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Abstract—Graph convolutional networks (GCNs) have been successfully applied in many different real-world tasks. However, most of
the existing methods are based on shallow GCN, because multiple layers involve long-distance neighborhood information but lead to
the over-smoothing problem. Actually, a similar challenge exists in the depth limitation for primitive convolutional neural networks
(CNNs). As the multi-layer architecture can increase the representation ability of GCN, we study and learn from the recent progress in
CNN and propose Lasagne, a novel multi-layer GCN framework, empowered by node-aware layer aggregators and factorization-based
layer interactions to overcome the over-smoothing problem and realize the full potentials of the GCN model. We analyze how the node
locality affects the information propagation in GCN and propose a novel node aggregation mechanism in an adaptive manner. We
further demystify Lasagne from a mutual information view and evaluate it on both real-world benchmark data sets and large-scale
industrial production data sets. Lasagne shows strong empirical performance on the semi-supervised node classification task and
outperforms the state-of-the-art methods without considering the node locality.

Index Terms—Deep learning, Graph Convolutional Neural Network, Over-smoothing, Information Loss, Node locality.
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1 INTRODUCTION

Graph neural networks (GNNs) are becoming more and
more attractive in the graph data management commu-
nity. They have been successfully applied in graph mining
tasks [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], and
several GNN training systems have been proposed by the
database community to support large scale graph mining,
including G3 [13], AGL [14] and AliGraph [15]. Graph
convolutional network (GCN), as one of the most represen-
tative GNNs, becomes increasingly popular in many graph-
based applications, including semi-supervised node classi-
fication [16], link prediction [17] and recommendation sys-
tems [18]. GCNs generalize convolutional neural networks
(CNNs) to graph-structured data by applying the “graph
convolution” operation on the neighbors of a node to obtain
the node embedding layer by layer. Every node gathers the
embeddings of its neighbors at each layer, followed by mean
pooling and nonlinearity. By stacking multiple layers, GCN
can learn a node representation by utilizing information
from distant neighbors. The final layer embedding can be
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used for subsequent learning tasks, and for example, it is
passed to a classifier for node classification problems.

With the rapid growth of data, deep architecture has
an advantage over shallow architectures when dealing with
complex learning problems on large-scale inputs. The stack-
ing of multiple linear and non-linear processing units in a
layer-wise fashion gives deep networks the ability to learn
complex representations at different levels of abstraction.
For example, from CIFAR [19] to ImageNet [20], CNNs
achieve great performance improvements since the inno-
vations on deeper architectures [21], [22]. However, unlike
the deep CNNs, the multi-layer architecture of GCN often
achieves the best performance with limited depth even
on large graphs; A GCN with more layers may perform
worse than the one with fewer layers [16]. Thus, in this
paper, the first question we want to address is, can deep
GCN architecture bring performance improvement on large-scale
graphs?

The receptive field for a pixel in CNN is usually a
small region of the image. While for GCN, the receptive
field for a node is its neighbors or a sampled subset of the
neighbors [23] on the graph. An L-layer GCN can capture
the node information fromL-hop neighborhood, so the deep
architecture helps to increase the receptive field and access
more neighborhood information. Recently, there is a trend
for GCN approaches to learn from the architectural innova-
tions of deep CNNs in computer vision problems. For ex-
ample, ResGCN [16] involves residual connections learned
from ResNet [22] but it still does not perform better than
the 2-layer GCN on many datasets, e.g., citation datasets.
JK-Net [24] utilizes convolutional layer combination learned
from GoogleNet to gather more information from previous
layers. DenseGCN [25] further ports the dense connection
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(a) “central” node (b) “non-cnetral” node

Fig. 1. Illustration of the nodes (red) with different localities and their
2-hop neighborhoods (blue).

from DenseNet [26] to make GCN deeper. These architec-
ture optimizations help to reduce the vanishing gradients
problem and improve the depth of GCN.

However, these approaches neglect that the main de-
fect of deep GCN originates from over-smoothing [27]. Al-
though deep GCN involves more information from “neigh-
boring” nodes, it may lead to more information loss at
the same time. The degradation of learning for deep GCN
occurs due to the over-smoothing problem, in which the
output features may be over-smoothed and nodes from
different clusters may become indistinguishable. Due to the
neighborhood expansion problem [28], the over-smoothing
could be more serious on large graphs. Some recent studies
(e.g., GraphSAGE [23], DropEdge [29]) take efforts to allevi-
ate this problem with sampling techniques on large graphs,
but the performance improvement is still not satisfactory
due to the lack of complete information. In this work, we
surprisingly notice that the node locality on the graph can
be used to reduce the information loss caused by the over-
smoothing problem. As shown in Figure 1, in real-world
graphs, most of the nodes have few connections, whereas
some ”central” nodes (hubs) are connected to many other
nodes. By stacking multiple layers, the node can aggregate
information from multi-hop neighborhoods. For “central”
nodes in a cluster of the graph, deep GCN leads to a rapid
expansion, which may expand too broadly and beyond
the range of the cluster. These nodes involve an excess
of neighborhoods and thereby the embeddings are over-
smoothed and lose information. While non-central nodes
rely on the deep architecture to obtain a sufficient neigh-
borhood for stabilizing predictions [24]. Existing methods
(e.g., ResGCN, DenseGCN, and JK-Net) ignore node locality
and treat each node in the same way, resulting in the over-
smoothing problem for deep architectures. Therefore, we
raise the second question, how to alleviate the over-smoothing
problem of GCN when learning from the successful architecture
of deep CNNs? Besides, existing approaches directly port
the experience from computer vision to graph embedding
without an explanation about why it works. Consequently,
we further raise the third question, based on the multi-layer
architecture, how to interpret and understand the effectiveness of
these GCN layers?

In this paper, to solve the above three problems, we
first investigate the mutual information and analyze the
information diminishing for existing deep GCN approaches.

Then we study some popular architecture optimizations
inspired by the architecture innovations on CNN, e.g., the
concatenation from GoogleNet [30] and the dense connec-
tion from DenseNet [26]. Considering the over-smoothing
problem for deep GCNs, we propose Lasagne, a multi-
layer GCN framework. Although Lasagne also requires the
information from previous layers, unlike previous studies
forcing all nodes to pass the same number of GC layers,
we enable different nodes to aggregate information from
different layers. More concretely, we propose the node-
aware architecture to adaptively aggregate the node embeddings
for different nodes in a layer level, which makes the architecture
fundamentally different from DenseGCN. With these opti-
mizations, different nodes can benefit from different layers’
information respectively. On top of the optimized multi-
layer GCN architecture, we further demystify the model
from a mutual information view. The observation confirms
that our approach preserves more useful information across
layers than vanilla GCN and its variants.

We summarize our contributions as four folds.

• We learn successful architectures from the CNNs,
utilize multiple layers’ information and propose
Lasagne with node-aware architectures for a deep
GCN model. To the best of our knowledge, Lasagne
is the first deep GCN architecture capturing the node
locality to alleviate the over-smoothing problem.

• We investigate the information theoretical approach
to compare different models. The mutual information
helps to interpret and understand the effectiveness of
multi-layer architecture.

• Experimental results on benchmark datasets demon-
strate that Lasagne effectively utilizes multiple lay-
ers’ information and outperforms twenty four recent
state-of-the-art GNN methods.

• We apply Lasagne to a real-world large-scale pro-
duction dataset from our industry partner — Tencent
Inc., and achieves significant performance improve-
ment, compared to other GNN models without con-
sidering the node locality.

2 RELATED WORKS

In this section, we review some previous work on GCN
for semi-supervised node classification. In addition, we also
study some popular techniques which help CNN to obtain
deeper architecture and better performance.

2.1 Graph Convolutional Networks
The original graph neural networks proposed in [31] col-
lectively aggregate information from graph structure. There
is an increasing interest in generalizing convolutions to
the graph domain. The advances in this direction can be
roughly categorized into two branches: spectral approaches
and spatial approaches.

The spectral approaches define parameterized filters
based on spectral graph theory. Spectral network [32] first
introduces the convolutional operation in the Fourier do-
main by computing the eigendecomposition of the graph
Laplacian. However, the graph Fourier transform is com-
putationally expensive and limits the application for large
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graphs. ChebNet [33] approximates the K-polynomial fil-
ters utilizing a Chebyshev expansion of the graph Laplacian
which helps to avoid the computation of the eigenvectors of
the Laplacian. GCN [16] further simplifies the ChebNet and
limits the layer-wise convolution operation to K = 1.

The spatial approaches generate node embedding by
combining the neighborhood information in the vertex do-
main. Patchy-SAN [34] extracts and normalizes a neighbor-
hood of exactly k nodes for each node. Then the neighbor-
hood serves as a receptive field of the convolutional opera-
tion on the input graph. MoNet [35] integrates the local sig-
nals by designing a universe patch operator, which provides
a unified generalization of CNN architectures to graphs.
GraphSAGE [23] samples a fixed number of neighbors and
employs several aggregation functions, such as concatena-
tion, max-pooling, and LSTM aggregator. GAT [36] further
introduces the attention mechanism to model different influ-
ences of neighbors with learnable parameters. However, the
above two branches of GCNs are usually shallow (at most
2-4 layers), suffer from the over-smoothing problem with a
deep depth of convolution architecture, and cannot obtain
adequate global information.

2.2 Deep CNN Techniques and GCN

Before we introduce the deep GCN studies, we first revisit
the history of CNN. The main boom in the use of CNN
for image classification and segmentation occurred after it
was observed that the representational capacity of CNN
can be enhanced with an increased depth in AlexNet [37].
After that, the research in CNN achieves significant perfor-
mance improvements because of architectural innovations.
Visualization approach was used to improve the feature
extraction approach by reducing the size of filters in [38].
In VGG [21], the depth is increased from 9 layers to 16,
by making the volume of feature maps doubles at each
layer. GoogleNet [30] merges multilevel transformations
and helps CNN in tackling details of images at various
levels. Representational depth improves generalization by
defining a diverse level of features ranging from simple
to complex. To solve the problem of vanishing gradients,
ResNet [22] involves the concept of residual blocks or skip
connections in CNN architecture for the training of 150
layers deep network. This technique is further extended
to multi-layer connectivity by different researchers to im-
prove representation (e.g., DenseNet [26], Stochastic Depth
ResNet [39]. The breakthrough in CNN performance sug-
gests that the representation depth is beneficial in improving
the generalization of classifier.

The breakthrough in CNN performance suggests that
the representation depth is beneficial in improving the
generalization of the classifier. Recently, there is a trend
to extend the deep architecture improvements on CNN to
GCN. JK-Net [24] notices the importance of making use
of multilevel transformation and combines multi-layers’
output in GCN before the classifier. This design is similar
to that of GoogleNet. And in ResGCN [16], the residual
connection is also used between hidden layers to facilitate
the training of deeper models by enabling GCN to carry
over information from the previous layer’s input. However,
GCN generally achieves the best performance with 2 or 3

TABLE 1
NOTATIONS

Symbols Definitions

vi The ith node

h
(l)
i The embedding of the ith node at the lth layer

H(l) The node embedding matrix at the lth layer

W (i) The ith weight matrix

A The adjacency matrix

D The node degree diagonal matrix

X The node feature matrix

N The size of the training set

M The dimension of the node features

F The class of data

C The larger aggregation weight matrix in Lasagne

P The sampling weight matrix in Stochastic aggregator

layers. The structure is further extended to DenseGCN [25]
to overcome vanishing gradients problems and obtain better
performance for deep GCNs. However, these approaches
directly apply the CNNs architectures and ignore that the
main obstacle for deep GCN is over-smoothing [27], rather
than vanishing gradients. Our approach targets on mining
the significant potential of improvement for deep GCN by
making use of existing deep CNN techniques with node-
aware designs.

2.3 Tackling Over-Smoothing in Deep GCN

Besides involving deep CNN techniques, several recent
attempts have also been proposed to tackle the over-
smoothing problem in deep GCNs. APPNP [40] solves over-
smoothing by using personalized PageRank that addition-
ally involves the rooted node into the message passing
loop. MixHop [41] mixes the node representations of long
distance neighbors by combining the powers of the ad-
jacency. ADSF [42] targets GAT and proposes a different
way of computing the attention scores over the neighboring
nodes, which considers not just their feature similarity, but
also extra structure information up to k-hop neighbors.
MADReg [43] and Pairnorm [44] involve regularization or
normalization techniques to prevent the over-smoothing
between close nodes. Unlike these methods, our approach
proposes an adaptive node aggregation mechanism to cap-
ture the node locality, which makes Lasagne fundamentally
different from existing techniques. Our method could be
orthogonal to these previous efforts and provides a novel
solution on the over-smoothing problem.

3 PRELIMINARIES

3.1 Notations

To help the readers understand this work, we begin by
introducing some notations related to Lasagne in Table 1.
For the input undirected graph G = (V, E) with N nodes
vi ∈ V , edges (vi, vj) ∈ E , let A ∈ RN×N be the adjacency
matrix and X ∈ RN×M be the node feature matrix, where
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Fig. 2. The MI for 10-layer GCN models on Cora

M is the dimension of the attributive features. A multi-layer
GCN follows the layer-wise propagation rule. At layer l, the
output is the hidden representation H(l):

H(l) = δ(D̃−
1
2 ÃD̃−

1
2H(l−1)W (l)), (1)

where Ã = A + IN is the adjacency matrix of the undi-
rected graph G with added self-connections. IN is the iden-
tity, D̃ii =

∑
j Ãij and W (l) is a layer-specific trainable

weight matrix. δ(·) denotes an activation function, such as
ReLU(·) = max(0, ·). H(l−1) is the input of lth layer and
H(0) = X . For an L-layer GCN on semi-supervised node
classification on a graph with a symmetric adjacency matrix
A, we first calculate Â = D̃−

1
2 ÃD̃−

1
2 in a pre-processing

step and the forward model takes the simple form:

H(l) = ReLU(ÂH(l−1)W (l)), l = 1..., L,

Z = f(X,A) = softmax(H(L)).
(2)

H(l) ∈ RN×D(l)

, where D(l) is the parameter for the
embedding dimension for the lth layer, D(0) = M and
D(L) = F (F is the number of classes). The softmax acti-
vation function, defined as softmax(xi) = 1

S exp(xi) with
S =

∑
i exp(xi), is applied row-wise. We then evaluate the

cross-entropy error over all labeled examples:

L =
∑
i∈Y

F∑
f=1

Yif lnZif , (3)

where Y is the set of node indices that have labels.

3.2 Mutual Information

Deep models improve model expressiveness, but also intro-
duce new challenges: vanishing gradients in backward prop-
agation and diminishing feature reuse in forward propagation.
Vanishing Gradients is a well-known nuisance in neural net-
works with many layers and has been successfully solved
by many studies (e.g., batch normalization [45], residual
blocks [22]). Diminishing feature reuse (also known as loss
in information flow [46]) refers to the analogous problem to
vanishing gradients in the forward direction. The features of
the input instance, or those computed by earlier layers, are

“washed out” through repeated multiplication or convolu-
tion with weight matrices, making it hard for later layers to
identify and learn “meaningful” information. To be specific,
the over-smoothing problem occurred in multi-layer GCN
models is caused by diminishing feature reuse.

As mentioned in Section2.2, some existing approaches
involve deep CNN architecture techniques to improve infor-
mation preservation in GCN. To provide a microscopic view
of these models, we investigate the information theoretical
approach and focus on Mutual Information (MI), a metric
quantifying the amount of information shared between two
random variables. The MI is a theoretic measurement in-
dependent of any classifiers which reflects the relationship
between the variables even if the relationship is highly non-
linear and hidden in high-dimensional data [47]. An impor-
tant advantage of introducing MI as an indicator is that:
when two networks achieve similar accuracy, the one with
a higher MI is more suitable for the classification tasks [47].
For example, in [48], video sequences are required to classify
into high-level human actions by considering multi-frames.
A DNN with high MI will be able to perform better classi-
fication comparing to another DNN with low MI due to the
well distributed feature representations of individuals in the
model. In other words, the network architecture with higher
MI could preserve more information behind the data and
could be more helpful to the bottom classifier. Therefore,
MI can provide an important metric to better understand
multi-layer GCNs.

As shown in Figure 2, we estimate MI between the
output of hidden layers H(l) with the input features X
after the models converged. The visualization of the MI for
vanilla GCN illustrates that different hidden layers carry
different levels of information and the low MI of the final
layer further proves the over-smoothing problem [27]. Res-
GCN can reduce the loss of information across the layers
for shallow layers. But for deeper layers, the over-smoothed
information is directly added to the next layer and might
result in bad performance. The combination operation in
JK-Net significantly increases the MI value of the last two
layers. And the dense concatenation in DenseGCN improves
all hidden layers of information retention. The higher MI
of the last layer the model has, the better performance the
model may achieve in the final classification task. These
observations motivate us to better utilize the multi-layer
information in our following designs.

4 METHODOLOGY

In this section, we present the multi-layer framework,
Lasagne, based on GCN. Note that, Lasagne is also ap-
plicable to other models (e.g., GAT, GraphSAGE) that ap-
ply the multi-layer neighborhood aggregation operations.
As shown in Figure 3, the dense connection makes each
layer collects information from different hops of neighbors
and becomes a unique convolutional filter based on the
previous layer, which is similar to the scheme in CNN of
computer vision area [26]. It not only helps to reduce the
gradients vanishment but also preserves the node repre-
sentations at different levels of abstraction and prevents
the information loss [47]. Considering the different node
localities as we proposed in the Introduction, we propose a
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Fig. 3. The main architecture of Lasagne.

layer aggregator structure and design three different node-
aware aggregators. They can automatically learn the hidden
representations from the needed layers respectively for each
node, which helps to alleviate the over-smoothing problem
to some extent. Besides, the vertex-wise addition operation
in ResGCN and DenseGCN leads to the restriction which
requires the same dimension for all layers. It may hurts
model performance and has been removed from Lasagne
because our layer aggregators support flexible hidden di-
mensions among these layers. After the main architecture
of Lasagne, we further design a GC-FM layer (introduced
in Section 4.2) as the last graph convolutional layer to
automatically capture the interactions between the node
representation from different layers and pass its output to
the downstream classifier.

4.1 Layer Aggregator
As shown in Figure 3, there is a layer aggregator after each
layer’s output. The layer aggregator aggregates all previous
layers’ hidden representations and makes up of a dense
connection structure. DenseGCN [25] uses a straightforward
vertex-wise concatenation operation to densely fuses the
input graph with all the intermediate GCN layer outputs.
However, as the concatenation just treats the node hidden
representations from different layers in the same way, it
cannot capture the node locality. To better utilize different
levels of node abstraction, we propose the node-aware layer
aggregators in Lasagne. The forward model is formulated
as:

H(l) = Aggregator(C(l),H(1),H(2), ...,H(l)), (4)

where 1 < l < L, C(l) ∈ RN×l is the weight matrix,
enabling different nodes using a different weighted aggregation
for the previous layers. For the l-th layer’s output of a specific
node vi, the trainable parameter C

(l)
i,j represents for the

contribution from the j-th layer’s output.
During the training procedure, Lasagne could adaptively

help each node learn how to aggregate information from

different layers. As verified in our experiments (Depth anal-
ysis), the node locality could leads to different aggregator
weight distribution. More concretely, for “central” node,
deep GCN leads to a rapid expansion, which may expand
too broadly and beyond the range of the cluster. These
nodes involve an excess of neighborhoods and thereby
the embeddings are over-smoothed and lose information.
While non-central nodes rely on the deep architecture to
obtain a sufficient neighborhood for stabilizing predictions.
Previous studies ignore the above node locality, apply the
same number of GC layers on the nodes and finally lead to the
over-smoothing problem. Our model permits general layer-
aggregation mechanisms, and we explore three special ap-
proaches below. Others custom aggregation operations (e.g.,
mean, LSTM) are also possible.

4.1.1 Weighted aggregator
In our architecture, each node hidden representation re-
lies on its all previous layers’ information. However, the
nodes have a different preference in these layers. For ex-
ample, nodes with few neighbors may need more layers
to involve enough information. While centric nodes with
large degrees are facing over-smoothing problem after many
graph convolutional layers, hence a shallow GCN is are
quite enough. Considering the different node localities, we
propose the weighted aggregator which uses an additional
matrix C(l) ∈ RN×l for the i-th layer to capture the different
contribution of previous layers for each node. The operation
is a kind of weighted-sum on the hidden representations:

H(l) =
l−1∑
i=1

ÂC(l)[:, i]⊗H(i)W (il) +C(l)[:, l]⊗H(l), (5)

where C(l)[:, i] is the ith column of the contribution matrix
C(l) and represents for the importance of the ith layer’s
hidden representation for all nodes, ⊗ broadcasts C(l)[:, i]
to an N × L matrix and performs element-wise multi-
plies with H(i). Notice that we not only add weighted-
sum but also apply an additional GC transformation i.e.,
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W (il) ∈ RD(i)×D(l)

is the parameters. Recently, the area of
automated machine learning (AutoML) and neural network
architecture search (NAS) has noticed the graph neural
networks and proposes to improve the graph learning per-
formance through exploring the search space. Many of them
[49], [50], [51] have clarified that the hidden dimension is a
crucial component of the search space, which significantly
affects the model performance. Therefore, removing the
same-dimension limitation could provide more chances of
exploring more hidden dimension combination choices and
improving the GCN model performance. We remove the
limitation in ResGCN of keeping all hidden dimensions the
same and replace the linear transformation in JK-Net to a
GC layer, which accelerates the information propagation.

4.1.2 Max Pooling aggregator

This operation is proposed in some recent advancements in
applying neural network architectures to learn over general
point sets in the computer vision area [52]. Intuitively, the
multi-layer GCN can be thought of as a set of functions
that compute features for each node representations. By
applying the max-pooling operator to each of the computed
features, the model effectively captures the most informative
layer for each feature coordinate without any additional
parameters to learn. The max pooling aggregator can be
viewed as a special case of weighted aggregator but scale
C(l) from RN×l to RN×l×D(l)

. For each node vi, the weight
matrix is C

(l)
i ∈ Rl×D(l)

with the constraint that each
column of C

(l)
i only has one 1 item and the rest of them

are 0. Max pooling is adaptive and has the advantage that it
does not introduce any additional parameters to learn.

4.1.3 Stochastic aggregator.

Inspired by the Stochastic Depth ResNet method [39],
during training we shorten the network significantly by
randomly removing a substantial fraction of layers inde-
pendently for each iteration. Shortening the depth during
training reduces the chain of forward propagation steps and
gradient computations, which strengthens the information
propagation. Another advantage is that networks trained
with stochastic depth can be interpreted as an implicit
ensemble of networks of different depths, mimicking the
record breaking ensemble of depth varying GCNs.

Different from the fixed survival probabilities in Stochas-
tic Depth ResNet, we propose a learnable activation function
for each layer of each node. The stochastic aggregator adopts
a layer-wise-dropout manner that using the Bernoulli sam-
pling procedure to aggregate embeddings. The form of the
operation is identical to Eq (5), but the difference is that each
item of C is an independent Bernoulli random variable. To
be specific, Cij represents for the activated probability for
ith node’s jth layer, formulated as:

Cij ∼ Bernoulli(
ePil

max
1≤j≤L−1

{ePij}
), (6)

where P ∈ RN×L is the trainable parameters that determine
the probability distributions.
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4.2 Layer Interaction

Factorization Machines (FM) in their general form models
the interactions among individual features and have been
used for both sparse and dense representations in deep
neural networks [53], [54]. By assuming the embedding
dimensions are independent with each other, Convolutional
Factorization Machine [55] proposes a multi-layer CNN to
learn the feature interaction patterns between embedding
dimensions. Inspired by these approaches, we propose a
novel GC-FM layer to preserve the localized spectral filter
and automatically capture the interactions between different
layers’ embedding at the same time. We formulate it as
H(L) = ReLU(ÂO),

Oij = 〈W (L)[:, j],hi〉+
L−2∑
p=1

D(L−1)∑
m=1

L−1∑
q=p+1

D(L−1)∑
n=1

〈Vjpm,Vjqn〉hipm · hiqn,
(7)

where O ∈ RN×F , Vjpm ∈ Rk and k is the latent constant
parameter for FM. As shown in Figure 4, we illustrate
the calculation procedure of Eq (7). For each node, we
concatenate all its hidden representations as the input of
GC-FM layer, which equals [h(1)

i ,h
(2)
i , ...,h

(L−1)
i ].

The first part of Eq (7) is the addition for all embed-
ding dimensions and the second part is the pair-wise inner
products. Please note that we only interact between different
layers’ embeddings. After the factorization operation, we
perform the convolutional filter Â to propagate the inter-
acted information among graphs. It can be regarded as a
convolution in the depth direction for the layer interactions
in a rather explicit manner.

5 EXPERIMENTS

To validate the effectiveness of Lasagne, we test its perfor-
mance with some popular semi-supervised node classifica-
tion tasks. The source code of Lasagne is released at [56].

5.1 Experiment setup

5.1.1 Datasets
We evaluate Lasagne on 11 different graph datasets in-
cluding both popular benchmark datasets and a real-world
industrial dataset. The detailed statistics of these datasets
are listed in Table 2.
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TABLE 2
Overview of datasets

Dataset #Nodes #Features #Edges #Classes #Train/Val/Test Task Description

Cora 2,708 1,433 5,429 7 140/500/1,000 Transductive citation network
Citeseer 3,327 3,703 4,732 6 120/500/1,000 Transductive citation network
Pubmed 19,717 500 44,338 3 60/500/1,000 Transductive citation network

NELL 65,755 61,278 266,144 210 6,575/500/1,000 Transductive knowledge graph
Amazon Computer 13,381 767 245,778 10 200/300/12,881 Transductive co-purchase graph

Amazon Photo 7,487 745 119,043 8 160/240/7,087 Transductive co-purchase graph
Coauthor CS 18,333 6,805 81,894 15 300/450/17,583 Transductive citation network

Coauthor Physics 34,493 8,415 247,962 5 100/150/34,243 Transductive citation network

Flickr 89,250 500 899,756 7 44,625/22,312/22,312 Inductive image network
Reddit 232,965 602 11,606,919 41 155,310/23,297/54,358 Inductive social network

Tencent 1,000,000 64 1,434,382 253 5,000/10,000/30,000 Transductive user-video graph

Benchmark. We use three citation network datasets (e.g.,
Citeseer, Cora, and Pubmed), two social network datasets
(e.g., Flickr and Reddit), one knowledge graph dataset (e.g.,
NELL) and four additional datasets (e.g., Amazon and
Coauthor). For comparison, we use the released partitioned
datasets for the three citation networks as in [16], the two
social networks as in [57], the knowledge graph as in [58]
and the four additional datasets in [59].

Production. Unlike the previous widely used benchmark
datasets, the Tencent dataset is an user-video graph, col-
lected from a real-world mobile application from our indus-
try partner Tencent Inc.. We obtained 100,000 nodes and the
correspond watching record from the history. The generated
graph is a bipartite graph including 57,022 short-videos
with labels and 42,978 users. The edge between each pair
of short-video item and user represents that the user have
watched this short-video. Each user has 64 features. Our
target is to classify these short-videos into 253 different pre-
defined classes. Some early approaches usually exploit the
interactions between the user-item bipartite graph through
collaborative filtering methods [60], [61]. However, these
approaches lack an explicit encoding of the crucial collab-
orative signal which is latent in user-item interactions to
reveal the behavioral similarity between users (or items).
For example, NGCF [62] first proposes to exploit the high-
order connectivity from user-item interactions, which is a
natural way that encodes collaborative signal in the inter-
action graph structure. LightGCN [63] follows the same
intuition and involves GCN to exploit the user-item graph
structure for recommendation. Both NGCF and LightGCN
are evaluated with 4 layers model architecture to aggregate
multi-hop neighborhoods information and the experiment
results have verified the performance improvements due to
the high-order connectivity. These approaches motivate us
to utilize deep GCN to improve the industrial user-video
recommendation performance.

5.1.2 Baselines
To evaluate the performance of Lasagne, we compare our
method with 20 representative methods including GCN,
JK-Net, ResGCN, DenseGCN, GAT, GraphSAGE (as we
introduced in Section 2) and the following state-of-the-art
methods:

• GPNN [58] exploits a propagation schedule combin-
ing features of synchronous and sequential propaga-

tion schedules.
• NGCN [64] trains multiple instances of GCNs over

node pairs discovered at different distances in ran-
dom walks and learns a combination of the instance
outputs which optimizes the classification objective.

• DGCN [65] considers the local consistency and
global consistency in semi-supervised learning and
it uses two convolutional neural networks to embed
the local-consistency-based and global-consistency-
based knowledge respectively.

• DropEdge [29] randomly removes a certain number
of edges from the input graph to reduce the conver-
gence speed of over-smoothing.

• STGCN [66] generalizes spectral graph convolution
and deep GCN in block Krylov subspace forms and
devise deeper architectures.

• DGI [67] leverages local mutual information maxi-
mization across the graph’s patch representations.

• GMI [68] extends the idea of DGI and maximize the
mutual information of both node features and edges
between inputs and node representations.

• GIN [69] characterizes certain graph structures via
multiset aggregation to improve the model represen-
tational power.

• SGC [70] proposes to simplify the multi-layer GCN
architectures by removing the activation functions.

• LGCN [71] transforms graph data into grid-like
structures and adopts a sub-graph training method.

• APPNP [40] utilizes the personalized PageRank
scheme to improve the information propagation.

• FastGCN [72] proposes to sample a fixed number of
nodes at each layer via importance sampling.

• ClusterGCN [28] limits the training inside graph
partitions to alleviate the neighborhood expansion.

• GraphSAINT [57] proposes a variance reduction
based graph sampling method and normalization
technique to eliminate bias.

• Pairnorm [44] prevents over-smoothing by introduc-
ing a pairwise normalization scheme to make distant
node pairs having less similar node representations.

• ADSF [42] proposes an adaptive structural finger-
print model to exploit graph topology in GAT. It
incorporates both graph structures and node features
similarities while computing attention scores.

• MixHop [41] mixes the powers of the adjacency
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TABLE 3
The test accuracy (in %) on the citation dataset. ∗ indicates that we ran

our own implementation.

Models Cora Citeseer Pubmed

GPNN 81.8 69.7 79.3
NGCN 83.0 72.2 79.5
DGCN 83.5 72.6 80

DropEdge 82.8 72.3 79.6
STGCN 83.6 72.6 79.5

DGI 82.3±0.6 71.8±0.7 76.8±0.6
GMI 82.7±0.2 73.0±0.3 80.1±0.2
GIN 77.6±1.1 66.1±0.9 77.0±1.2
SGC 81.0±0.0 71.9±0.1 78.9±0.0

LGCN 83.3±0.5 73.0±0.6 79.5±0.2
APPNP 83.3±0.5 71.8±0.5 80.1±0.2

GAT 83.0±0.7 72.5±0.7 79.0±0.3
Pairnorm∗ 81.4±0.6 68.5±0.9 79.1±0.5

ADSF∗ 83.8±0.5 72.8±0.7 80.1±0.8
MixHop∗ 82.1±0.4 71.4±0.8 80.0±1.1
MADReg∗ 82.3±0.8 71.6±0.9 79.5±0.6

GCN∗ 81.8±0.5 70.8±0.5 79.3±0.7
JK-Net∗ 81.8±0.5 70.7±0.7 78.8±0.7

ResGCN∗ 82.2±0.6 70.8±0.7 78.3±0.6
DenseGCN∗ 82.1±0.5 70.9±0.8 79.1±0.9

Lasagne (Weighted)∗ 84.1±0.2 73.2±0.5 79.5±0.4
Lasagne (Stochastic)∗ 84.2±0.5 73.1±0.6 80.2±0.5

Lasagne (Max pooling)∗ 84.1±0.8 73.3±0.5 79.6±0.6

matrix and combines the node representations of
neighbors at various distances.

• MADReg [43] proposes the mean average distance
(MAD) to reflects the node smoothness and adds a
MADGap-based regularizer for better GNN training.

Note that, our techniques are orthogonal to these base-
lines and can be used to further improve their performance.
Here we evaluate our method on vanilla GCN to demon-
strate the effectiveness of Lasagne.

5.1.3 Experiment Settings
We use PyTorch to implement the models and we train them
using Adam optimizer with a learning rate of 0.02 for the
citation datasets and Tencent, 0.005 for Reddit, and 0.01 for
other datasets. Besides, the l2 regularization factor is set to
5e-4 for the citation datasets and 1e-5 for the other datasets.
The dropout is applied to all feature vectors with rates of
0.8 to the citation dataset, 0.5 to Flickr and Tencent, 0.2 to
Reddit, and 0.3 to other datasets. We train each model 400
epochs and terminate the training process if the validation
accuracy does not improve for 20 consecutive steps. For the
GC-FM layer, we set its latent parameter k to 5. Last, the
dimension of hidden features 32 for citation datasets and 100
for other datasets. Note that JK-Net has three aggregators,
and we choose the concatenation as the final aggregation
layer since it performs best on the citation dataset. We run
each method 10 times and and report the mean accuracy
and the standard deviation to eliminate random factors.

To make a fair comparison with existing baselines, we
use the standard released partitioned datasets for both trans-
ductive tasks (especially for the three widely-used citation
networks) and inductive tasks. The data splitting difference
fundamentally determines whether we could reuse the re-
ported results of them. Therefore, for GraphSAGE, we use
the results on Flickr and Reddit as reported in [23] and [57].

TABLE 4
Additional comparison on inductive tasks. ∗ indicates that we ran our

own implementation.

Models Flickr Reddit

GraphSAGE 50.1±1.3 95.4±0.0
FastGCN 50.4±0.1 93.7±0.0

ClusterGCN 48.1±0.5 96.6±0.0
GraphSAINT 51.1±0.1 96.6±0.1

Lasagne∗ 52.9±0.2 96.7±0.1

For ClusterGCN, we use the results on Reddit as reported
in [28], and run our own implementation on Flickr. We have
also empirically verified these results to guarantee that the
other factors (e.g., random seeds and parameter settings)
could not lead to significant differences.

5.2 Results Analysis
5.2.1 Comparison to state-of-the-art
We compare our Lasagne with the state-of-the-art methods
on different datasets, including both benchmark datasets
and the production dataset. We introduce and analyze these
results in the following.

Transductive As shown in Table 3, Lasagne outperforms
the baselines by a significant margin. Specifically, Lasagne
achieves better performance over the current state-of-the-
art methods by a margin of 0.4% (i.e., ADSF), 0.3% (i.e.,
GMI), and 0.1% (i.e., APPNP and ADSF) on the three cita-
tion datasets respectively. Compared to existing deep GCN
techniques, Lasagne not only involves multi-hop neighbors
while aggregating node representations, but also proposes
an adaptive node-locality-aware mechanism to learn how
to utilize these information, which leads to the superior
performance. Besides, the performance of Lasagne using
different aggregator is roughly the same in Cora and Cite-
seer. However, on Pubmed, the Stochastic aggregator can
achieve the accuracy of 80.2%, while the second-best ag-
gregator Max pooling can only get the accuracy of 79.6%,
which means different aggregators may result in different
performance. We further evaluate Lasagne on a variety
of other datasets such as Coauthor CS, Coauthor Physics,
Amazon Computers and Amazon Photo and the results in
Table 5 demonstrate that Lasagne could also outperforms
the baselines.

Inductive Besides the transductive tasks, we also make
an addition comparison on inductive tasks, where the
Weighted aggregator and the Stochastic aggregator in
Lasagne are not suitable. Only the nodes in the training
set can be used during the training procedure, and the
pre-trained parameters of these aggregators lose efficacy on
the validation set and testing set. Even so, Table 4 shows
the Lasagne (Max pooling) can still outperform Graph-
SAGE [23], FastGCN [72], ClusterGCN [28] and Graph-
SAINT [57] on Flickr and Redddit.

Production For the production dataset Tencent with one
million nodes, the oversmoothing becomes more crucial. For
each short-video node of the user-video graph, the edges
represents for concurrent clicks on the short-video by the
users. The “hot” short-videos could be watched by most of
the users, which makes them nearly indistinguishable by
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Fig. 5. Influence of model depth (number of layers) on classification performance.

TABLE 5
Test accuracy (in %) on other datasets. ∗ indicates that we ran our own implementation.

Models Amazon
Computer

Amazon
Photo

Coauthor
CS

Coauthor
Physics Tencent

GAT∗ 80.1±0.6 85.7±1.0 87.4±0.2 90.2±1.4 46.8±0.7
GCN∗ 82.4±0.4 85.9±0.6 90.7±0.2 92.7±1.1 45.9±0.4
JK-Net∗ 82.0±0.6 85.9±0.7 89.5±0.6 92.5±0.4 47.2±0.3
ResGCN∗ 81.1±0.7 85.3±0.9 87.9±0.6 92.2±1.5 46.8±0.5
DenseGCN∗ 81.3±0.9 84.9±1.1 88.4±0.8 91.9±1.4 46.5±0.6

Lasagne (Weighted)∗ 83.9±0.7 87.4±0.4 92.4±0.6 93.8±0.5 47.6±0.3
Lasagne (Stochastic)∗ 84.5±0.7 88.2±0.4 92.5±0.5 94.1±0.6 48.7±0.5
Lasagne (Max poling)∗ 84.1±0.4 88.7±0.8 92.1±0.5 93.8±0.5 48.1±0.6

the aggregated node embeddings. In such cases, the node-
aware characteristic of Lasagne is essential to preserve the
personalized short-video features information. The results
in Table 5 verify the significant improvement from Lasagne
on large scale graph data.

5.2.2 Depth analysis

Lasagne is a representation learning framework which can
be used to train a very deep GCN, thus we investigate the
influence of model depth (number of layers) on classifica-
tion performance on the three citation datasets. We com-
pare Lasagne under different aggregators with ResGCN,
DenseGCN, and JK-Net since all of them aim at training
a deeper model. For each dataset, we calculate its Average
Path Length (APL) [73],

L =
2

N(N − 1)

∑
∀vi,vj∈G,

d(vi, vj), (8)

where d(vi, vj) is the length of the shortest path between
nodes vi and vj , N is the number of nodes. It is a measure
of the efficiency of information transport on the graph G,
which means each node in the graph theoretically should
capture the max L-hop neighborhood information. The APL
for Cora, Citeseer, Pubmed and NELL are 7.3, 10.3, 6.3 and
5.4 respectively, so we just analyze the depth influence up
to 10 layers.

As shown in Figure 5, for the original GCN, it gets
the best results with a 2-layer model and its performance
decreases rapidly with the addition of layers. For ResGCN,
DenseGCN, and JK-Net, they can keep more information
of the original features compared with GCN and get a
relatively good performance. However, their performance
is much lower than Lasagne, that’s because they ignore the

difference between each node and thus introduce the over-
smoothing problem for the high degree nodes in the deep
layers. Our proposed method Lasagne outperforms other
methods a lot using different layers. Specifically, we find
that there is no significant superior aggregator for Lasagne
on Cora and CiteSeer. But on Pubmed, the Stochastic aggre-
gator is significantly better than the other two aggregators.
We infer that the stochastic aggregation mechanism might
provide better generalization ability for deep GCN. Besides,
even with very high depth, the performance of Lasagne does
not decrease as the other baselines do. More importantly, we
see that Lasagne gets the best result with more than 5 layers
in each dataset, which proves the necessity of making a deep
model.

Besides, we collect the trainable Stochastic aggregator
parameters P from a 5-layer GCN on Cora and then use
the page rank (PR) score to measure the node localities. We
find that different nodes indeed show different probability
distribution. For example, the node with the largest PR
value (central) has a P distribution as [1.00, 0.95, 0.89] and
the node with the lowest PR (non-central) has a distribution
of [0.67, 0.86, 1.00]. The distribution vector represents the
probability for the first three layers to be aggregated for
the current node. The results show that the central node
prefers to aggregate nearby neighbors while the non-central
node prefers more distinct neighbors. The statistical results
on P is helpful for the model interpretation and the hub
hypothesis, and we are glad to study this in-depth in our
future work.

5.2.3 Model Interpretation

To interpret the effectiveness of our method, we further run
10-layer Lasagne and other baselines on Cora. As shown
in Figure 6, we evaluate their MI between the last layer’s
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Fig. 6. The MI for the last layer during training on Cora

hidden representation and the input feature. DenseGCN
and JK-Net aggregate former layers’ outputs, achieve high
MI at the beginning and drop down quickly because of
the over-smoothing. The curves illustrate that our method
achieves the highest MI than other baselines. This means
that Lasagne indeed helps multi-layer GCN to preserve
more information than other approaches, thus improving
the effectiveness of the proposed deep architecture.

5.2.4 Ablation study
To verify the effectiveness of the proposed GC-FM layers
in Lasagne, we conduct ablation study on three citation net-
works, and the results are shown in Table 6. More concretely,
we remove the GC-FM layer and replace it with the graph
convolution layer of Lasagne and compare its performance
with the original Lasagne. As shown in Table 6, it is evi-
dent that on all three citation datasets, Lasagne has better
performance compared to Lasagne without GC-FM layer
using different aggregators. For example, the performance
gains on Citeseer are 0.3%, 0.6% and 0.6% respectively for
the three different aggregators. These results verify that
the proposed GC-FM layer could bring some performance
improvements over Lasagne on different datasets because it
can learn the cross features between each embedding layer.

5.2.5 Effects on other GNNs
Lasagne is a general node-aware deep GCN framework and
can be applicable to different GNN models easily. To verify
this, we conduct experiments to testify the effectiveness of
the framework on other GNN models, such as SGC and
GAT. We remain the node aggregation mechanism in each
single layer of SGC and GAT (i.e., powers of adjacency
matrix in SGC and self-attention among neighbors in GAT),
but replace the deep architecture with Lasagne (Stochas-
tic). Even with different base models, Table 7 shows that
our proposed stochastic aggregator can boost the model
performance in three citation networks. With Lasagne, the
performance of base models can be boosted by a large mar-
gin of 2.9%, 2.4% and 1.1% in Cora, Citeseer and PubMed
respectively, verifying its high generalization ability.

5.2.6 Analysis on graph sparsity
We evaluate with various sparsity level of the graph by
taking the different label rates per class. In Table 8, we
report node classification accuracy along with 5, 10, 15 and

TABLE 6
The test accuracy (in %) with or without GC-FM on three datasets

Aggregators Cora Citeseer PubMed
baseline +GC-FM baseline +GC-FM baseline +GC-FM

Weighted 83.8±0.4 84.1±0.2 72.9±0.3 73.2±0.3 79.4±0.4 79.5±0.4
Stochastic 84.0±0.3 84.2±0.5 72.5±0.5 73.1±0.4 79.8±0.6 80.2±0.5

Max Pooling 83.7±0.8 84.1±0.8 72.7±0.7 73.3±0.6 79.3±0.5 79.6±0.6

TABLE 7
The test accuracy with and without Lasagne (stochastic aggregator).

Models Cora Citeseer PubMed
baseline +Lasagne(S) baseline +Lasagne(S) baseline +Lasagne(S)

GCN 81.8±0.5 84.2±0.5 70.8±0.5 73.1±0.6 79.3±0.7 80.2±0.5
SGC 81.0±0.3 83.9±0.5 71.9±0.3 72.6±0.4 78.9±0.1 80.1±0.3
GAT 83.0±0.7 84.1±0.7 72.5±0.7 73.1±0.8 79.0±0.3 79.7±0.5

20 labeled nodes per class (corresponding to the label rate
of 1.3%, 2.6%,3.9%, and 5.2%) on Cora. To measure the in-
fluence of the sparsity level on the big graph, we also report
the test accuracy along with the increased label rate per
class on NELL. When the label rate decreases, our proposed
method Lasagne still outperforms the baselines. As shown
in Table 8, the test accuracy of Lasagne on Cora exceeds
the next best model by 1.6%, 1.8%, 1.6% and 2.0% when the
label rate is 1.3%, 2.6%, 3.9%, and 5.2% respectively. For the
result on NELL, our method Lasagne still gets the highest
performance compared with other baselines under different
label rate, which means Lasagne is capable of training a
large graph with limited labeled nodes.

5.3 Efficiency comparison

Although our proposed Lasagne significantly outperforms
other state-of-the-art methods, we also concern the execu-
tion efficiency. In the following, we demonstrate that the
proposed method achieves comparable training speed with
the original GCN, while maintaining superior prediction
performance.

In Figure 7(a), we compare the per epoch time (in sec-
onds) of GCN, Lasagne (Weighted) and GAT with the same
model depth (4 layers) on citation datasets and Tencent
dataset. The hardware environment is the NVIDIA TITAN
RTX GPU with 24 GB RAM. As we can see, Lasagne al-
ways performs similar as the original GCN. Because the
computation complexity of Lasagne is the same as GCN
asymptotically. The extra overheads in Lasagne mainly
come from the layer aggregators including the element-wise
multiplications and additional GC transformations, which
only incur linear time cost. These operations help Lasagne
capture the node locality with slight efficiency loss.

GAT manages to learn the individual node aggregation
pattern through adding an additional matrix multiplication
operation for each edge. The self-attention module [74] au-
tomatically learns the node aggregation weights and could
have chance to capture the node localities potentially. How-
ever, the over-elaborate model design makes the learning
more difficult due to over-parameterization and leads to
serious efficiency problem at the same time. For example,
running a 4-layer GAT could be 100× slower than GCN
and exceed the 24 GB GPU memory on large graphs, e.g.,
Pubmed and Tencent. Besides, it has been observed that
the over-smoothing problem is still unresolved in GAT [75].
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TABLE 8
The test accuracy (in %) along with the increased label rate per class

on Cora and NELL.

Models Cora NELL

Label rate 1.3% 2.6% 3.9% 5.2% 0.1% 1% 10%

GCN 74.8 76.7 79.3 81.8 54.2 67.0 83.0
ResGCN 75.6 77.3 79.7 82.2 64.3 73.1 82.1

DenseGCN 75.1 77.1 80.1 82.1 65.2 72.8 83.4
JK-Net 73.9 76.6 79.4 81.8 58.4 73.4 84.1

Lasagne (Weighted) 76.8 78.8 81.7 84.1 66.8 75.8 84.8
Lasagne (Stochastic) 77.0 78.9 81.6 84.2 66.3 74.9 85.2

Lasagne (Max pooling) 77.2 79.1 81.4 84.1 66.1 75.2 84.5

(a) Per epoch time (s) comparison on different datasets (depth=4)

(b) Per epoch time (s) comparison with different depth on Cora

Fig. 7. Efficiency comparison among GCN, Lasagne (Weighted) and
GAT.

In fact, our method could be viewed as a simplified atten-
tion mechanism among different layers for each node, but
provide more powerful model performance than GAT. We
also evaluate the efficiency as the network architecture goes
deeper. As shown in Figure 7(b), Lasagne still performs
comparable speed with the original GCN with even 10
layers, while preserving superior classification performance
as introduced in Figure 5.

6 CONCLUSIONS

In this paper, we study some recent approaches involving
CNN techniques potentially useful for deep GCNs and
interpret these methods with Mutual Information. Then we
propose a novel GCN framework, Lasagne, which consists
of multiple graph convolutional layers and the dense con-
nection across the layers. Based on this architecture, we
propose three node-aware layer aggregators including max
pooling, weighted and stochastic aggregators. By applying
GC-FM layer, Lasagne can further capture the layer interac-
tion information. Compared with other existing approaches,

our proposed Lasagne can better utilize different layers’ in-
formation in deep GCN. We conduct comprehensive exper-
iments and the results confirm that our method consistently
outperformed other state-of-the-art methods. In particular,
our method achieves the largest MI preservation over them
for deep GCNs. According to our experiments, different
aggregators may result in very different performance on the
same dataset. Therefore, how to make them interpretable
and then instruct us to design and select the appropriate
aggregator is an open question we would like to solve in
our future work.
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