
Heterogeneity-Aware Distributed Machine Learning Training
via Partial Reduce

Xupeng Miao, Xiaonan Nie, Yingxia Shao, Zhi Yang, Jiawei Jiang, Lingxiao Ma, Bin Cui

1,2,4,6,7
Department of Computer Science & Key Lab of High Confidence Software Technologies (MOE), Peking University

7
Institute of Computational Social Science, Peking University (Qingdao)

3
School of Computer Science, BUPT,

5
ETH Zurich

1
Tencent Inc.

1,2,4,6,7
{xupeng.miao, xiaonan.nie, yangzhi, xysmlx, bin.cui}@pku.edu.cn

3
shaoyx@bupt.edu.cn

5
jiawei.jiang@inf.ethz.ch

ABSTRACT

All-reduce is the key communication primitive used in distributed

data-parallel training due to the high performance in the homoge-

neous environment. However, All-reduce is sensitive to stragglers

and communication delays as deep learning has been increasingly

deployed on the heterogeneous environment like cloud. In this

paper, we propose and analyze a novel variant of all-reduce, called

partial-reduce, which provides high heterogeneity tolerance and

performance by decomposing the synchronous all-reduce primitive

into parallel-asynchronous partial-reduce operations. We provide

theoretical guarantees, proving that partial-reduce converges to a

stationary point at the similar sub-linear rate as distributed SGD. To

enforce the convergence of the partial-reduce primitive, we further

propose a dynamic staleness-aware distributed averaging algorithm

and implement a novel group generation mechanism to prevent

possible update isolation in heterogeneous environments. We build

a prototype system in the real production cluster and validate its

performance under different workloads. The experiments show that

it is 1.21×-2× faster than other state-of-the-art baselines.

CCS CONCEPTS

• Information systems→Data management systems; •Com-

putingmethodologies→Machine learning;Distributed com-

puting methodologies.

KEYWORDS

Distributed machine learning, Heterogeneity, All-Reduce

ACM Reference Format:

Xupeng Miao, Xiaonan Nie, Yingxia Shao, Zhi Yang, Jiawei Jiang, Lingxiao

Ma, Bin Cui. 2021. Heterogeneity-Aware Distributed Machine Learning

Training via Partial Reduce. In Proceedings of the 2021 International Confer-
ence on Management of Data (SIGMOD ’21), June 18–27, 2021, Virtual Event,
China. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3448016.

3452773

1 INTRODUCTION

The success of modern machine learning (ML) lays the foundation

of increasing amounts of data [11], emerging elaborate machine

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 18–27, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00

https://doi.org/10.1145/3448016.3452773

learning models [42], and the development of computing infrastruc-

ture [32]. With the increasing size of data, training the ML models

on the massive data is becoming more time-consuming [12]. Dis-

tributed ML, which accelerates the training by introducing multiple

computing nodes, gradually becomes an attractive and necessary

solution in both academia and industry. There are many distributed

ML systems intensively studied by database and system communi-

ties, such as Vertica-ML [14], SketchML [21], PS2 [44], PyTorch [33]

and TensorFlow [3]. Most of the existing systems rely on a data-

parallel computation schema and follow a distributed mini-batch

SGD algorithm [24], where the model is trained over different parts

of the dataset, and the model parameters are synchronized at the

end of each iteration (i.e., update). The synchronization operation

guarantees that the distributed training paradigm can achieve the

same convergence property as the sequential training counterpart.

The existing methods typically assume a homogeneous environ-

ment — there is no significant straggler in the computing nodes that

might block the others. However, the homogeneous assumption is

not always available in reality. Heterogeneous environments are

ubiquitous in real-world applications:

Case 1: (Communication heterogeneity) Due to the massive

amounts of data, many large companies (e.g., Google, Microsoft

and Tencent) choose to store them on tens of geo-distributed data

centers. The communication within a data center could be ten times

faster than between data centers [18]. Even in the same data center,

heterogeneity still exists because of different network interface

cards, network PCIe switches, and hierarchical network topology.

Case 2: (Hardware heterogeneity) Deep learning (DL) is compute-

intensive and hence heavily relies on powerful but expensive accel-

erators (e.g., GPU). Since these accelerators are developing quickly,

different generations of hardware could have quite distinct com-

putation power. Collaborative training with heterogeneous clus-

ters [4, 46] is much more cost-effective than replacing all outdated

devices.

Case 3: (Resource sharing) A common practice in large com-

panies nowadays is to utilize cluster schedulers, such as Kuber-

netes [7], to manage clusters of tens of thousands of CPU/GPU

resources. The jobs could differ from the others in terms of memory

usage, CPU/GPU core utilization, network bandwidth, and so on. To

improve the cluster utilization, multiple containers could be placed

on the same physical node or even the same physical GPU by virtu-

alization. As a result, the containers of the same job could perform

distinct hardware efficiency due to the resource sharing [41].

Several works have targeted this heterogeneous problem and

proposed methods to solve it by introducing asynchrony during

the synchronization so that the faster workers do not need to wait

Research Data Science & Engineering Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2262

https://doi.org/10.1145/3448016.3452773
https://doi.org/10.1145/3448016.3452773
https://doi.org/10.1145/3448016.3452773

(a) Parameter server (b) All-Reduce (c) Partial-Reduce (𝑃 = 2)

Figure 1: Illustration of different architectures in heteroge-

neous environment. The red color represents for the effects

from the straggler. The communication manners in partial

reduce are adaptively changing in different iterations.

for the stragglers [8, 10, 17, 27]. These works are mostly built on

top of a widely used distributed ML system architecture — parame-

ter server (PS) [24]. PS provides a key-value based central storage

of the global model parameters and flexible model accessing in-

terfaces (i.e., pull and push). The architecture of PS matches the

requirements of asynchronous communication, where each worker

calculates its gradients and updates the shared model without wait-

ing for the stragglers. However, most PS systems store models in

main memory and manage them via CPUs. Therefore they cannot

benefit from inter-GPU communication channels when DL models

are evolving over GPUs. Instead of using PS, a range of existing

deep learning frameworks (e.g., PyTorch) use All-Reduce [34] com-

munication scheme and establish inter-GPU message passing to

help GPU training. However, the heterogeneous problem is rarely

studied in the All-Reduce system. This is not surprising because

the existing All-Reduce primitives are fundamentally synchronous

and render them fragile to stragglers, yielding the question we try

to answer in this paper: can we alleviate the efficiency degradation
in the heterogeneous environment over the All-Reduce architecture
while maintaining the best possible convergence performance?

In this paper, we propose a novel primitive partial reduce (P-
Reduce), where each worker only needs to synchronize among 𝑃

random workers without waiting or blocking any other workers in

the current iteration, as shown in Figure 1. As training proceeds, the

local model from each worker gradually propagates to the others,

and thus models at different workers converge collaboratively to

the same optimal point. We theoretically prove that the conver-

gence rate of partial reduce is O(1/
√
𝑃𝐾), where 𝐾 is the number

of iterations, similar to that of vanilla distributed SGD. We also

notice the delayed model from the stragglers in the heterogeneous

environment might be harmful to the statistical efficiency [43].

Consequently, we propose a dynamic partial reduce (i.e., weighted

sum with dynamic weights) mechanism to to aggregate the models,

instead of the constant partial reduce (i.e., directly model average).

We implement a prototype and evaluate it on different workloads

under both manually prepared heterogeneous environments and

real-world productive clusters. The experimental results show our

partial reduce can be at most 16.6× faster than the state-of-the-art

baselines per iteration, and around 2× in total run time.

We summarize our main contributions as follows:

• We target the disadvantages of theAll-Reduce trainingmethod

in heterogeneous environments and propose a novel partial

reduce algorithm for efficient distributed training.

Algorithm 1 Distributed mini-batch SGD Algorithm

Require: Initial model 𝑥0, learning rate 𝛾 , batch size𝑀 , and total

number of iterations 𝐾 .

Worker 𝑖 = 1, . . . , 𝑁 in parallel:

1: for 𝑘 = 1, 2, . . . , 𝐾 do

2: Randomly sample a batch 𝜉𝑖
𝑘

:= (𝜉𝑖
𝑘,1
, 𝜉𝑖
𝑘,2
, . . . , 𝜉𝑖

𝑘,𝑀
) from

local data of the 𝑖-th worker.

3: Compute the stochastic gradient locally 𝑔𝑘 (x𝑘 ; 𝜉𝑖
𝑘
) :=

1/𝑀 ∑𝑀
𝑗=1
∇𝑓 (x𝑘 ; 𝜉𝑖

𝑘,𝑗
).

4: Average local gradients by Δx𝑘 ← 1/𝑁 ∑𝑁
𝑗=1

𝑔 𝑗 (x𝑘 ; 𝜉
𝑗

𝑘
).

5: Update the model x𝑘+1 ← x𝑘 − 𝛾Δx𝑘 .

• We theoretically analyze the convergence property of partial

reduce and obtain a convergence rate of O(1/
√
𝑃𝐾).

• We capture the staleness in the training process and pro-

pose constant/dynamic partial reduce mechanisms for better

convergence performance.

• Experiments on the production heterogeneous cluster demon-

strate the significant efficiency improvement of our method

on different workloads.

2 PRELIMINARIES

2.1 Distributed SGD

Distributed machine learning relies on the distributed mini-batch

SGD algorithm, as shown in Algorithm 1. We suppose that the input

is the training dataset 𝜉 and 𝜉𝑖 represents the 𝑖-th data sample. The

target is to find a model x ∈ R𝑑 (𝑑 is the total number of parameters

in the model) that minimizes the empirical risk as follows:

min

x

[
𝐹 (x) :=

1

|𝑆 |
∑
𝑖

𝑓 (x; 𝜉𝑖)
]

(1)

where 𝑓 (·) is the loss function defined by the learning model. Mini-

batch SGD samples a batch of data and compute the stochastic

gradients to update the model parameters in each iteration. In

the distributed setting, the total 𝑁 workers compute stochastic

gradients in parallel. The update rule is:

x𝑘+1 = x𝑘 − 𝛾
[

1

𝑁

𝑁∑
𝑖=1

𝑔𝑘 (x𝑘 ; 𝜉𝑖
𝑘
)
]
, (2)

where𝛾 is the learning rate, 𝜉𝑖
𝑘
are randomly sampled from the train-

ing set, and 𝑔𝑘 (x𝑘 ; 𝜉𝑖
𝑘
) denotes the gradient from the 𝑖-th worker.

2.2 Communication Mechanism

PS based centralized trainingDistributed ML systems have been

extensively studied in recent years to scale up ML for big data and

large models. PS [24] is a trendy data parallelism architecture and

distributes the calculation onto different machines, and various

workers hold different training samples. The PS stores a global

model, and each worker fetches the model from the PS, computes a

mini-batch of stochastic gradients, and pushes them to the PS to

update the global model under certain consistency protocol. Bulk

synchronous parallel algorithms (BSP) [13, 15, 23] assume that all

workers are fully synchronized, and the convergence rate is proved

to be O(1/
√
𝑁𝐾), where 𝑁 is the number of workers and 𝐾 is

Research Data Science & Engineering Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2263

.	.	.

Controller

� �

�

� Send	ready	signal	

� Receive	group	info

� Partial reduce

Parameter
replica

Data	shard

Worker

Figure 2: Overview of partial reduce execution.

the number of iterations. In contrast, Asynchronous parallel algo-

rithms (ASP) allow the workers to proceed without waiting for each

other. It has been proved that ASP shares the same convergence

rate with BSP when the staleness is upper bounded [27]. The exist-

ing PS-based approach mostly performs a centralized design, and

PS may become a communication bottleneck and slow down the

convergence.

Collective operation based decentralized training Another

line of approach is decentralized training, which enables carefully

scheduled the point-to-point communication between workers

without suffering from the central communication bottleneck. All-

Reduce is one of the most representative decentralized training

methods and uses high-performance communication techniques for

model synchronization, such as Ring-Reduce, assuming the workers

are connected with a ring network. Recently, several distributed DL

systems adopt All-Reduce, such as Horovod [35] and Parallax [22],

show superior performance over PS under the same network band-

width condition, especially for dense models. D-PSGD [28] is an-

other decentralized training method, allows each worker synchro-

nize models with its neighbor and has similar convergence property

as All-Reduce. AD-PSGD [29, 31] further relaxes the consistency

of model averaging for hardware efficiency.

2.3 Heterogeneous Training

Existing studies. In heterogeneous environments, both PS and

collective operation methods rely on a fixed communication topol-

ogy (i.e., between workers and PS or between workers themselves),

which may be susceptible to heterogeneity. For PS, Stale Synchro-

nous Parallel (SSP) [17] has been proposed that the fastest worker

cannot exceed the slowest more than a predefined staleness. Het-

erogeneity aware PS [20] further involves a dynamic learning rate

mechanism to handle the delayed gradients. Backup workers [3, 8]

has been proposed to alleviate the straggler problem in PS by drop-

ping the gradients from the slowest workers. For the collective

settings, the communication pattern is more restrictive and suffers

more from the stragglers. Eager-Reduce [25] with partial collective

operations relaxes the global synchronization by permitting accu-

mulated/empty gradients but suffering from the delayed gradients.

Heterogeneity modeling. As we introduced before, system

heterogeneity may come from different aspects (e.g., communica-

tion, hardware, resource sharing), even the imbalanced workload

partition can also lead to heterogeneity. A typical result of the het-

erogeneity is the different time costs on a single update among

the workers. Our theoretical analysis assumes that the random

distributions of the per-update time from these workers are inde-

pendent. We consider both synthetic and real-world productive

heterogeneous environments in our evaluations.

!"#$%#	1:

!"#$%#	2:

!"#$%#	3:

!"#$%#	1:

!"#$%#	2:

!"#$%#	3:
(a) All-Reduce

!"#$%#	1:

!"#$%#	2:

!"#$%#	3:

!"#$%#	1:

!"#$%#	2:

!"#$%#	3:
(b) Partial-Reduce (𝑃 = 2)

Figure 3: Comparison of the idle time (in green).

3 PARTIAL REDUCE

In this section, we improve the the ML convergence performance

in two aspects, including hardware efficiency and statistical effi-
ciency [43]. We target the hardware efficiency degradation of All-

Reduce on heterogeneous settings and propose the partial reduce

algorithm. We also make a theoretical analysis of the convergence

property of our method. Considering the delayed model param-

eters from the stragglers, we propose a dynamic partial reduce

mechanism to achieve better statistical efficiency.

3.1 Constant Partial Reduce

3.1.1 P-reduce. To reduce the idle time of each worker, our in-

tuition is to relax the fully synchronous requirement during the

All-Reduce training iterations. As shown in Fig. 3, we propose a new

primitive Partial Reduce (P-Reduce) to synchronize among 𝑃 work-

ers, rather than waiting for all the other workers so that the training

process will continue even if part of the workers slow down. We

present our method in Fig. 2 and Alg. 2. In P-Reduce, each worker

randomly samples a batch (lines 1-2) and execute computation on

an initial model replica (lines 3-4). When the gradient updates are

finished, the worker sends a ready signal to the controller (line

5). The controller has a producer-consumer queue to collect these

signals. Once enough (i.e., 𝑃) workers are ready, the controller pops

𝑃 signals from the queue and informs them to execute a partial

reduce in this temporary worker group. In constant partial reduce,
we perform a simple model average among 𝑃 workers so that the

model aggregation weight is set to be a constant 1/𝑃 (lines 6-7).

Compared to the original All-Reduce, P-Reduce preserves the

communication bandwidth utilization while avoids the global bar-

rier. Unlike the global model average per iteration in All-Reduce,

P-Reduce narrows the size of the synchronization group and breaks

it into a sequence of partial synchronization steps. Note that multi-

ple worker groups could execute partial reduce in parallel if they

are permitted by the controller. Each worker can step into the next

iteration without waiting for the other workers to finish updating.

The computation and communication can be done in parallel, which

means that the computation/communication time of a worker group

might hide that of another group. Due to the random arrivals of

the ready signals on the controller, each worker has the chance to

perform model average with the others as the iteration goes on.

3.1.2 Global view formalization. By counting each partial reduce

as one iteration, the update rule of each iteration can be viewed as:

Xk+1 = (Xk − 𝜂G𝑘)W𝑘 , (3)

where 𝜂 is the learning rate, matrices Xk and Gk contain the local

model vector x𝑖
𝑘
and gradient vector g(x𝑖

𝑘
) of each worker 𝑖 at the

𝑘th iteration, andW𝑘 is the synchronization matrix used for model

averaging (via P-reduce operation).

Research Data Science & Engineering Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2264

!"#$%#	1:
!"#$%#	2:
!"#$%#	3: + = 0.5

(a) Homogeneous environment

!"#$%#	1:
!"#$%#	2:
!"#$%#	3: + = 0.625

(b) Heterogeneous environment

Figure 4: Illustration of 𝜌 under different environments. We suppose 𝑁 = 3, 𝑃 = 2, the blue arrow blocks represent an iteration,

the green arrow blocks represent the idle time and the red double arrows represent the partial reduce.

According to the Algorithm 2 (line 6-7 of the worker component),

the 𝑘th partial reduce operation only involves a worker group S𝑘
containing 𝑃 workers selected by the controller, and the correspond-

ing synchronization matrix W𝑘 can be defined as:

W𝑘 (𝑖 𝑗) =

1/𝑃, if workers 𝑖, 𝑗 ∈ S𝑘
1, if worker 𝑖 ∉ S𝑘 and 𝑖 = 𝑗,

0, otherwise

(4)

It worth to note that in the worker component our algorithm, the

local update (line 4) can be exchanged logically with the communi-

cation to the controller (line 5-6) due to their asynchronous nature.

Equivalently, the gradient matrix G𝑘 can be defined as follows:

G𝑘 (𝑖) =
{
g(x𝑖

𝑘
; 𝜉𝑖
𝑘
), if worker 𝑖 ∈ S𝑘

0, otherwise

(5)

According to Algorithm 2 (line 4 of the controller component),

S𝑘 (and thus W𝑘) is independent on of the data samples 𝜉𝑘 at

the 𝑘th iteration, and only depends on the arrival of ready signals

from workers to request the 𝑘th group. Moreover, the speed of

workers to generate ready signals could vary significantly in cloud

environment due to resource sharing and network latency, leading

to high dynamics and randomness of forming groups at different

iterations. This makes W𝑘 largely uncorrelated with 𝑘 .

3.2 Theoretical Analysis

3.2.1 Assumptions. We now provide theoretical analysis for the

update rule given in E.q. (3) with variable synchronization matrix

W𝑘 defined in E.q. (4). We make the following commonly used

assumptions [6, 29, 30, 39]:

Assumption 1.

(1) Lipschitzian gradient: ∥∇𝐹 (x) − ∇𝐹 (y)∥ ⩽ 𝐿∥x − y∥
(2) Unbiased estimation: E𝜉 |x [𝑔(x)] = ∇𝐹 (x)
(3) Bounded variance: E𝜉 |x [𝑔(x) − ∇𝐹 (x)] ≤ 𝜎2

Note that the unbiased estimation is satisfied through the dis-

tributed file system (e.g., HDFS) or storing a portion of dataset and

shuffling the local data among the workers periodically [9, 47].

Assumption 2.

(1) Stochastic averaging:W𝑘 is doubly stochastic for all 𝑘 , i.e.,

W𝑘 = W⊤
𝑘
,W𝑘1𝑁 = 1𝑁 .

Algorithm 2 Partial Reduce Algorithm

Require: Local models {x𝑖
0
}𝑁
𝑖=1

with the same initialization, learn-

ing rate 𝛾 , batch size𝑀 , and total number of iterations 𝐾 .

Worker 𝑖 = 1, . . . , 𝑁 in parallel:

1: for 𝑘 = 1, 2, . . . , 𝐾 do

2: Randomly sample a batch 𝜉𝑖
𝑘

:= (𝜉𝑖
𝑘,1
, 𝜉𝑖
𝑘,2
, . . . , 𝜉𝑖

𝑘,𝑀
) from

local data of the 𝑖-th worker.

3: Compute the stochastic gradient locally 𝑔𝑘 (x𝑖𝑘 ; 𝜉𝑖
𝑘
) :=

1/𝑀 ∑𝑀
𝑗=1
∇𝑓 (x𝑖

𝑘
; 𝜉𝑖
𝑘,𝑗
).

4: Update the local model x𝑖 ← x𝑖
𝑘
− 𝛾𝑔𝑘 (x𝑖𝑘 ; 𝜉𝑖

𝑘
).

5: Send ready signal 𝑖 to the controller.

6: Receive a partial reduce group S := [𝑖1, 𝑖2, . . . , 𝑖𝑃].
7: Aggregate local models by x𝑖

𝑘+1 ← 1/𝑃 ∑𝑃𝑗=1
x𝑖 𝑗 .

8: Output the average of the models on all workers for inference.

Controller:

1: 𝑄 = 𝑄𝑢𝑒𝑢𝑒 ()
2: while True do

3: if 𝑄.𝑠𝑖𝑧𝑒 () ≥ 𝑃 then

4: S ← pop 𝑃 elements [𝑖1, 𝑖2, . . . , 𝑖𝑃] from 𝑄 .

5: Send the partial reduce group to the workers in 𝐺 .

6: Receive a ready signal 𝑖 .

7: 𝑄.𝑝𝑢𝑠ℎ(𝑖).

(2) Dependence of random variables: W𝑘 is a random vari-

able independent on 𝜉𝑘 and 𝑘 .

(3) Spectral gap: There exists a 𝜌 ∈ [0, 1) such that

max{ |𝜆2 (E[W𝑘]) |, |𝜆𝑁 (E[W𝑘]) | } ≤ 𝜌, ∀𝑘, (6)

where 𝜆𝑖 is the 𝑖-th largest eigenvalue and E(W𝑘) = 1

𝐾

∑𝐾
𝑘=1

W𝑘 .

For example, Figure 4(a) is a homogeneous environment where all

workers have the same speed. There are three possible communica-

tion groups: (x1
, x2

), (x2
, x3

), and (x1
, x3

) with equal probability (i.e.,

1/3). Therefore, we derive the corresponding E(W𝑘) and 𝜌 = 0.5.

3.2.2 P-Reduce Convergence Property. Suppose u𝑘 = 1

𝑁

∑𝑁
𝑖=1

x𝑖
𝑘
is

the average of N local models. We propose an upper bound of the

convergence rate as follows.

Theorem 1 (Convergence of Partial Reduce). We as-
sume the bound of gradient variance 𝜎2 is in inverse proportion to the

Research Data Science & Engineering Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2265

mini-batch size𝑀 . We define 𝜌 =
𝜌

1−𝜌 +
2

√
𝜌

(1−√𝜌)2 . For partial reduce

with 𝑃 , under Assumptions 1–2, if the learning rate satisfies

𝜂𝐿 + 2𝑁 3𝜂2𝜌

𝑃2
≤ 1, (7)

where 𝜂 = 𝑃
𝑁
𝛾 , and all local models are initialized at a same point u1, then

the average-squared gradient norm after 𝐾 iterations is bounded as follows

E
[

1

𝐾

𝐾∑
𝑘=1

∥∇𝐹 (u𝑘) ∥2
]
≤

2[𝐹 (u1) − 𝐹inf]
𝜂𝐾

+ 𝜂𝐿𝜎
2

𝑃︸ ︷︷ ︸
SGD error

+ 2𝜂2𝐿2𝜎2𝑁 3𝜌

𝑃2︸ ︷︷ ︸
network error

(8)

The detailed proof of Theorem 1 is provided in [2]. We note the

update rule given by equation (3) can be connected with the cooper-

ative SGD framework [39] by treating the local models of workers

out of a partial reduce group S𝑘 as the auxiliary variables in each

iteration 𝑘 . We prove our theorem by extending the cooperative

SGD framework to enable variable model-average matrix W𝑘 . The

theorem shows that the convergence bound can be decomposed

into two parts: 1) The first two items come from the distributed

SGD training, which is similar to that of the vanilla SGD [6]. When

we increase 𝑃 , the upper bound could become more substantial and

suggest us to give more iterations for convergence. 2) The last item

is the network error, resulted from the model difference among

the workers during training. Based on these, if the learning rate is

𝛾 = 𝑁 /(𝐿
√
𝑃𝐾) and 𝐾 is sufficiently large, we further derive that

the convergence rate becomes O(1/
√
𝑃𝐾), which is similar to that

of BSP. A smaller 𝜌 means faster update spreading in the network,

leading to better convergence.

Figure 4 shows how the heterogeneous environment affects the

spectral gap 𝜌 . As we can see, if 𝑁 = 3 and 𝑃 = 2 in partial reduce,

we have 𝜌 = 0.5 in the homogeneous setting (Figure 4(a)). We

further suppose one worker of them are two times slower than the

others, resulting in a larger 𝜌 = 0.625 (Figure 4(b)).We conclude that

the more heterogeneous the environment is, the smaller spectral

gap 1 − 𝜌 and the larger network error bound we have. Specially,

when the environment is homogeneous and the model updated are

merged via AllReduce (i.e., 𝑃 = 𝑁), all elements in E[Wk] are 1/𝑃
and 𝜌 = 0. In this case, the network error decreases to zero.

3.3 Dynamic Partial Reduce

In constant partial reduce, we use a default model aggregation

weight 1/𝑃 . In the following, we discuss its limitations and propose a

novel mechanism — dynamic partial reduce to aggregate the models.

3.3.1 Limitations of constant partial reduce. We first describe an

abstract example to illustrate the staleness during our partial reduce.

Suppose different workers start from the same model initialization,

the slow workers might meet other fast workers after different

iterations. As shown in Fig. 5, we assume 𝑃 = 2 andworker 𝑗 is three

times slower than worker 𝑖 . When worker 𝑗 finish the first iteration,

worker 𝑖 is already very close to the optimal point. However, x𝑖
has to be averaged with the delayed model x𝑗 in constant partial

reduce, which leads to a model degradation on worker 𝑖 . Therefore,

it is still worthy to study the model aggregate rule to prevent the

impacts from the staleness.

! = 1

! = 1

$%&!'&):

$%&!'&		+:

! = 2 ! = 3

… …

optimal	point

./

.0
1
2(.

/ + .0)
initial	point

Figure 5: Limitations of constant partial reduce.

3.3.2 Staleness-aware heuristic algorithm. Our intuition is to penal-

ize the stale model parameters during the model aggregation step

— the more substantial the staleness, the smaller weights. We are

inspired by the exponential moving average (EMA), which has been

successfully applied in deep learning model training to increase the

generalization performance and model robustness [36, 38, 40, 45].

This technique basically adds up the current model and historical

models during training, and the weights of past models are expo-

nential decayed. The model parameters with EMA after 𝑘 iterations

is x̄𝑘 = 𝛼 x̄𝑘−1
+ (1 − 𝛼)x𝑘 , where 𝛼 ∈ [0, 1) and x̄0 = 0. It can

be implemented highly efficiently since it needs no iterative opti-

mization nor extra memory. The result can be easily rewritten as

x̄𝑘 = (1 − 𝛼)∑𝑘𝑖=1
𝛼𝑘−𝑖x𝑖 . In practice, we have

x̄𝑘 =

𝑘∑
𝑖=1

𝛽𝑖x𝑖 , 𝛽𝑖 =
(1 − 𝛼)𝛼𝑘−𝑖

1 − 𝛼𝑘
, (9)

where 𝛽𝑖 are the normalized weights and the denominator 1 − 𝛼𝑘
is the bias correction.

3.3.3 Algorithm implementation. In dynamic partial reduce, each

worker could send its current iteration number to the controller

while sending the ready signal. The controller collects 𝑃 iteration

numbers ({𝑘1, 𝑘2, ..., 𝑘𝑃 }) in descending order from the workers in a

group. We define the relative iteration number
ˆ𝑘𝑖 = max1≤ 𝑗≤𝑃 𝑘 𝑗 −

𝑘𝑖 + 1 and the range of
ˆ𝑘𝑖 is [1, ˆ𝑘max]. To distribute an exponential

decay 𝛽𝑖 for each worker, we replace 𝑘 in Eq. (9) with
ˆ𝑘𝑖 . There

is a strong possibility that not every relative iteration number in

[1, ˆ𝑘max] could be sent from the 𝑃 workers. The application of the

exponential moving average (EMA) approach with Eq. (9) requires

storing and managing historical versions of models (i.e., {x𝑖 }𝑘𝑖=1
)

for consecutive iterations. To avoid such costs incurred by EMA, we

consider a conservative approximation of using the initial model 𝑥1

to approximate all the intermediate model versions that have not

been stored for the EMA-based aggregation. Other approximation

strategies are also possible, such as approximate intermediate model

to the version of the closest iteration number. If some workers have

the same relative iteration number, their weights are divided equally.

In this way, all
ˆ𝑘 in [1, ˆ𝑘max] has specific model parameters so that

we can apply Eq. (9) successfully. Note that after the partial reduce,

the workers in the group should update their current iteration 𝑘

with max1≤ 𝑗≤𝑃 𝑘 𝑗 , because all of their models are the latest.

4 IMPLEMENTATION

In this section, we describe the implementation details of our pro-

totype system. Generally, we follow the traditional data-parallel

distributed training, and each worker handles a subset of the whole

training data by data sharding approach. For the model parameters,

we deploy a model replication on each worker with the same ini-

tialization. Each worker could be a physical computation node or a

virtual instance, determined by specific hardware environments.

Research Data Science & Engineering Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2266

.	.	.Parameter
replica

Data shard

Worker

Group	
Filter

Weight Generator Group	
Broadcaster

Group	History DB

Signal Queue

Controller

Figure 6: Illustration of the controller architecture.

Components. As shown in Fig. 6, we break down the key com-

ponents in our prototype — controller, consisting of a signal queue,

the group filter, the group history database, the weight generator,

and the group broadcaster. The workers send their ready signals to

the controller when they are ready for partial reduce. The signal
queue collects these signals and sends them to the group filter in the

FIFO order. The group filter fetches 𝑃 signals each time and verifies

if these workers could compose an appropriate group based on the

records in the group history database. The weight generator obtains
the group and generates the model aggregation weights based on

the specific partial reduce algorithm. Finally, the group broadcaster

send back these information to these workers in the group.

Group frozen avoidance. Our proposed method relies on the

sequential partial reduce operations among random worker groups

to spread the latest model parameters to all the workers. In most

cases, the group filter could directly adopt the groups without any

side effects. However, in rare cases, the worker group could freeze

the range of the partial reduce inside the current group and prevent

the communication from outside workers. Suppose there are four

workers and P = 2, worker 1 always averages only with worker 2,

and worker 3 always averages only with worker 4, workers could

still reach consensus under the given assumptions. Apparently,

such isolated groups lead to two independent training processes

and each uses half of the cluster and wastes resources.

To tackle this problem, we construct a sync-graph by connecting

workers in the same group for recent 𝑇 P-reduce groups and use

the group filter to check whether the sync-graph is connected. If

the group frozen (i.e., disconnected sync-graph) is detected, the

group filter will interact with the signal queue and add few edges

(i.e., forming groups) between connected components to make the

sync-graph connected. Notice that each P-reduce operation adds

𝑃 − 1 links over the sync-graph of 𝑁 nodes, we require 𝑇 ≥ ⌈𝑁−1

𝑃−1
⌉

which is the minimum number to make the graph connected under

random group formation. If the graph is not connected, we could

identify the isolation.

Prototype. Our prototype is built on top of PyTorch, and we uti-

lize the partial reduce primitive with torch.distributed commu-

nication package, including send, receive, broadcast, all_reduce.
We use Gloo as the backend to support both CPU and GPU clusters

(other backends, e.g., NCCL are also possible). Besides, we also

implement a message queue with TCP/IP protocols for the commu-

nication between the controller and the workers. Note that, unlike

the parameter server suffering from the central node bottleneck, the

controller doesn’t store any model parameters or gradients. Each

message from the workers is only a few bytes so that it will not

involve any communication overheads. The involved communica-

tion worlds are constructed before the training process starts and

reused during training to avoid the construction overheads.

Our partial reduce operations for each parameter matrix are

after all gradients have been computed for a batch in our cur-

rent implementation. Some optimized distributed library, such as

DistributedDataParallel (DDP) [26], could provide overlapping
between communication and the backward computation. Unfortu-

nately, it requires a fixed communication world (e.g., init_process
_group in PyTorch) during the training process, limiting its applica-

tion for the partial reduce with dynamic worker groups. We leave

it as the future work and expect relative benefits of partial reduce

still holds in the setting with overlapping computation.

5 EXPERIMENTS

5.1 Experimental Setup

In this section, we compare our prototype systemwith the following

baselines, including All-Reduce, Eager-Reduce [25], AD-PSGD [29],

PS BSP, PS ASP, PS HETE [20] and PS BK [3, 8].

Datasets and models. We choose three image classification

datasets in our experiments, including CIFAR10 (10 classes), CI-

FAR100 (100 classes) and the largest benchmark dataset ImageNet

(1000 classes). We evaluate our system and baselines on three dif-

ferent kinds of CNNs: ResNet [16], VGG [37] and DenseNet [19].

Experimental setting. We implement all of these models in

PyTorch 1.5.0 and select SGD optimizer with the learning rate of

0.1, the batch size of 256, the momentum of 0.9 and the weight

decay of 1e-4. We evaluate them on a GPU cluster, and each node

is equipped with 376 GB RAM, 24 cores, 8 Nvidia Tesla V100 32

GB cards, and 10 GB Ethernet. The testing accuracy thresholds of

convergence are set to be 90% for the CIFAR10 dataset and 70% for

the CIFAR100 dataset, as reported in [19]. For the ImageNet dataset,

to obtain the standard terminated test accuracy as reported in [16],

we adopted similar learning rate tuning scheme as proposed in [1],

i.e., start from 0.1 and decay by 10 every 20 epochs. All experiments

are executed five times, and the averaged results are reported.

5.2 End-to-End Comparison

We first conduct an end-to-end comparison with all baselines on

three models on CIFAR10. To simulate different heterogeneity con-

ditions, we create the synthetic heterogeneous environment by

selecting 𝐻𝐿 (out of 𝑁) workers to share a single physical GPU,

and deploying other individual workers on 𝑁 − 𝐻𝐿 independent

GPUs. Due to resource (e.g., GPU cores, PCIe bandwidth) shar-

ing, the workers on the same GPU might be slower than the other

workers. Specially, if the heterogeneity level (HL) is 1, it becomes

homogeneous because each GPU is monopolized by a worker.

To measure the end-to-end performance, we use the total run

time (in seconds) for the same convergence threshold. We further

decouple the end-to-end performance into statistical efficiency and

hardware efficiency and analyze themwith different metrics. For the

statistical efficiency, we use the number of updates (i.e., iterations)

until the convergence. For the hardware efficiency, we use the

average time per update takes.

5.2.1 Comparison with PS-based approaches. As shown in Table 1,

PS BSP performs slightly slower than partial reduce in terms of total

Research Data Science & Engineering Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2267

Table 1: End-to-End comparison on CIFAR10. CON and DYN are constant and dynamic partial reduce in abbreviation. N/A

represents that they cannot converge to the threshold. We use the bold font to mark the metrics for methods with the optimal

run time. AR: All-Reduce, ER: Eager-Reduce, AD: AD-PSGD, BK: synchronous SGD with 3 backup workers

Model Metrics HL

Collective Operation Parameter Server Partial Reduce (P=3) Partial Reduce (P=5)

AR ER AD BSP ASP HETE BK CON DYN CON DYN

ResNet-34

run

time (s)

1 530

N/A

482 605 768 756 588 423 393 448 456

3 1150 731 1204 996 861 734 630 603 639 658

#update

1 1226 6342 1275 10213 9935 1482 3030 2706 1500 1484

3 1425 7029 1438 10335 8789 1556 3209 3017 1607 1621

per-update

time (s)

1 0.432 0.217 0.076 0.475 0.075 0.076 0.397 0.140 0.145 0.299 0.307

3 0.807 0.349 0.104 0.837 0.096 0.098 0.472 0.196 0.200 0.398 0.406

VGG-19

run

time (s)

1 580

N/A

582 734 1099 757 732 493 398 499 588

3 897 1146 1019 1391 909 867 626 608 731 687

#update

1 2025 11640 1985 16713 11620 2532 5301 4204 2528 2890

3 2025 11344 2005 19625 12893 2852 5451 5147 2942 2761

per-update

time (s)

1 0.286 0.141 0.050 0.370 0.066 0.065 0.289 0.093 0.095 0.197 0.203

3 0.443 0.199 0.062 0.508 0.071 0.071 0.304 0.115 0.118 0.248 0.249

DenseNet-121

run

time (s)

1 964

N/A

870 977 952 913 923 660 694 947 964

2 1432 1224 1532 1299 1243 1129 781 705 1269 1009

#update

1 1176 6850 1180 12009 11556 1487 2798 2746 1779 1947

2 1125 7948 1192 13273 12551 1643 2886 2487 2202 1666

per-update

time (s)

1 0.820 0.397 0.127 0.828 0.079 0.079 0.621 0.236 0.253 0.532 0.495

2 1.273 0.470 0.154 1.286 0.098 0.099 0.687 0.271 0.283 0.576 0.606

(a) VGG-19 on CIFAR10 (b) ResNet-34 on CIFAR100

Figure 7: Convergence performance on CIFAR.

run time. PS ASP alleviates the synchronization cost but involves

more updates, resulting in slower convergence speed. PS HETE

outperforms ASP due to the staleness-aware learning schema, but

it is still slower than partial reduce. For PS BK, we use 5 out of

total 8 workers for each synchronization (i.e., 3 backup workers).

However, our partial-reduce (P=5) still significantly outperforms

BK up to 1.47×, given the same number of nodes required in each

synchronization. The key advantage of our approach over BK is that

the stragglers are not contributing in BK whereas all workers could

contribute in P-reduce with parallel-asynchronous partial-reduce

operations. This allows our approach to achieve high resource (e.g.,

GPU) utilization in training clusters, thus improving the distributed

training performance. Furthermore, as shown in Table 1, compared

to BK, partial reduce (P=5) achieves lower per-update time due to

high resource utilization.

With the new flexible parallel-asynchronous primitive, P-reduce

solves the dilemma between high sensitivity to heterogeneity and

low resource utilization faced by BK method. For example, Table 1

shows that although training more iterations due to the asynchro-

nous nature, P-reduce (P=3) could achieve even higher runtime

speedup (up to 1.84×) than BK by further relaxing the workers

required in each synchronization. By contrast, if BK would make

such relaxation, the majority of workers cannot be used. In sum-

mary, our approach offers the following advantages with respect to

the BK [8]: (1) more flexibility in heterogeneity tolerance, (2) high

resource utilization, thus leading to high scalability as verified in

the following Sec. 5.3.

5.2.2 Comparison with Collective-based approaches. As shown in

Table 1, partial reduce always outperforms these baselines in total

run time. Especially for the heterogeneous setting (HL>1), DYN

(P=3) can be at most 1.48− 2.01× faster than All-Reduce. Compared

to the constant partial reduce, the dynamic partial reduce can be

aware of the staleness and reduce the number of needed updates

until convergence. Compared to All-Reduce, partial reduce based

methods require more updates before convergence, but the per-

update time is 4× faster than All-Reduce.

For AD-PSGD, each worker computes gradients first, and per-

forms an atomic model averaging with a randomly selected neigh-

bor (regardless of its status). The model used for averaging can be

inconsistent with the gradient update. As shown in Table 1, partial

reduce (P=3) could achieve up to 1.74× speedup in a heterogeneous

setting (DenseNet-121 under HL=2). This is because of two fun-

damental differences: (1) we allow synchronizing with a group of

workers (more than two workers), enabling fast propagation of

model updates among workers. (2) AD-PSGD hurts the model qual-

ity due to the inconsistent model update and results in a loose upper

bound of the convergence rate [29]. In P-Reduce, thanks to the con-

troller, we guarantee the consistency between model average and

gradient computation without extra synchronization overheads.

Research Data Science & Engineering Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2268

Figure 8: Partial reduce results over different P.

Figure 9: Comparison on ResNet-34 on CIFAR100.

For ER, the per update time in Table 1 is smaller than AR due to

the partial synchronization, but it cannot achieve the convergence

thresholds as shown in Figure 7(a). There are two key differences

between ER and our approach: (1) ER performs gradient aggrega-

tion, suffers from stale gradient problem, and significantly affects

convergence quality. (2) ER requires the majority to participate for a

synchronization, limiting the degree of heterogeneity tolerance. By

contrast, P-reduce adopts model averaging for better convergence

and flexible group size 𝑃 for high heterogeneity tolerance.

5.2.3 Impact of group size. We further analyze the hyperparameter

𝑃 in our partial reduce. Here we explore the impact of 𝑃 by varying

it on the VGG-19 for constant partial reduce under HL=1 setting. As

shown in Fig. 8, for partial reduce, the per-update time is positively

correlated with 𝑃 , and the number of updates performs conversely,

which verifies the convergence property we proved in Theorem 1.

The total run time is the product of them and thus might have two

possible minimum values. In our settings, partial reduce achieves

the optimal total run time with 𝑃 = 3 and 5. Note that, the best 𝑃

varies across different workloads and need to be tuned in practice.

5.3 Evaluation on Production Environment

To verify the effectiveness of partial reduce in a real productive

cluster, we conduct experiments on a heterogeneous production

cluster from our industrial partner Tencent Inc. Each worker is

a container (i.e., instance) requested from the cluster scheduler

and equipped with a virtual V100 GPU. Note that, the production

environment could be highly heterogeneous (as shown in Figure 9)

due to resource sharing.

5.3.1 Convergence performance. We first apply 16 workers and

compare partial reduce with AR on ResNet-34 on CIFAR100. Fig-

ure 7(b) shows the superior convergence performance of partial

reduce. We also investigate the detail statistics in Figure 9 and find

that our partial reduce methods are around 16.6× faster than AR

in per-update time and achieve 2× speedup in total run time. Fur-

thermore, we evaluate our approach on larger workloads, such as

ResNet-18 and VGG-16 on ImageNet with 32 workers. Figure 10(a)

and 10(b) demonstrate that partial reduce has competitive conver-

gence guarantees as AR (e.g., the standard terminated test accuracy

as reported in [16]) on both workloads, but with high convergence

speed in terms of training time.

(a) ResNet-18 on ImageNet (b) VGG-16 on ImageNet

Figure 10: Convergence performance on ImageNet.

(a) ResNet-18 speedup (b) VGG-16 speedup

Figure 11: Scalability study on ImageNet

5.3.2 Scalability study. We also conduct a scalability study in terms

of run time speedup on ImageNet with 1, 4, 8, 16, 32 workers re-

spectively. As shown in Fig. 11(a) and Fig. 11(b), both AR and PS

BK (using a quarter of workers for backup) have limited scalability.

They suffer from more heterogeneity as involves more workers

in a shared environment. By contrast, our partial reduce (P=4)

achieves high heterogeneity tolerance and improved sociability

with flexible parallel-asynchronous p-reduce operations. We also

note that all methods show better scalability on ResNet-18 than

VGG-16. Because ResNet-18 is computation-intensive while VGG-

16 is communication-intensive and more difficult to scale up, which

is consistent with prior work [5].

6 CONCLUSIONS

We analyzed the existing distributed ML communication strate-

gies under a heterogeneous environment. All-Reduce is a high-

performance communication schema but suffering from the strag-

glers due to heterogeneity. To tackle this problem, we proposed

a novel partial reduce primitive, allowing partial synchronization

among a worker group without waiting for stale workers. We the-

oretically proved the convergence property of our method to be

O(
√
𝑃𝐾) with sufficiently large iterations𝐾 . To further improve the

convergence performance, we proposed a dynamic partial reduce

schema by considering the stragglers’ delayed model parameters.

We implemented a prototype system and evaluated it in both the

experimental environment and the production environment. We

found that our prototype could be 1.21×-2× faster than existing

state-of-the-art baselines. Moreover, our heterogeneity-aware al-

gorithms were able to achieve better hardware efficiency while

preserving rapid convergence performance.

7 ACKNOWLEDGEMENT

This work is supported by the National Key Research and Develop-

ment Program of China (No. 2018YFB1004403), the National Natural

Science Foundation of China (No. 61832001, U1936104, 61702015),

PKU-Tencent joint research Lab, Beijing Academy of Artificial In-

telligence (BAAI), CAAI Huawei MindSpore Open Fund, and The

Fundamental Research Funds for the Central Universities 2020RC25.

Zhi Yang is the corresponding author.

Research Data Science & Engineering Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2269

REFERENCES

[1] 2017. PyTorch. https://github.com/pytorch/examples/tree/master/imagenet.

[2] 2021. Theorem Proofs. https://github.com/DMALab/Partial-Reduce.

[3] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manju-

nath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray,

Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke,

Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale

Machine Learning. In OSDI. 265–283.
[4] Md. Maksudul Alam, Kalyan S. Perumalla, and Peter Sanders. 2019. Novel Par-

allel Algorithms for Fast Multi-GPU-Based Generation of Massive Scale-Free

Networks. Data Sci. Eng. 4, 1 (2019), 61–75.
[5] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and M. Vojnovic. 2017.

QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding.

In NeurIPS.
[6] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. 2018. Optimization Methods

for Large-Scale Machine Learning. SIAM Rev. 60, 2 (2018), 223–311.
[7] Brendan Burns, Brian Grant, David Oppenheimer, Eric A. Brewer, and John

Wilkes. 2016. Borg, Omega, and Kubernetes. ACM Queue 14, 1 (2016), 10.
[8] J. Chen, Rajat Monga, S. Bengio, and R. Józefowicz. 2016. Revisiting Distributed

Synchronous SGD. ArXiv abs/1702.05800 (2016).

[9] Jichan Chung, Kangwook Lee, Ramtin Pedarsani, Dimitris Papailiopoulos, and

Kannan Ramchandran. 2017. Ubershuffle: Communication-efficient data shuffling

for sgd via coding theory. NeurIPS.
[10] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le,

Mark Z. Mao, Marc’Aurelio Ranzato, Andrew W. Senior, Paul A. Tucker, Ke Yang,

and Andrew Y. Ng. 2012. Large Scale Distributed Deep Networks. In NeurIPS.
1232–1240.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. 2009. Ima-

geNet: A large-scale hierarchical image database. In CVPR. 248–255.
[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

NAACL-HLT. 4171–4186.
[13] Wenfei Fan, Kun He, Qian Li, and Yue Wang. 2020. Graph algorithms: paralleliza-

tion and scalability. Sci. China Inf. Sci. 63, 10 (2020), 1–21.
[14] Arash Fard, Anh Le, George Larionov, Waqas Dhillon, and Chuck Bear. 2020.

Vertica-ML: Distributed Machine Learning in Vertica Database. In SIGMOD. 755–
768.

[15] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. 2016. Mini-batch stochastic

approximation methods for nonconvex stochastic composite optimization. Math.
Program. 155, 1-2 (2016), 267–305.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In CVPR. 770–778.
[17] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B.

Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric P. Xing. 2013. More

Effective Distributed ML via a Stale Synchronous Parallel Parameter Server. In

NeurIPS. 1223–1231.
[18] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R.

Ganger, Phillip B. Gibbons, and OnurMutlu. 2017. Gaia: Geo-DistributedMachine

Learning Approaching LAN Speeds. In NSDI. 629–647.
[19] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger.

2017. Densely Connected Convolutional Networks. In CVPR. 2261–2269.
[20] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. 2017. Heterogeneity-aware Dis-

tributed Parameter Servers. In SIGMOD. 463–478.
[21] Jiawei Jiang, Fangcheng Fu, Tong Yang, and Bin Cui. 2018. SketchML: Accelerating

Distributed Machine Learning with Data Sketches. In SIGMOD. 1269–1284.
[22] Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo Cho, Eunji Jeong, Hyeonmin

Ha, Sanha Lee, Joo Seong Jeong, and Byung-Gon Chun. 2019. Parallax: Sparsity-

aware Data Parallel Training of Deep Neural Networks. In EuroSys. 43:1–43:15.
[23] Bofang Li, Aleksandr Drozd, Yuhe Guo, Tao Liu, Satoshi Matsuoka, and Xiaoyong

Du. 2019. Scaling Word2Vec on Big Corpus. Data Sci. Eng. 4, 2 (2019), 157–175.
[24] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,

Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling

Distributed Machine Learning with the Parameter Server. In OSDI. 583–598.

[25] Shigang Li, Tal Ben-Nun, Salvatore Di Girolamo, Dan Alistarh, and Torsten

Hoefler. 2020. Taming unbalanced training workloads in deep learning with

partial collective operations. In PPoPP. 45–61.
[26] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,

Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala.

2020. PyTorch Distributed: Experiences on Accelerating Data Parallel Training.

PVLDB 13, 12 (2020), 3005–3018.

[27] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. 2015. Asynchronous Parallel

Stochastic Gradient for Nonconvex Optimization. In NeurIPS. 2737–2745.
[28] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu.

2017. Can Decentralized Algorithms Outperform Centralized Algorithms? A

Case Study for Decentralized Parallel Stochastic Gradient Descent. In NeruIPS.
5330–5340.

[29] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. 2018. Asynchronous Decentral-

ized Parallel Stochastic Gradient Descent. In ICML, Vol. 80. 3049–3058.
[30] Yucheng Lu, Jack Nash, and Christopher De Sa. 2020. MixML: A Unified

Analysis of Weakly Consistent Parallel Learning. CoRR abs/2005.06706 (2020).

arXiv:2005.06706

[31] Qinyi Luo, Jiaao He, Youwei Zhuo, and Xuehai Qian. 2020. Prague: High-

Performance Heterogeneity-Aware Asynchronous Decentralized Training. In

ASPLOS. 401–416.
[32] X. Miao, L. Ma, Z. Yang, Y. Shao, B. Cui, L. Yu, and J. Jiang. 2020. CuWide: Towards

Efficient Flow-based Training for Sparse Wide Models on GPUs. TKDE (2020),

1–1. https://doi.org/10.1109/TKDE.2020.3038109

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban

Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning

Library. abs/1912.01703 (2019).

[34] Pitch Patarasuk and Xin Yuan. 2009. Bandwidth optimal all-reduce algorithms

for clusters of workstations. J. Parallel Distributed Comput. 69, 2 (2009), 117–124.
[35] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed

deep learning in TensorFlow. CoRR abs/1802.05799 (2018).

[36] Haidong Shao, Hongkai Jiang, Haizhou Zhang, Wenjing Duan, Tianchen Liang,

and Shuaipeng Wu. 2018. Rolling bearing fault feature learning using improved

convolutional deep belief network with compressed sensing. Mechanical Systems
and Signal Processing 100 (2018), 743–765.

[37] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-

works for Large-Scale Image Recognition. In ICLR.
[38] Antti Tarvainen and Harri Valpola. 2017. Mean teachers are better role models:

Weight-averaged consistency targets improve semi-supervised deep learning

results. In NeurIPS. 1195–1204.
[39] Jianyu Wang and Gauri Joshi. 2019. Cooperative SGD: A Unified Framework for

the Design and Analysis of Communication-Efficient SGD Algorithms. In ICML
Workshop.

[40] Xintong Wang and Yunfei Feng. 2018. An Ensemble Learning Algorithm for

Indoor Localization. In ICCC. 774–778.
[41] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu,

Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu

Zhang, Fan Yang, and Lidong Zhou. 2018. Gandiva: Introspective Cluster Sched-

uling for Deep Learning. In OSDI. 595–610.
[42] Xu Xie, Fei Sun, Xiaoyong Yang, Zhao Yang, Jinyang Gao,WenwuOu, and Bin Cui.

2021. Explore User Neighborhood for Real-time E-commerce Recommendation.

arXiv:cs.IR/2103.00442

[43] Ce Zhang and Christopher Ré. 2014. DimmWitted: A Study of Main-Memory

Statistical Analytics. PVLDB 7, 12 (2014), 1283–1294.

[44] Zhipeng Zhang, Bin Cui, Yingxia Shao, Lele Yu, Jiawei Jiang, and Xupeng Miao.

2019. PS2: Parameter Server on Spark. In SIGMOD. 376–388.
[45] Shuai Zheng and James T Kwok. 2017. Follow the moving leader in deep learning.

In ICML. 4110–4119.
[46] Weimin Zheng. 2020. Research trend of large-scale supercomputers and ap-

plications from the TOP500 and Gordon Bell Prize. Sci. China Inf. Sci. 63, 7
(2020).

[47] Martin Zinkevich, M. Weimer, Alex Smola, and L. Li. 2010. Parallelized Stochastic

Gradient Descent. In NeurIPS.

Research Data Science & Engineering Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2270

https://github.com/pytorch/examples/tree/master/imagenet
https://github.com/DMALab/Partial-Reduce
http://arxiv.org/abs/2005.06706
https://doi.org/10.1109/TKDE.2020.3038109
http://arxiv.org/abs/cs.IR/2103.00442

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Distributed SGD
	2.2 Communication Mechanism
	2.3 Heterogeneous Training

	3 Partial Reduce
	3.1 Constant Partial Reduce
	3.2 Theoretical Analysis
	3.3 Dynamic Partial Reduce

	4 Implementation
	5 Experiments
	5.1 Experimental Setup
	5.2 End-to-End Comparison
	5.3 Evaluation on Production Environment

	6 Conclusions
	7 Acknowledgement
	References

