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ABSTRACT
Embedding models have been recognized as an effective learning

paradigm for high-dimensional data. However, a major embed-

ding model training obstacle is that updating and retrieving the

shared large-scale embedding parameters usually dominates the dis-

tributed training cycle, leading to significant scalability issues. This

paper presents HET-GMP, a distributed system on training embed-

ding models. Uniquely, HET-GMP takes advantage of a graph-based

approach to efficiently increase scalability. The key insight guid-

ing our design is the “graph way of thinking”. HET-GMP creates a

bigraph abstraction to represent the access relationships between

data samples and embedding vectors. This enables HET-GMP to

embrace graph locality and skewness as new performance oppor-

tunities and to exploit graph-based replication/partitioning and

bounded-asynchronous synchronization to reduce communication

overhead. We evaluate the system on the embedding models for

click-through rate (CTR) prediction, which presents the most signif-

icant challenge and communication bottleneck due to heavy access

concurrency to a huge embedding table. The result shows that HET-

GMP supports embedding model training with 10
11

parameters,

achieving a reduction in communication up to 87.5% and an up-to

27.5× speedup over the state-of-the-art baseline systems.

CCS CONCEPTS
• Information systems→ Data management systems; Com-
putational advertising; • Computing methodologies→ Dis-
tributed computing methodologies.
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Figure 1: Communication overheads in WDL model training on
HugeCTR [7]. Avazu [3], Criteo [2] and Company are different rec-
ommendation datasets.

1 INTRODUCTION
Embeddings are often used to handle representation learning prob-

lems on high-dimensional data, such as words in a corpus of text,

or users and items in recommendation systems. Deep embedding

techniques use continuous vectors to represent discrete variables

and have large amounts of practical applications, such as click-

through-rate (CTR) prediction system [46], graph processing [42]

and information extraction [47, 48]. For example, the “wide and

deep learning (WDL)” model [13] creates latent vectors from cross-

product transformations on categorical features and provides se-

mantic modalities and meaningful representations of these cate-

gories in the transformed space. However, with the growing size of

deep embedding models and the increasing volume of input data,

building a huge embedding model training system is more chal-

lenging in regard to both effectiveness and efficiency. For example,

the production platform in Facebook has proposed a deep learning

recommendation model (DLRM) [36] with trillions of parameters

and terabytes in size, which poses a serious scalability challenge.

Modern distributed machine learning (ML) systems (e.g., Tensor-

Flow [8], PyTorch Distributed [26], HET [34], and HugeCTR [7])

typically use parameter server (PS) or AllReduce based approaches

to scale-out models. However, these systems face a scalability issue

for large embedding models. The greatest inefficiency comes from

the sparse reads and updates of the shared embedding parame-

ters through a limited bandwidth link. For example, HugeCTR is a

speed-of-light click-through-rate (CTR) model framework that can

outperform popular systems such as TensorFlow. Figure 1 shows the

distributed training efficiency of HugeCTR onWDL under different

inter-GPU connections. We see that up to 90% of training time is

spent on fetching and updating embedding parameters, which domi-

nates the training cycle. With the increasing gap between emerging

powerful accelerators and the slow growth of network bandwidth,

the communication bottleneck would become even more severe.

In this paper, we present HET-GMP, a novel graph-based, data-

driven partitioning system for large-scale huge embedding model

training. HET-GMP proposes a novel bigraph representation to
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Figure 2: Graph representation of deep CTR model. Sample 2 and
3 formulate a bipartite graph with their embeddings including a, c,
g, d, and h. During training, the embedding vectors for each data
sample are organized in a row and then feed into the rest of DNN.

manage the input data and embedding parameters. We take a deep

CTR model as an example and illustrate the mini-batch based train-

ing process with the bigraph representation in Figure 2. Each vertex

in the graph represents a data sample or an embedding vector. Each

edge connects a sample vertex with an embedding vertex used by

the data sample. With the graph representation, we observe two

critical characteristics: access locality and skewness. In particular,

a specific embedding is mostly related to only a small subset of

data, and the access distribution of embeddings is often highly

skewed, which implies two performance opportunities: (1) with a

locality-conscious data layout optimization, most embeddings can

be stored only on few workers and be updated locally to reduce

communication, and (2) replicating hot embeddings at each worker

can effectively save network bandwidth (i.e., caching). To leverage

such opportunities, HET-GMP introduces two new mechanisms:

Hybrid Graph Partition. To effectively alleviate the communica-

tion bottleneck, we provide a hybrid graph partitioning algorithm

to find partitions with good locality and workload balance, which

combines edge-cut (for evenly distributing vertices) and vertex-cut

(for evenly distributing edges of high-degree vertices). Specifically,

we first perform 1D edge-cut partitioning to evenly assign data

and embedding vertices of a graph to workers to minimize the

number of edges spanning workers. We define a new score for-

mula to guide the assignment process and balance the resource

requirements among all workers (e.g., the number of embeddings,

the communication costs, the computation workloads). To further

improve locality, we perform an additional 2D vertex-cut partition-

ing to evenly assign edges of high-degree embedding nodes across

workers by cutting and replicating nodes.

Graph-based Consistency Model. Vertex-cut may cut and repli-

cate embedding nodes, raising the problem of consistency in the

presence of writes. To unleash the full power of vertex-cut parti-

tioning, HET-GMP performs a unique form of bounded asynchrony

to relax the consistency guarantees. Although asynchronous pro-

cessing has been widely used in the past, HET-GMP faces a unique

technical difficulty that no other systems have dealt with: the up-

date dependencies across embeddings revealed by the underlying

graph structures, which has not been investigated in conventional

consistency models such as Stale Synchronous Parallel (SSP) [21]

without graph views. HET-GMP proposes a novel graph-based

bounded asynchrony by introducing two synchronization points

where staleness can be tolerated: intra-embedding synchronization
across the replicas of a specific embedding vertex when reading

it, and inter-embedding synchronization across those used by a spe-

cific data sample vertex when performing computation. We have

formally proved the convergence of our asynchronous model.

We summarize our contributions as follows: First, we propose

a novel graph-based system approach designed to improve the

scalability of training huge embedding models. Second, we provide

an efficient hybrid graph partitioning algorithm that combines

edge-cut and vertex-cut for balanced and locality-conscious dis-

tributed training (model parallelism). Third, we introduce graph-
based bounded asynchrony with intra-and-inter embedding syn-

chronizations and prove convergence. Finally, we build the HET-
GMP system that implements the proposed graph-based system

approach. The result shows that HET-GMP can reduce by up to

87.5% the communication related to embeddings and support em-

bedding model training with 10
11

parameters. HET-GMP achieves

1.64− 2.66× end-to-end convergence time speedup and up to 27.5×
throughput improvement over the state-of-the-art baseline systems.

2 OBJECTIVE
Let 𝜉 ∈ R𝑛×𝑚 be the training dataset, where 𝑛 is the number of data

samples, and𝑚 is the number of features. The embedding model

will represent each feature with a vector of parameters x. Let 𝑑 be

a small number of latent dimensions, we consider the problem of

finding embedding X ∈ R𝑚×𝑑 which minimizes:

min

X

[
𝐹 (X) := 1

|𝜉 |
∑︁
𝑖

𝑓 (X; 𝜉𝑖 )
]

(1)

where 𝑓 (·) is the loss function defined by the model. For example,

in deep CTR embedding models, each data sample is represented

by a feature vector that consists of several categorical fields. Em-

beddings are used to learn the low-dimensional representation of

the categorical features by minimizing the prediction loss function.

A large number of embedding workloads can be easily modeled

using the above problems. They create a low-dimensional vector of

“parameters” for each high-dimensional one-hot vector (indicating

a feature, word, or node), such as CTR models, ML models like topic

modeling, and graph embedding models like knowledge graph em-

bedding. In the following, we focus on CTR embedding models to

drive our design, because they are common in modern web compa-

nies and present the most significant challenge and communication

bottleneck due to heavy access concurrency to the huge embedding

table. For example, in knowledge graph embeddings, a data sample

only needs to access two embeddings for an edge, whereas a data

sample may access tens to hundreds of embeddings in CTR models.

Other embedding models where (1) embedding is non-parametric

(such as GNNs [24, 32, 35, 49] and BERT [15]), or (2) computation

is the bottleneck (e.g., with very deep network architectures for

training), are not included in our target workloads.

3 RELATEDWORK
In this section, we first briefly introduce the current practice for

large embedding model training. Then we explain why the tradi-

tional optimization methods (such as parameter allocation, graph

partitioning, and relaxed consistency) cannot be directly applied to

embedding models. Finally, we introduce the differences between

HET-GMP and graph learning systems.

Distributed Training. Distributed training systems have been ex-

tensively studied recently to scale up ML for big data and large mod-

els. The PS [25] architecture stores a global model and each worker

communicates with PS to fetch or update the model. The flexible
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communication pattern enables PS to support efficient sparse com-

munications, i.e., only a small subset of the model parameters are

accessed by each worker in one iteration. Another architecture is

based on collective communication primitives. AllReduce is one of

the most representative methods and uses efficient communication

techniques for model synchronization, such as Ring-Reduce where

the workers are connected with a ring [17, 33]. It has shown supe-

rior performance in many DL training workloads but degenerates

to inefficient AllGather primitives for sparse communication.

Training large embedding models usually suffers from a com-

munication bottleneck. Parallax [23] considers the difference in the

sparsity of model parameters and proposes a hybrid communica-

tion architecture that leverages PS and AllReduce to transfer sparse

and dense parameters, respectively. Kraken [45] follows the hybrid

architecture and optimizes the embedding memory usage. These

approaches incur frequent CPU-GPU communication overheads.

To alleviate such costs, HET [34] proposes an embedding-cache-

enabled architecture with fine-grained consistency to improve the

training scalability. HugeCTR [7] distributes the whole embedding

table into the memory of multi-GPUs to accelerate the training of

CTR models. Several industrial companies follow the GPU-based

model-parallelism design of HugeCTR and have developed their

large-scale embedding training systems, such as ZionEX [36] by

Facebook and HierPS [50] by Baidu. Although these systems im-

prove the scalability of training embeddingmodels throughmemory

hierarchy (e.g., CPU main memory or SSD), they are still suffering

from the CPU-GPUs or GPU-GPU communication bottleneck.

Parameter Allocation. To reduce the network communication

when accessing parameters in traditional PS, dynamic parameter

allocation [38, 39] has been proposed to utilize the parameter ac-

cess locality and re-allocate the model parameters during training.

However, these studies are limited to some special ML tasks nat-

urally supporting parameter-block-based training such as matrix

factorization (MF), tensor factorization, and latent dirichlet allo-

cation. Unfortunately, data samples in DL models might require

updating a very large number of different embeddings, making

it hard to enforce local access at the coarse granularity of blocks.

By contrast, HET-GMP fundamentally improves embedding model

training efficiency by exploiting the access locality and skewness

characteristics at the fine granularity of embedding, via partition

and synchronization using a new graph-based approach.

Graph Partitioning. Many graph computation systems rely on

graph partitioning to minimize communication and ensure bal-

anced computation [16, 37]. To exploit locality during computation,

both Pregel [1] and GraphLab [31] use edge-cut to accumulate all

resources (i.e., messages or replicas) of a vertex in a single machine.

To further address the load imbalance issue given skewed distribu-

tion in natural graphs, PowerGraph [18] and GraphX [19] introduce

vertex-cut, which splits a vertex into multiple replicas across ma-

chines. However, this splitting also comes at a cost, including extra

replication and synchronization across replicas. PowerLyra [12]

and Libra [44] adopt hybrid-cut algorithms to partition different

types of vertices according to their degrees. Although these al-

gorithms consider edges but also vertices and general skewness,

HET-GMP reaps the full performance potential considering the

following unique features of embedding models.

First, existing algorithms for graph processing emphasize parti-

tioning nodes in a one-pass manner, to minimize the pre-processing

overhead given small graph computation time. By contrast, the

training time of embedding models is much larger, which allows

considering more pre-processing capabilities. Therefore, we im-

prove graph partition performance in an iterative manner, which is

in essence a different design principle from the traditional graph sys-

tems. Second, the commonly used distributed graph processing al-

gorithms assume homogeneous graphs and homogeneous network

bandwidth for every pair of workers. But the graphs that model

embedding models often naturally have different types of nodes

playing distinct roles (e.g., parameter and user nodes). Moreover,

embedding models are typically trained on a GPU cluster exhibiting

heterogeneous connectivity (e.g., NVLink, PCIe, QPI, and Ethernet),

leading to uneven bandwidth between different pairs of workers.

To capture these characteristics of embedding models, HET-GMP

also adopts new principles to a heterogeneity aware load-balancer

design considering both computation and communications.

Consistency Protocols. The bulk synchronous parallel (BSP)

model is a default option for popular training frameworks including

TensorFlow, which forces strict synchronization barriers. Several

relaxed consistency protocols have been proposed to reduce the

model synchronization costs of BSP. Asynchronous protocol [29] al-

lows the workers to proceed without coordinating with each other

but may incur excessive inconsistency. Bounded-asynchronous

models such as SSP [21] provide deterministic convergence guaran-

tees by specifying a bounded staleness among workers. However,

HET-GMP faces a unique challenge: the update dependencies across
embeddings revealed by their co-access relations for a specific data

sample, which has not been investigated in conventional consis-

tency protocols and learning systems (e.g., [38, 39]).

By explicitly capturing such dependencies with a graph view,

HET-GMPproposes a new design principle of enforcing the bounded

staleness at two synchronization points where staleness can be tol-

erated: (1) replicas of a specific embedding when reading it, and (2)

replicas of multiple co-accessed embeddings when used by the same

data sample. The intuition is to ensure that if a worker conducts

an update on a specific embedding, then the replicas of associated

embeddings it gathered from other workers cannot be too obso-

lete (bounded by 𝑠). Otherwise, the embedding quality would be

adversely affected by the high staleness of those associated embed-

dings it depends on.

Graph Learning Systems. ML on graphs has attracted immense

attention in recent years. These systems also adopt graph-oriented

optimization to improve learning performance. For example, both

distributed graph neural network (GNN) systems (e.g., DistDGL [51])

and knowledge graph (KG) training systems (e.g., DGL-KE [52])

partition the graph inputs to improve the scalability. However, the

graph partition algorithms used in these systems are similar to those

commonly used in traditional distributed graph processing systems.

By contrast, HET-GMP provides a new partition design that ex-

ploits the new characteristics of embedding models. In addition, the

model is not partitioned in GNN training systems (e.g., DistDGL),

which do not face the unique challenge of write consistency like us.

For KG training systems, our graph-based replication (vertex-cut)
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Figure 3: Embedding co-occurrence graph partition results. The
graph of each dataset is partitioned into 8 clusters with METIS [22]
(8 is only for illustrative purposes, e.g., trained on an 8-GPU server).

and consistency principles (algorithms) could be naturally applied

for a larger communication optimization space.

4 OBSERVATION AND OPPORTUNITIES
As illustrated in Figure 2, we represent the interaction of data

sample 𝜉 ∈ R𝑛×𝑚 and embedding parameters 𝑋 ∈ R𝑚×𝑑 using a

graph: each vertex represents an individual embedding 𝑥𝑖 ∈ X or

data sample vertex 𝜉𝑖 ∈ 𝜉 , with the edges connecting a data sample

with the embedding vertices it accessed. Note an embedding is to

represent an element (high-dimensional one-hot vector) in a data

sample with a low-dimensional vector of parameters. For a data

sample (multi-hot vector or sparse vector input), we represent it

by the sample vertex in our graph representation (see Figure 2),

which connects to multiple embedding vertices and corresponds to

a set of such one-hot vectors in the same space. The graph reflects

the co-access pattern among different categorical features, e.g., the

association rules [9] in data mining. With the graph, we uncover

the following characteristics of embedding access patterns:

Locality. We find that the graph representation of deep embedding

models exhibits the graph locality property. For illustrative purpose,

we transform the data-embedding graph representation into an

embedding co-occurrence graph, regarding embeddings as nodes

and co-occurrence relations in a data sample as edges. The co-

occurrence count of a pair of embeddings that appeared in the

same data samples is defined to be the corresponding edge weight.

We then perform a clustering method (e.g., METIS[22]) on the co-

occurrence graph, and Figure 3 shows the graph clustering results

over various datasets, including two public datasets (Avazu and

Criteo) and one private dataset. We see that the co-occurrence

relations are well clustered into dense diagonal regions. This implies

that the training data and parameters can be clustered such that we

can store co-occurrence embeddings (e.g., those in dense regions)

and corresponding data samples into the same worker to improve

embedding access locality. This property motivates us to apply

locality-aware graph partition over the data-embedding graph.

Skewness. We notice that some cross-cluster edges exist in the

partitioned graph and could be the potential communication bottle-

neck. This is because the embeddings also follow another important

graph property — the embedding nodes have highly skewed power-

law degree distributions (i.e., access frequency). This motivates us to

locally cache embeddings with large degrees (i.e., high frequency),

to further reduce the remote access costs. Introducing replication

raises the problem of ensuring consistency in the presence of writes.

Fortunately, existing embedding models fall into the category of

iterative convergent algorithms which have been shown robust to a

bounded amount of inconsistency and still converge correctly [30].

Data 2
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Figure 4: Overview of HET-GMP.

5 HET-GMP DESIGN
In this section, we introduce HET-GMP, a novel large-scale embed-

ding model training system, which utilizes the locality and skew-

ness of the embedding access pattern to improve efficiency and

scalability. Our system design is illustrated in Figure 4. We apply

the hybrid communication architecture where each worker holds

a replica of the dense model parameters and uses All-Reduce for

synchronization during training. Since the embedding parameters

cause most of the communication costs, we focus on accelerating

the communication of the embedding parameters.

We distribute the embedding parameters and the input datasets

into different workers. Note that each worker maintains a HET-

GMP client, and all the local model parameters are directly stored

in the GPU memory. The system design can be treated as a GPU-

based model-parallelism approach. But the key novelty here is that

HET-GMP organizes the embedding vectors into a graph abstrac-

tion rather than randomly partitioned parameter blocks. From this

new perspective, we can perform more efficient model-parallelism

training by utilizing graph locality and skewness. Specifically, we

introduce graph-based partitioning and synchronization consider-

ing these graph properties, which makes our system fundamentally

different from existing solutions.

5.1 Graph Representation
We propose a bigraph representation to manage the data layout for

the deep CTR embedding models with large and sparse embedding

tables. As illustrated in Figure 5, there are two types of vertices in the

graph 𝐺 = (𝑉𝑥 ,𝑉𝜉 , 𝐸), including embedding vertices 𝑥 and sample

vertices 𝜉 . In this bigraph model, each sample from the input dataset

is denoted by a sample vertex and each embedding vector from the

embedding table is denoted by an embedding vertex. An edge (𝑥𝑖 , 𝜉 𝑗 )
between a sample vertex and an embedding vertex indicates that

the current sample 𝜉 𝑗 has the corresponding categorical feature 𝑥𝑖 .

Through modeling the input features from a graph perspec-

tive, the bigraph abstraction can support many existing embedding

models (e.g., Wide & Deep [13], Deep & Cross [41], DeepFM [20],

xDeepFM [28] and Deep Interest Network [53]). Specifically, given

a mini-batch of data samples, the embedding layer of these models

performs a lookup operation to access the corresponding adjacent

embedding vectors 𝑥𝑖 . During the forward stage, these models per-

form the deep neural networks computation and make predictions

on the target objective. After the following backward stage, they

compute the gradients of these embeddings used in the forward

stage. At last, the embedding gradients Δ𝑥𝑖 are applied to the em-

bedding vertices, and the next iteration of training starts.
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Figure 5: Bigraph abstraction of embedding models.

5.2 Hybrid Graph Partitioning
Given such a bigraph representation, a key problem here is how

to partition the graph to reduce embeddings/gradients communi-

cation among different workers (i.e., partitions) while achieving

optimally balanced workloads. Our algorithm leverages the obser-

vations on the embedding model such as the skewed distribution

and locality of vertices, their different roles, and imbalanced data

sizes of embedding and data vertices to derive a good partition. We

design a hybrid iterative graph partitioning framework to improve

the distributed training performance of the embedding model. As

shown in Algorithm 1, our proposed graph partitioning algorithm

consists of two steps in each iteration:

Step 1: Edge-cut Partitioning (1D Partitioning). Considering

the graph locality, we first perform an edge-cut partitioning to

distribute both embedding and sample vertices across different

GPU workers in a balanced manner. First, given the partitions

𝐺 = {𝐺1,𝐺2, ...,𝐺𝑁 }, a vertex 𝑣 is assigned to partition𝐺𝑖 such that

the global score 𝛿𝑔 (𝐺𝑖 ) ≤ 𝛿𝑔 (𝐺 𝑗 ),∀𝑗 ∈ {1, 2, ..., 𝑁 }. Here, 𝛿𝑔 (𝐺𝑖 ) is
defined as:

𝛿𝑔 (𝐺𝑖 ) = 𝛿𝑐 (𝐺𝑖 ) − 𝛿𝑏 (𝐺𝑖 ), (2)

where 𝛿𝑐 (𝐺𝑖 ) denotes the inter-GPU communication costs on the

𝑖-th GPU, and 𝛿𝑏 (𝐺𝑖 ) is the balance formula.

For a homogeneous communication architecture, 𝛿𝑐 (𝐺𝑖 ) is the
same as the edge-cut for vertices in partition 𝐺𝑖 :

𝛿𝑐 (𝐺𝑖 ) =
𝑥∉𝐺𝑖∑︁
∀𝑥∈𝑉𝑥

𝑐𝑜𝑢𝑛𝑡 (𝑥, 𝑖), (3)

where the function 𝑐𝑜𝑢𝑛𝑡 (𝑥, 𝑖) represents the number of times em-

bedding 𝑥 is used by the data samples in the 𝑖-th partition. To reflect

network bandwidth unevenness, we propose to capture heteroge-

neous connections by using weighted edge-cuts. Specifically, we

profile the communication speeds for all GPU-GPU pairs and for-

mulate them into a weight matrix. When counting the edge-cuts,

we multiply the corresponding weight value from the matrix to the

𝑐𝑜𝑢𝑛𝑡 function results, so that the number of cross-partition edges

among data graph partitions is gracefully adapted to the uneven

bandwidth across workers.

The balance formula 𝛿𝑏 (𝐺𝑖 ) can be interpreted as the marginal

cost of adding vertex 𝑣 to partition 𝐺𝑖 , which is used to balance

workloads among different partitions. We have

𝛿𝑏 (𝐺𝑖 ) = 𝛼𝛿𝜉 (𝐺𝑖 ) + 𝛽𝛿𝑥 (𝐺𝑖 ) + 𝛾𝛿𝑑 (𝐺𝑖 ),
𝛿𝜉 (𝐺𝑖 ) = |𝐺𝑖,𝜉 | − |𝐺𝜉 |/𝑁,

𝛿𝑥 (𝐺𝑖 ) = |𝐺𝑖,𝑥 | − |𝐺𝑥 |/𝑁,

(4)

where 𝛼 , 𝛽 , and 𝛾 are hyper-parameters. 𝛿𝜉 (𝐺𝑖 ) and 𝛿𝑥 (𝐺𝑖 ) are the
balance formulas to balance the number of sample and embedding

vertices for each partition, respectively. They describes the gap

between the number of samples and embedding vertices in the

Algorithm 1: Balanced hybrid graph partitioning

Input: max iterations 𝑇 , embeddings and samples graph

𝐺 = (𝑉 , 𝐸), number of partitions 𝑁

Output: Partitions 𝐺 = 𝐺1,𝐺2, ...,𝐺𝑁 .

1 Initialize 𝐺 with random graph partitions;

2 for t ∈ range(𝑇 ) do
/* 1D partitioning */

3 for v ∈ 𝑉𝑥 ∪𝑉𝜉 do
4 𝑗 ← argmin∀𝑗 ∈{1,2,...,𝑁 } 𝛿𝑔 (𝐺 𝑗 );
5 Assign vertex 𝑣 to 𝐺 𝑗 ;

/* 2D partitioning */

6 for i ∈ range(𝑁 ) do
7 while True do
8 𝑣 ← argmax∀𝑣∈𝑉𝑥 ,𝑣∉𝐺𝑖

𝛿𝑝 (𝑣,𝐺𝑖 );
9 if 𝐺𝑖 reaches GPU 𝑖’s memory budget then
10 break
11 Replicate vertex 𝑣 to 𝐺𝑖 ;

partition (i.e., |𝐺𝑖,𝜉 | and |𝐺𝑖,𝑥 |) and the averaged number for all

partitions (i.e., |𝐺𝜉 |/𝑁 and |𝐺𝑥 |/𝑁 ). The third term 𝛿𝑑 (𝐺𝑖 ) is used
to balance the inter-GPU communications among the partitions:

𝛿𝑑 (𝐺𝑖 ) = 𝛿𝑐 (𝐺𝑖 ) −
𝑁∑︁
𝑗=1

𝛿𝑐 (𝐺 𝑗 )/𝑁, (5)

which describes the gap between the unbalanced communication

on the i-th GPU 𝛿𝑐 (𝐺𝑖 ) and the average communication of all GPUs.

Step 2: Vertex-Cut Partitioning (2D Partitioning). Vertex-Cut

replicates the high-degree embedding vertices to further reduce

communications. Since high-degree vertices inevitably access neigh-

bors on most of the machines, we further apply 2D partitioning

(i.e., vertex-cut) by allowing edges of a single vertex to be split

over multiple workers. However, randomly 2D partitioning might

not be efficient. Considering the limited GPU memory, there is a

trade-off between the benefit of reduced remote accesses and the

overhead of redundant replication. Our key insight here is that

highly skewed power-law degree distributions of embedding nodes

mitigate this trade-off: a few replicas of popular embedding nodes

across workers can effectively enhance data locality.

Based on the insight, we provide a sequential greedy heuristic

to replicate embedding nodes on the partition (i.e., worker) that

maximizes the expected cross-edges. We define the score formula in

E.q. (6). Given the 1D partitions of 𝑃 = {𝐺1,𝐺2, ...,𝐺𝑁 }, an embed-

ding vertex 𝑥 ∉ 𝐺𝑖 has higher priority to be replicated to partition

𝐺𝑖 than the other embeddings when 𝛿𝑝 (𝑥,𝐺𝑖 ) ≥ 𝛿𝑝 (𝑣,𝐺𝑖 ),∀𝑣 ∈ 𝑉𝑥
and 𝑣 ∉ 𝐺𝑖 .

𝛿𝑝 (𝑥,𝐺𝑖 ) =
𝑐𝑜𝑢𝑛𝑡 (𝑥, 𝑖)∑𝑣∉𝐺𝑖

∀𝑣∈𝑉𝑥 𝑐𝑜𝑢𝑛𝑡 (𝑣, 𝑖)
. (6)

As illustrated in Figure 6, the local embeddings of each worker

contain two types of vertices. The 1D partitioning results in non-

overlapping partition results and these vertices are primary ver-

tices on their respecting partitions. The replicas of embedding ver-

tices on the other partitions are secondary vertices. For example,
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Figure 6: Illustration of graph partition and two synchroniza-
tion points in the Read operation HET-GMP.

𝑥𝑖 is a primary vertex in GPU 0 and it is replicated to GPU 1. Simi-

larly, 𝑥 𝑗 is a primary vertex in GPU 1 and it is replicated to GPU 0.

Each embedding only has one corresponding primary vertex and

might have multiple secondary vertices on different workers. The

balanced graph partitioning minimizes the remote access costs and

the replication further improves the local access.

5.3 Graph-based Bounded Asynchrony
The vertex-cut replications of high-degree embeddings reduce the

remote access costs, but also bring consistency problems for model

synchronization across replicas. To unleash the full power of repli-

cation, HET-GMP introduces bounded asynchronous training so

that the local embeddings do not need to wait for all updates on

their replicas to proceed in most cases.

The distributed training of the embedding model has two syn-

chronization points: (1) replicas of a specific embedding when read-

ing it, and (2) replicas of multiple embeddings when used by the

same data vertex. HET-GMP uses bounded asynchrony in a novel

way at these two synchronization points where staleness can be

tolerated. As illustrated in Figure 6, when performing a Read op-

eration, HET-GMP first checks if the requested embeddings exist

locally. Primary vertices can be directly accessed locally since we

keep them always up-to-date, i.e., every update on a secondary

replica is written back to the primary replica. For the secondary

vertices, we perform two synchronizations to ensure the bounded

staleness:

Bounded Asynchrony at Intra-embedding. When a data sam-

ple reads a set of embeddings 𝑋 , for each embedding 𝑥 𝑗 ∈ 𝑋 , we
first check whether the version of the local secondary embedding is

within 𝑠 updates away from its primary replica (see 1○ in Figure 6).

If not, we perform synchronization between the local secondary

embedding and its remote primary.

Bounded Asynchrony at Inter-embedding. After collecting

the set of embeddings 𝑋 , we check whether the versions of each

pair of embeddings 𝑥𝑖 , 𝑥 𝑗 ∈ 𝑋 is bounded by 𝑠 , i.e., the secondary

embedding is not too far behind the other related local embeddings

(i.e., 𝐸) used by the same data sample node (see 2○ in Figure 6).

If not, we perform synchronization between the local secondary

embedding and its remote primary or make the worker wait when

replicas are still too stale. This avoids the quality of an embedding to

be adversely affected by the excessive staleness of those associated

embeddings it depends on.

To implement both intra and inter-bounded asynchrony, we

maintain a clock 𝑐𝑘
𝑖
for embedding vertex 𝑥𝑖 at worker 𝑘 to record

the accumulated number of updates on that replica. Once the embed-

ding fails to pass the bounded staleness checking (i.e., the clocks gap

exceeds the threshold 𝑠), remote access occurs to synchronize with

the primary. After the current iteration of training, all embeddings

perform gradient updating and the secondary embeddings directly

write back to the corresponding primary vertices (i.e., Update).
Note that to eliminate the effect of uneven access frequencies of

different embeddings [43] for staleness validation, we perform a

clock normalization based on the access frequency 𝑝𝑖 for each em-

bedding 𝑥𝑖 . Specifically, when checking the bounded staleness for

a given pair of embeddings (𝑥
𝑘1
𝑖
, 𝑥

𝑘2
𝑗
) from workers 𝑘1 and 𝑘2 with

clocks (𝑐
𝑘1
𝑖
, 𝑐

𝑘2
𝑗
), and assuming that 𝑝𝑖 ≥ 𝑝 𝑗 , then the normalized

clock gap between the two embeddings is |𝑐𝑘1
𝑖
∗ 𝑝 𝑗/𝑝𝑖 − 𝑐𝑘2𝑗 |. In

the special case 𝑖 = 𝑗 (e.g., intra-embedding synchronization), the

normalized clock gap is still measured by the number of updates

on the replicas of those embeddings, i.e., |𝑐𝑘1
𝑖
− 𝑐𝑘2

𝑗
|.

5.4 Convergence Analysis
We define the global model x as the combination of all latest embed-

dings (i.e., primary) for our analysis. We denote 𝑥𝑖 and ∇𝑖 𝑓 (x) as
the 𝑖-th embedding and its gradient on ∇𝑓 (x), respectively. Clearly,
x = (𝑥0, 𝑥1, . . . , 𝑥𝑚) and ∇𝑓 = (∇0 𝑓 ,∇1 𝑓 , · · · ,∇𝑚 𝑓 ). Considering a
logical global clock 𝑡 shared by all workers, we use x(𝑡) to represent
the combination of all latest embeddings among all workers, and

x𝑖 (𝑡) to represent the embeddings that could be accessed by 𝑖-th

worker when it performs the 𝑡-th update. The convergence of the

bounded staleness training is guaranteed by the following theorem:

Theorem 1. Suppose (1) 𝑓 is bounded below, differentiable and
the gradient ∇𝑓 of 𝑓 is 𝐿-Lipschitz continuous; (2) the embedding
is updated with bounded delay 𝑠 ; (3) the objective function could
sufficiently decrease for all large 𝑡 . Let 𝐹 satisfy the KŁ property

in [10, Lemma 6]. Then, with step size 𝜂 ∈
(
0, 1

𝐿 (1+2√𝑝𝑠)

)
, every

sequence {x(𝑡)} generated by HET-GMP satisfies
∞∑︁
𝑡=0

∥x(𝑡 + 1) − x(𝑡 ) ∥ < ∞, (7)

∀𝑖 = 1, . . . , 𝑝,

∞∑︁
𝑡=0

∥x𝑖 (𝑡 + 1) − x𝑖 (𝑡 ) ∥ < ∞. (8)

Furthermore, {x(𝑡)} and {x𝑖 (𝑡)}𝑝
𝑖=1

converge to the same critical
point of 𝐹 . Recall from [40], we have the following convergence rate:

𝐹

(
1

𝑡

𝑡∑︁
𝑘=1

x(𝑘)
)
− 𝐹inf ≤ O

(
1

𝑡

)
. (9)

Proof Sketch. We obtain the usual O(1/𝑡) rate of convergence of
the objective value. The theorem is proven by extending the proxi-

mal gradient descent method in [54]. The detailed theorem proofs

and assumption justifications can be found in our extra material [5].

The key step is to formulate the delay of secondaries and we define

the active clocks𝑇𝑖 as the updated clocks set during the past 𝑠 clocks.

Based on the bounded delay 𝑠 from assumption (2), we can prove

∥x𝑖 (𝑡 + 1) − x𝑖 (𝑡)∥ ≤ ∑𝑡
𝑘=(𝑡−𝑠)+ ∥x(𝑘 + 1) − x(𝑘)∥, which bounds

the inconsistency between the global model and the local models.
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Table 1: Overview of the three datasets

Dataset #Samples #Features #Fields

Avazu 40,428,967 9,449,445 22

Criteo 45,840,617 33,762,577 26

Company 35,682,429 66,102,027 43

Then we can prove that

∑∞
𝑡=0 ∥x(𝑡 + 1) − x(𝑡)∥2 < ∞ by utilizing

assumption (1), which further implies lim

𝑡→∞
∥x(𝑡 + 1) − x(𝑡)∥ = 0

and lim

𝑡→∞
∥x(𝑡) − x𝑖 (𝑡)∥ = 0. Since the inconsistency diminishes as

the number of iterations grows, we can also prove the existence

of critical points for the sequences {x(𝑡)} and {x𝑖 (𝑡)}. With such

guarantees and the sufficiently decreasing and KL property assump-

tions of 𝐹 , we can further obtain

∑∞
𝑡=0 ∥x(𝑡 + 1) − x(𝑡)∥ < ∞ and

complete the proof.

6 IMPLEMENTATION
HET-GMP is built on Hetu [5], a DL system consists of 14.5K LOC

in C/C++/CUDA with a Python datafow front-end (20.7K LOC). It

consists of a large number of computation kernels with cuDNN [14]

and communication methods with NCCL 2.7 [6].

GPU Embedding Table. We implement the embedding table in

CUDA and store the local embedding table in the limited GPU

memory (e.g., 32 GB) of each worker in our experiments. When the

embedding table is created, space is allocated for both primary and

secondary embeddings guided by the partition result. Secondary

embeddings require extra space for stale gradients.

Decentralized Communication. Our implementation for the

distributed embedding table is based on NCCL peer-to-peer com-

munication interfaces. Upon each read operation, each embedding

table instance in the communication group will first send sparse

indexes and clocks to the others. This step only takes a short time to

complete since these sparse indexes and clocks are small compared

with the embedding. Each instance then processes the message

received and sends back embeddings that are considered outdated

according to the staleness bound. For each update operation, each

embedding table will first perform a local reduction and then write

to primaries without conflicts.

Asynchronous Execution. We also take efforts to overlap com-

munication with computation to boost overall training throughput.

There are two crucial time-points in the training loop, which are the

embedding lookup operation in the forward propagation (T1) and

the time when gradients for the embedding table are ready in the

backward propagation (T2). The time between T2 for the current

training batch and T1 for the next training batch can be used for

asynchronous execution, overlapping communication incurred by

embedding lookups and embedding updates with computation. For

the time between T1 and T2, when gradients are not ready, we

cannot start embedding lookup for the next batch. We utilize this

duration for loading the next batch of data from host to device.

7 EXPERIMENTS

Baselines. In this section, we compare our prototype system with

three state-of-the-art systems: TensorFlow 1.15 (TF) [8], Paral-

lax [23] and HugeCTR v2.3. Although TF and Parallax manage

embeddings on CPU servers, they still perform the computation

on GPUs. Including these baselines allows us to show to what ex-

tent increasing parameter access locality via graph-based approach

is beneficial. HugeCTR uses GPU memory to manage the embed-

ding parameters, has been elaborately optimized by Nvidia, and

is one of the state-of-the-art systems for deep recommendation

models. To alleviate the concerns on the difference between the

system backbones and implementations, we implement an auxiliary

baseline over our system named by HET-MP, which only performs

model-parallelism with random partitioning.

Datasets and Models. We select two representative CTR embed-

ding model workloads, including Wide & Deep (WDL) [13] and

Deep & Cross (DCN) [41]. They are evaluated on the two popular

public recommendation datasets Avazu [3] and Criteo [2] and one

production advertising dataset Company from our industrial part-

ner. Avazu was released in the CTR prediction contest on Kaggle.

Criteo contains one month of click logs with billions of data sam-

ples. Criteo is also the largest standard benchmark in MLPerf [4].

Company dataset is collected from a recommendation scenario in

Tencent Inc. containing ad features (e.g., ID, category). We list the

metrics of these datasets in Table 1.

Experimental Setting. We have conducted our evaluations on

two GPU clusters. Most are conducted on cluster Awhere each node

is equipped with 8 Nvidia RTX TITAN 24 GB cards supporting PCIe

3.0, and 1 Gb Ethernet. Cluster B is used to perform the scalability

study and each node has 8 Nvidia Tesla V100 32 GB cards support-

ing NVLink, and 10 Gb Ethernet. The testing AUC thresholds of

convergence are set to be around 76%, 80% for Avazu and Criteo

datasets, as reported in [13, 27]. For 2-D partitioning, we select top

1% embeddings as secondaries using E.q. (6). All experiments are

executed five times, and the averaged results are reported.

7.1 End-to-end Comparison
In this section, we first provide end-to-end comparison experiments

with the baselines. These experiments are evaluated on one node

with 8 GPUs on cluster A. Figure 7 shows the convergence curves

on six different workloads. TF-PS and Parallax follow the ASP algo-

rithm and cannot converge to the target thresholds in these work-

loads. We provide HET-GMP with different staleness thresholds

𝑠 = 10 and 100. As we can see, our system always outperforms the

other baselines on all tasks. Compared to HET-MP, we can achieve

around 1.2-3.56× speed up when 𝑠 = 100. Even if we remove the

staleness tolerance (i.e., 𝑠 = 0), the hybrid graph partitioning still

makes HET-GMP outperform the others in most cases. Besides,

HugeCTR significantly outperforms CPU-based approaches (i.e., TF

and Parallax) and achieves similar performance to HET-MP since

they select the same system design. But the illustrated end-to-end

convergence time shows that HET-GMP still achieves 1.64-2.66×
speedup compared to HugeCTR. Parallax performs better than TF

due to the hybrid communication architecture, but both of them

cannot converge within the given time thresholds.

7.2 Detailed Analysis
Communication Comparison. Figure 8 breaks down the total

communication costs of HET-GMP with different settings for one
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(a) WDL-Avazu (b) WDL-Criteo (c) WDL-Company

(d) DCN-Avazu (e) DCN-Criteo (f) DCN-Company

Figure 7: Convergence performance comparison.

Figure 8: Communication details for HET-GMP. The four columns
from left to right represent random/1-D /2-D (𝑠 = 10)/2-D (𝑠 = 100)
partitioning respectively.

iteration into three categories. As we can see, using random parti-

tioning, the majority of the communication costs are due to trans-

ferring embeddings and their gradients. With the 2-D partitioning

(𝑠 = 100), we can achieve around 87.5% embedding communications

reduction on the Company dataset. The HET-GMP client also needs

to frequently send and receive the embedding index (i.e., keys)

and clocks information, but they are small compared to the first

category. The last term is for All-Reduce. Since the DCN network

has more dense parameters in its cross layers, it requires more

model synchronization costs than WDL. However, the embedding

parameters still dominate the communication costs.

Bounded Asynchrony. We evaluate HET-GMP with different

bounded staleness 𝑠 on three datasets with the WDL model. The

convergent test AUC results are shown in Table 2. As we can see,

HET-GMP is robust to 𝑠 and even with 𝑠 = 10k, the final model

performance is still competitive. We also note that continuing to

increase 𝑠 might hurt the model quality, which implies us to limit

the asynchrony during the training process.

Hybrid Graph Partitioning. We now demonstrate the effective-

ness of our partitioning method by comparing the overall through-

put on three datasets with the WDL model in Figure 9(a). The

Table 2: Final test AUC (%) with different 𝑠 on WDL

Dataset 𝑠 = 0 𝑠 = 100 𝑠 = 10k 𝑠 = ∞
Avazu 77.19 77.19 76.9 76.21

Criteo 79.79 79.79 79.77 78.70

Company 76.09 76.10 76.11 73.27

following experiment is carried out with 16 GPUs placed on 2 ma-

chines connected with 10 Gb Ethernet on cluster B. We adopt three

different partition policies: random, non-hierarchical, and hierarchi-

cal. The hierarchical and non-hierarchical partitioning corresponds

to w or w/o topology-aware partitioning. For the random policy,

we use the initial random partitioning. For the non-hierarchical pol-

icy, we treat all pair-to-pair communication costs as a fixed value.

For the hierarchical policy, we set inter-machine communication

costs 10 times higher than intra-machine communication. For a fair

comparison, we do not introduce replication in this experiment.

The result in 9(a) shows that hierarchical partitioning outperforms

non-hierarchical and random partitioning on all three datasets.

Figure 9(b) further explains the reason for such speedup. Each

block represents the amount of embeddings fetched in one iteration

from one worker to another worker, deeper colors represent more

communications. For random partitioning, each worker fetches em-

beddings equally from the other workers. For non-hierarchical par-

titioning, most embeddings can be found on the sameworker.When

using hierarchical partitioning, embedding are clustered on both

machine level and worker level. This significantly reduces commu-

nication overhead on each level and yields the highest throughput.

7.3 Graph Partitioning Comparison
We now compare our hybrid iterative graph partitioning algorithm

against existing algorithms to show its superiority for the new

workloads of embedding models. Although PowerLyra [12] is a

hybrid graph partitioning algorithm considering edges but also
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(a) Throughput comparison (b) Illustration of GPU-GPU embedding communication comparison.

Figure 9: (a) Throughput comparison on WDL when using different partitioning methods under different datasets. (b) The amount of sparse
embedding communication between each pair of workers on Criteo.

Table 3: Graph partitioning algorithms performance comparison on three datasets.

Algorithms

Company Criteo Avazu

Communication Reduction Time (s) Communication Reduction Time (s) Communication Reduction Time (s)

Random 1,052,231 0% 0 277,660 0% 0 94,044 0% 0

BiCut 910,696 13.5% 268 231,851 16.5% 124 76,431 18.7% 52

Ours (1 round) 659,387 37.3% 358 135,942 51.0% 202 34,677 63.1% 115

Ours (3 rounds) 424,611 59.7% 589 103,807 62.6% 324 30,995 67.0% 192

Ours (5 rounds) 380,576 63.8% 799 101,425 63.5% 435 30,427 67.7% 265
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Figure 10: Total throughput comparison for WDL under dif-
ferent number of GPUs. The company dataset is too large to
be stored on a single GPU.

vertices and general skewness, it is not suitable for bipartite graphs,

because the general graph partitioning algorithms are oblivious

to the unique features of bipartite graphs resulting in suboptimal

graph placement and high replication factor. Therefore, we select a

customized optimized version of PowerLyra over bipartite graphs,

BiCut [11], as a strong baseline. BiCut also leverages the skewed dis-

tribution of vertices, and distinguishes computation load between

the two subsets of vertices.

Table 3 reports the total number of remote embedding commu-

nications for different algorithms for an epoch. As we can see, the

results on the Company dataset with 8 partitions illustrate that

BiCut only reduces the communication compared to random par-

titioning by a factor of 13.5%, whereas our method can reduce it

by up to 63.8%, with negligible costs compared to the training time

(< 2%). On Criteo and Avazu, our method still outperforms BiCut

in regard to communication reduction easily with only 3 rounds.

These results verify the effectiveness of our new design principle

and graph partitioning algorithm for embedding models.

7.4 Scalability Study
We conduct a scalability study of HET-GMP and HugeCTR forWDL

on Criteo and Company datasets under different numbers of GPUs

on cluster B. As shown in Figure 10, when the number of GPUs

increases from 4 to 8, the total throughput of HugeCTR decreases

immediately and continues decreasing as it grows to 16. Because the

inter-GPU connections change from NVLink to QPI and Ethernet

with lower bandwidth when involving more GPUs. We also find

that HET-GMP is more robust to the environments and always out-

performs HugeCTR. Our system is up to 27.5× and 24.8× faster than
HugeCTR on Criteo and Company, respectively. Currently, with

24 GPUs (32 GB), we support around 10
11

float parameters in the

embedding table. We are looking forward to improving the training

efficiency with much higher network bandwidth (e.g., RDMA) and

involving more GPUs to enlarge the embedding model capacity in

our future works.

8 CONCLUSION
Through a graph-based approach, HET-GMP opens up a new opti-

mization perspective and provides a scalable solution that supports

efficient large-scale embedding model training. The novelty of HET-

GMP lies in 1) introducing graph-based replication and partitioning

for balanced and locality-conscious distributed training, and 2)

presenting novel graph-based asynchrony at both intra and inter

embeddings where bounded staleness can be tolerated. The results

show that HET-GMP supports 10
11

parameters scale embedding

model training, achieving up-to 87.5% communication reduction

and up-to 27.5× speedup over the state-of-the-art baselines.
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