: Are the definitions equivalent?

Answer: No, *indistinguishable multiple encryptions* is a strictly stronger security notion
Example

\[\text{Enc}_s(m) = G(s) \oplus m \]
\[\text{Dec}_s(c) = G(s) \oplus c \]

Recall: \(\Pi = (Gen, Enc, Dec) \) has indistinguishable encryptions in the presence of an eavesdropper

Claim: \(\Pi = (Gen, Enc, Dec) \) does not have indistinguishable multiple encryptions in the presence of an eavesdropper
Multiple Message Eavesdropping Attack

- A outputs
 \[m_0 = (0^{\ell(n)}, 0^{\ell(n)}) \]
 \[m_1 = (0^{\ell(n)}, 1^{\ell(n)}) \]
- A receives back
 \[c_1 = G(s) \oplus m_{b,1} \]
 \[c_2 = G(s) \oplus m_{b,2} \]
- A chooses \(b' = 1 \) if \(c_1 \neq c_2 \), else \(b' = 0 \)

[Attack works for any deterministic Enc]
Did We Cheat?

- Attack specifically exploited the fact that A can ask to see multiple encryptions of the same message...
- The above argument might appear to show that no encryption scheme provides secure *indistinguishable multiple encryptions* in the presence of an eavesdropper

Theorem: If Π is an encryption scheme where Enc is deterministic, then Π does **not provide** secure *indistinguishable multiple encryptions*

Note: Implicit assumption that schemes are stateless
Where to go from here?

Option 1: Weaken the security definition so that adversary cannot request two encryptions of the same message.

- Undesirable, as data may contain repetitions, e.g., many people with the same last name
- We will actually want to strengthen the definition later…

Option 2: Consider *randomized* encryption algorithms