CS 555: Cryptography

Perfectly Secret Encryption
Perfectly Secret Encryption (PSE)

The following definition of PSE implies that unbounded computing is of no use to an adversary:

\[
\Pr(M = m \mid C = c) = \Pr(M = m) \quad (1)
\]

[Note: In all such equations, we implicitly assume a “for all” (not “there exists”) quantification. For (1), this means “for all \(m, c, \) and distributions of \(M \)” is implicit]
Equivalent Definition (2)

- $\Pr(M = m | C = c) = \Pr(M = m)$ \hspace{1cm} (1)

 $\{M=m\}$ and $\{C=c\}$ are independent \hspace{1cm} (2)

Proof that (1) and (2) are equivalent:

$\Pr(M=m | C=c) = \Pr(M=m,C=c) / \Pr(C=c)$ \hspace{1cm} (*)

(1) implies that LHS of (*) = $\Pr(M=m)$, therefore:

$\Pr(M=m) \Pr(C=c) = \Pr(M=m,C=c)$ and (2) holds

(2) implies: $\Pr(M=m,C=c) = \Pr(M=m) \Pr(C=c)$

Which, when used in (*), gives (1)
Equivalent Definition (3)

- \(\Pr(C = c \mid M = m) = \Pr(C = c) \) \hspace{1cm} (3)

Proof that above implies perfect secrecy:

By definition of conditional probability, we have

\[
\Pr(C=c \mid M=m) = \frac{\Pr(C=c,M=m)}{\Pr(M=m)}
\]

Using hypothesis on LHS of above gives:

\[
\Pr(C=c) = \frac{\Pr(C=c,M=m)}{\Pr(M=m)}
\]

\[
\Pr(C=c,M=m) = \Pr(C=c) \Pr(M=m)
\]

Therefore \{M=m\} and \{C=c\} are independent which is Defn. (2) of perfectly secure encryption

[Note: Proof in other direction is easy]
Equivalent Definition (4)

\[\Pr(E_k(m) = c) = \Pr(E_k(m') = c) \] \hspace{1cm} (4)

Proof that above implies perfect secrecy:
Both sides of the following eqn. (*) equal \(\Pr(M=m, C=c) \):

\[\Pr(M=m \mid C=c) \Pr(C=c) = \Pr(C=c \mid M=m) \Pr(M=m) \] \hspace{1cm} (*)

\[\Pr(C=c) = \Pr(U_{m'} \{ C=c, M=m' \}) \]

\[= \sum_{m'} \Pr(C=c, M=m') \]
\[= \sum_{m'} \Pr(C=c \mid M=m') \Pr(M=m') \]
\[= \sum_{m'} \Pr(E_k(m')=c) \Pr(M=m') \]
\[= \sum_{m'} \Pr(E_k(m)=c) \Pr(M=m') \]
\[= \Pr(E_k(m)=c) \left(\sum_{m'} \Pr(M=m') \right) \]
\[= \Pr(E_k(m)=c) \] \hspace{1cm} which, when used in (*), gives:
Equivalent Definition (4)

\[
\Pr(M=m|C=c) \Pr(E_k(m)=c) = \Pr(C=c|M=m)\Pr(M=m)
\]

which, after replacing \(\Pr(C=c|M=m)\) with \(\Pr(E_k(m)=c)\), becomes:

\[
\Pr(M=m|C=c) \Pr(E_k(m)=c) = \Pr(E_k(m)=c) \Pr(M=m)
\]

Simplifying the above gives:

\[
\Pr(M=m|C=c) = \Pr(M=m)
\]

which is recognized as Definition (1) of perfectly secret encryption
Equivalent Definition (5)

- **Perfect indistinguishability**
- **Game played with adversary A:**
 - A outputs a pair of distinct messages m_0, m_1
 - A is given a challenge $E_k(m_b)$ where b is a random bit and k is a random key
 - A guesses whether b is 0 or 1, succeeds if the guess is correct
- **An encryption scheme is perfectly indistinguishable if, for every A, the probability that A succeeds is $1/2$**
More formally:

The adversarial indistinguishability experiment $\text{PrivK}_{A,\Pi}^{\text{eav}}$:

1. The adversary A outputs a pair of messages $m_0, m_1 \in \mathcal{M}$.
2. A key k is generated using Gen, and a uniform bit $b \in \{0, 1\}$ is chosen. Ciphertext $c \leftarrow \text{Enc}_k(m_b)$ is computed and given to A. We refer to c as the challenge ciphertext.
3. A outputs a bit b'.
4. The output of the experiment is defined to be 1 if $b' = b$, and 0 otherwise. We write $\text{PrivK}_{A,\Pi}^{\text{eav}} = 1$ if the output of the experiment is 1 and in this case we say that A succeeds.

Encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ with message space \mathcal{M} is perfectly indistinguishable if for every adversary A it holds that:

$$\Pr[\text{PrivK}_{A,\Pi}^{\text{eav}} = 1] = \frac{1}{2}$$
Proof that Perfect Indistinguishability (PI) implies Perfect Security (PS)

If PI holds and PS doesn’t, then Definition (3) must be violated for some \(m, m', c\) such that

\[
\Pr(E_k(m) = c) > \Pr(E_k(m') = c)
\]

An \(A\) who knows that \(m\) is more likely than \(m'\) can, in the game, choose

\[
m_0 = m
\]
\[
m_1 = m'
\]

then give a response biased towards \(m_0\) that achieves a prob. of success greater than 0.5
Proof that Perfect Security implies Perfect Indistinguishability

For every choice of m_0 and m_1 made by \mathcal{A} in the game, perfect secrecy implies that

$$\Pr(E_k(m_0) = c) = \Pr(E_k(m_1) = c)$$

Therefore every response to the challenge ciphertext by \mathcal{A} has probability 0.5 of being correct.
One-time pad (a.k.a. Vernam cipher)

- Encrypt message m by bitwise XOR with a key k that is uniformly generated:
 \[c = m \oplus k \]
- Decryption is bitwise XOR with same k:
 \[c \oplus k = m \oplus k \oplus k = m \oplus 0 = m \]
- m, k, c, have same number of bits, hence:
 \[|M| = |K| = |C| \]
One-time pad is perfectly secret

Proof: Assume that m,c,k are L bits long

- The probability that a bit of c is 1 is $\frac{1}{2}$ no matter what the corresponding bit of m is (because the XOR of any bit with a random bit is random, i.e., has same probability of being 1 as being 0)

- Therefore $\Pr(C=c | M=m) = 2^{-L}$

- $\Pr(C=c) = \sum_{m \in \mathcal{M}} \Pr(C=c | M=m) \Pr(M=m)$

 \[= 2^{-L} (\sum_{m \in \mathcal{M}} \Pr(M=m)) = 2^{-L} = \Pr(C=c | M=m)\]

which is Definition (1) of perfectly secret encryption
Key space size for perfect secrecy

- Perfect secrecy $\Rightarrow |\mathcal{K}| \geq |\mathcal{M}|$ (i.e., size of keyspace \geq size of message space)

Proof: Let $f(c)$ be the set of messages m for which some choice of k results in $D_k(c) = m$. If $|\mathcal{K}| < |\mathcal{M}|$ then $|f(c)| < |\mathcal{M}|$ and $\mathcal{M} - f(c)$ is not empty. Let m^* be any message in $\mathcal{M} - f(c)$. We then have:

$$\Pr(M = m^* | C = c) = 0 \neq \Pr(M = m^*)$$

which contradicts perfect secrecy
Shannon’s Theorem (ShThm)

- An encryption scheme with $|\mathcal{K}|=|\mathcal{M}|=|\mathcal{C}|$ is perfectly secret if and only if:

 1. Key generation is uniform over \mathcal{K} (i.e., the probability that $k \in \mathcal{K}$ is selected is $1/|\mathcal{K}|$)

 2. For every $m \in \mathcal{M}$ and every $c \in \mathcal{C}$, there is a unique $k \in \mathcal{K}$ such that $E_k(m) = c$
Perfect secrecy implies (2) of ShThm

- For a message m, let $g(m)$ denote the set of ciphertexts c for which some choice of key k results in $E_k(m) = c$
- $g(m) = C$, else any c^* in $C - g(m)$ satisfies:
 $$\Pr(M=m | C=c^*) = 0 \neq \Pr(M=m)$$
 contradicting perfect secrecy. Hence $|g(m)| = |\mathcal{K}|$
- $|g(m)| = |\mathcal{K}|$ implies that no two keys k, k' can have $E_k(m) = E_{k'}(m)$, i.e., for an m, c pair a unique key k results in $E_k(m) = c$
Perfect secrecy implies (1) of ShThm

- Let k be the unique key for which $E_k(m) = c$

By perfect secrecy we have:
- $\Pr(C=c \mid M=m) = \Pr(C=c)$

But $\Pr(C=c \mid M=m)$ is $\Pr(K=k)$, therefore:
- $\Pr(K=k) = \Pr(C=c)$

- Repeating the above, for another message m' and the unique key k' for which $E_{k'}(m') = c$, gives:
 - $\Pr(K=k') = \Pr(C=c)$

- Therefore k and k' are equally probable
(1)&(2) in ShThm imply perf. secrecy

- By 2, for every m,c pair there is a unique key k such that $E_k(m)=c$
- $\Pr(C=c \mid M=m) = \Pr(K=k) = 1/|\mathcal{K}|$

where property 1 was used.

- $\Pr(C=c) = \sum_{m \in \mathcal{M}} \Pr(C=c \mid M=m) \Pr(M=m)$

 $= \left(1/|\mathcal{K}| \right) \left(\sum_{m \in \mathcal{M}} \Pr(M=m)\right) = 1/|\mathcal{K}|$

- Both $\Pr(C=c)$ and $\Pr(C=c \mid M=m)$ are $1/|\mathcal{K}|$
 which satisfies Defn (3) of perfectly secret encryption