
Reliable Data Distillation
on Graph Convolutional Network

Wentao Zhang∗, Xupeng Miao§, Yingxia Shao★, Jiawei Jiang♯, Lei Chen�, Olivier
Ruas§, Bin Cui∗§

∗Center for Data Science, Peking University & National Engineering Laboratory for Big Data Analysis and
Applications §School of EECS & Key Laboratory of High Confidence Software Technologies, Peking University

★Beijing Key Lab of Intelligent Telecommunications Software and Multimedia, BUPT
♯ETH Zurich, Switzerland �Hong Kong University of Science and Technology

{wentao.zhang, xupeng.miao, olivier.ruas, bin.cui}@pku.edu.cn, shaoyx@bupt.edu.cn, jiawei.jiang@inf.ethz.ch,
leichen@cse.ust.hk

ABSTRACT

GraphConvolutional Network (GCN) is awidely usedmethod
for learning from graph-based data. However, it fails to use
the unlabeled data to its full potential, thereby hindering
its ability. Given some pseudo labels of the unlabeled data,
the GCN can benefit from this extra supervision. Based on
Knowledge Distillation and Ensemble Learning, lots of meth-
ods use a teacher-student architecture to make better use of
the unlabeled data and then make a better prediction. How-
ever, these methods introduce unnecessary training costs
and a high bias of student model if the teacher’s predictions
are unreliable. Besides, the final ensemble gains are limited
due to limited diversity in the combined models. Therefore,
we propose Reliable Data Distillation, a reliable data driven
semi-supervised GCN training method. By defining the node
reliability and edge reliability in a graph, we can make better
use of high quality data and improve the graph representa-
tion learning. Furthermore, considering the data reliability
and data importance, we propose a new ensemble learning
method for GCN and a novel Self-Boosting SSL Framework to
combine the above optimizations. Finally, our extensive eval-
uation of Reliable Data Distillation on real-world datasets
shows that our approach outperforms the state-of-the-art
methods on semi-supervised node classification tasks.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’20, June 14–19, 2020, Portland, OR, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00

https://doi.org/10.1145/3318464.3389706

CCS CONCEPTS

• Computing methodologies → Neural networks.

KEYWORDS

Graph Convolutional Network; Knowledge Distillation; En-
semble Learning; Semi-Supervised Learning

ACM Reference Format:

Wentao Zhang, Xupeng Miao, Yingxia Shao, Jiawei Jiang, Lei Chen,
Olivier Ruas, Bin Cui. 2020. Reliable Data Distillation on Graph
Convolutional Network. In Proceedings of the 2020 ACM SIGMOD

International Conference on Management of Data (SIGMOD’20), June

14–19, 2020, Portland, OR, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3318464.3389706

1 INTRODUCTION

1.1 Background and Motivation

Semi-supervised learning (SSL) [63] is a class of machine
learning techniques that, in addition to the use of the la-
beled data, successfully exploits a large amount of unlabeled
data during the learning. SSL is especially useful when the
available labeled data is limited. In particular, SSL is widely
used to learn from graph-structured data, such as a citation
network on which we want to infer the topic of the papers.
Indeed, labeling and processing an entire graph is extremely
time-consuming and not always possible.

Graph convolutional network (GCN) [33] is a popular SSL
technique for many graph-based applications, such as node
classification, link prediction, graph embedding, and cluster-
ing [7, 23, 42, 55]. By capturing the relation between nodes
and enabling the features to propagate between neighboring
nodes, both the labeled and unlabeled data can be used in
the training. This extra information improves learning effi-
ciency and allows GCN to outperform traditional supervised
learning methods.

Research 16: Graph and Stream Processing  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1399



1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Label rate(%)

75
76
77
78
79
80
81
82

Ac
cu

ra
cy

(%
)

GCN

Figure 1: Accuracy of node classification on Cora with

different label rates.

Still, it seems that GCN fails to make full use of the po-
tential inside the unlabeled data. GCN only captures the
already available information about the unlabeled data, e.g.,
their features and their adjacent relations, which makes the
embedding of the unlabeled data highly dependent on the
adjacent labeled data. With limited labels, GCN fails to prop-
agate them to the entire graph, decreasing the information
buried inside a large portion of unlabeled data. Figure 1 dis-
plays the accuracy of a regular GCN obtained on the Cora
citation network [33] when the label rate ranges from 1.3%
to 5.2%. The performance of GCN drops quickly as the la-
beled training size shrinks. To reduce the dependency on
labeled data, we can select and label some unlabeled data
and add them to the training set. Their embeddings will be
independently updated during the back-propagation [43],
instead of depending on their adjacent labeled data alone.

Generating pseudo labels for the unlabeled data is a widely
used idea in SSL and the most representative methods are
the Co-Training and Self-Training [14]. Co-Training relies
on a random walk [56] to complement the GCN by exploring
the global graph topology [35]. Self-Training first generates
labels for unlabeled data and then selects the most confident
predictions for each class. The selected new labeled data
is added to the training set and then helps to train a more
powerful model. Still, both of the methods suffer from the
same shortcoming: the learned labels may not be correct. It is
hard to determine whether the trained models have correctly
predicted those labels. In addition, not only the learned labels
contain less information than the probability distribution of
the class, e.g., the softmax probability, but the threshold used
to generate the label is hard to tune.
To overcome these issues while producing pseudo labels,

the Consistency Regularization [52] method has been pro-
posed recently. Unlike Self-Training and Co-Training, Consis-
tency Regularization assumes that the prediction of similar
inputs should be similar, even if subjected to slight interfer-
ence. Consistency Regularization does not generate pseudo
labels but adds a penalty term related to unlabeled data to the
loss function. Among all Consistency Regularization meth-
ods, the teacher-student consistency based on Knowledge

Better teacher r Better student r

Boosting

Mutual-Promoting Cycle

Figure 2: The training pipeline of RDD

Distillation (KD) [25] has been widely used due to its supe-
rior performance. In KD, a teacher model is first learned and
then its predictions on unlabeled data are used to learn a
student model. Compared with the predicted label given by
Self-Training and Co-Training, the generated node embed-
dings by the teacher model contain much more information,
resulting in a lower variance in the gradient between training
cases [25]. The student model mimics the node embeddings
predicted by the teacher model. The better the teacher model
is, the more accurate its predictions on unlabeled data will
be, resulting in better learning for the student model.

By combining the predictions of several models, Ensemble
Learning [57] has been widely used in KD. The combination
of several student models significantly improves the perfor-
mance [21, 46]. For example, the Mean Teacher [46] trains
each student model under the consistency regularization of
a teacher model and constantly improves the performances
of the teacher by weighted averaging. Similarly, the student
model in Born Again Neural Networks (BANs) [21] is also
under the supervision of the teacher model. Based on En-
semble learning, BANs combines all the pre-trained models
to construct a more powerful ensemble model.
Despite the important improvement the KD techniques

provide, their performances are considerably linked to the
ones of the teacher. If a data point is wrongly classified by the
teacher, all the students will learn this wrong label. Taking
all the predictions of the teacher model as ground truth will
result in a high bias of the student model. Besides, the student
models mimic all the teacher outputs in KD and then they are
similar to each other, which is called limited diversity [60].
Because of the limited diversity and the high bias, KD-based
ensemble methods only provide a limited gain.

In this paper, we introduce reliability as a way to improve
KD: reliable data –be it a reliable node or a reliable edge –
will be used during the training while the unreliable data will
be discarded. Our resulting approach, dubbed Reliable Data

Distillation (RDD), is a data driven semi-supervised Graph
Convolutional Network training method which is built on
top of KD using reliability.

RDD not only cares about data quantity but also considers
the individual quality, i.e. the node reliability and edge reli-

ability, of the graph data. Unlike regular KD methods, the

Research 16: Graph and Stream Processing  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1400



student model in RDD does not mimic the teacher model
predictions. Instead, it exploits the reliability of those predic-
tions to improve its learning. The student model first assesses
whether the teacher’s predictions are reliable, and then uses
the reliability to improve its learning. Compared with KD,
the student model is more likely to predict the correct labels
on the unreliable data and the diversity between teacher
and student can be enhanced accordingly. After the training
of the student model, the teacher model is updated using
the student model, so the teacher model can benefit from
the learning of the student model. From an Ensemble Learn-
ing point of view, our approach is a Self-Boosting method as
shown in Figure 2. We constantly generate new student GCN
models to improve the performances of the teacher model
and make the predictions of both teacher and student more
and more accurate at the same time.

1.2 Overview of Technical Contributions

In the following, we introduce the key parts of our proposed
method and then describe each contribution individually.
Reliable Node Distillation. As discussed in Section 1.1,

the teacher-student consistency based on KD has not con-
sidered the reliability of predicted node embeddings. This
requires unnecessary training budget and causes high bias of
student model since the student model repetitively relearns
all the data knowledge predicted by the teacher model. We
propose Node Reliability to solve these problems. During
each training epoch in RDD, the student evaluates the relia-
bility of the node embeddings predicted by the teacher. For
the labeled data, we only consider whether these data have
been correctly classified. For the unlabeled data, we consider
Information Entropy [6] of their predicted softmax outputs.
Indeed softmax output with high information entropy means
the classifier is not sure about its prediction, therefore the
prediction can be seen as unreliable.
As shown in Figure 3, the student mimics all the outputs

of the teacher without selection, resulting in learning with
wrong labels from unreliable prediction from the teacher
model. RDD tackles this issue by first classifying the predic-
tions of the teacher model in two classes: reliable or unreli-
able. The reliable outputs are then used to correct the student
model’s wrong predictions. Note that here correct/incorrect
refers to the prediction of the teacher model and not the true
labels (which are unknown). In the example, in addition to
the labeled data, the student will learn the reliable knowl-
edge it wrongly predicts compared to the teacher. Besides,
unreliable predictions are not taught to the student models
and neither are the reliable predictions made by the teacher
models that are correctly predicted by the student model.
Reliable Edge Distillation. We use Graph Laplacian

Regularization [33] to jointly model graph structures and

Teacher GCN

Student GCN

True Label Reliable Teacher Outputs

Teacher GCN

Student GCN

Unreliable Teacher Outputs

Unsupervised Learning

Knowledge Distillation Reliable Data Distillation

Supervised Learning

Incorrect Student Outputs
Correct Student Outputs

Figure 3: Student learning for both Knowledge Distil-

lation and Reliable Data Distillation.

node features.With an explicit graph-based regularization [29],
the label information can be smoothed over the graph and
the performances of GCN can be enhanced accordingly. How-
ever, Graph Laplacian Regularization assumes that two nodes
with an edge connection are more likely to have the same
class and thus force adjacent nodes to have similar node
embeddings. This simple heuristic assumption fails to grasp
the more complex relationships of many nodes in the graph,
especially for nodes lying near the decision boundary. Those
nodes are actually the ones on which predictions are unre-
liable. We introduce edge reliability as a way to adapt the
regularization and regularize only reliable edges.
Ensemble Learning for graph data. Current existing

KD-based ensemble methods are not designed specifically
for GCN. Let aside the reliability, they do not consider the
structure and locality of graphs. For example, highly con-
nected nodes, i.e. with a large number of edges, influence
many nodes and thereby play a more important role during
the training of a GCN than less connected nodes. RDD uses
PageRank [41] to measure the importance of each node in
the final ensemble. Furthermore, diversity among the base
models in an ensemble system provides an important in-
crease in the final accuracy of the system [57]. In existing
KD-based methods, the student model mimics the teacher
models, resulting in reduced diversity. However, in RDD, the
student model actively learns the reliable data knowledge
predicted by the teacher, so it has more chance to relearn
the unreliable data and make different predictions on these
data. In this way, the diversity problem can be solved.
Self-Boosting SSL Framework.We introduce a new Self-

Boosting training framework to improve the accuracy of

Research 16: Graph and Stream Processing  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1401



the knowledge predicted by the teacher. After training each
student model, we form an ensemble with the former pre-
trained student models and set this ensemble as the teacher
model for the next training epoch. At each training iteration,
the teacher model is improved and predicts more accurate
labels to be learned by the student. Conversely, under more
accurate supervision, the training of the student model is
improved and the model becomes more and more accurate.
As a result, both the teacher and student models benefit from
this Self-Boosting cycle.
Contributions The main contributions of our work can

be summarized as follows: (1) To the best of our knowledge,
we are the first to improve Knowledge Distillation by em-
phasizing the data reliability. (2)We propose a RDD frame-
work to capture the reliability in both nodes and edges
for GCN. (3) We propose a new Self-Boosting SSL frame-

work as a graph-driven ensemble method for GCN. (4)We
have conducted an extensive evaluation of our approach
on real-world datasets, the results have demonstrated its
superior performances over state-of-the-art approaches.

2 PRELIMINARIES

2.1 Definition of notations

To help the readers understand this work, we begin by intro-
ducing some notations related to RDD in Table 1.

Given a graphG = (V, E) with𝑁 nodes 𝑣𝑖 ∈ V and edges
(𝑣𝑖 , 𝑣 𝑗 ) ∈ E, an adjacency matrix 𝐴 ∈ R𝑁×𝑁 . The node fea-
ture information matrix is represented as 𝑋 = {𝒙1, 𝒙2..., 𝒙𝑵 }

and 𝒙 𝒊 ∈ R𝑑 . The node labels are represented as one-hot
vector 𝑌 = {𝒚1,𝒚2...,𝒚𝑵 } and 𝒚𝒊 ∈ R

𝑘 . The node set is parti-
tioned into labeled node setVl and unlabeled node setVu.
The goal in semi-supervised learning is to predict the labels
of the unlabeled nodes Vu.

2.2 Graph convolutional network

A multi-layer GCN follows the layer-wise propagation rule.
At layer 𝑙 , the output is the hidden representation 𝐻 (𝑙) :

𝐻 (𝑙) = 𝛿
(
𝐷− 1

2𝐴𝐷− 1
2𝐻 (𝑙−1)𝑊 (𝑙) ), (1)

where 𝐴 = 𝐴 + 𝐼𝑁 is the adjacency matrix of the undi-
rected graphGwith added self-connections. 𝐼𝑁 is the identity

matrix, 𝐷𝑖𝑖 =
∑

𝑗 𝐴𝑖 𝑗 and𝑊
(𝑙) is a layer-specific trainable

weight matrix. 𝛿 (·) denotes an activation function, such as
ReLU(·) = max(0, ·). 𝐻 (𝑙−1) is the input of 𝑙th layer and
𝐻 (0) = 𝑋 . For a 𝐿-layer GCN on semi-supervised node clas-
sification on a graph with a symmetric adjacency matrix 𝐴,
we first compute 𝐴 in a pre-processing step and the forward
model takes the simple form:

Table 1: NOTATIONS

Symbols Definitions

𝑣𝑖 The 𝑖th node

𝒙 𝒊 The features of the 𝑖th node

𝒚𝒊 The one hot encoding of the 𝑖th label

𝑘 The class of data

𝑁 The size of the training set

𝑇 The number of training iterations

𝐼 The information entropy

𝛾 Controls the proportion of knowledge transfer

𝛽 Controls the strength of the edge regularization

𝑝 Controls the threshold of node reliability

ℎ𝑡 The 𝑡 th student model

𝐻𝑡 The 𝑡 th teacher model

𝛼𝑡 The weight of the 𝑡 th base model

ℎ𝑡 (𝒙 𝒊) The 𝑡 th base model’s label prediction of 𝑣𝑖

𝑤𝑖, 𝑗 The edge reliability between 𝑣𝑖 and 𝑣 𝑗

𝒉𝒕 (𝒙 𝒊) ℎ𝑡 ’s softmax outputs on 𝑣𝑖

𝑯𝒕 (𝒙 𝒊) 𝐻𝑡 ’s softmax outputs on 𝑣𝑖

𝑭𝒕 (𝒙 𝒊) 𝐻𝑡 ’s predicted node embedding on 𝑣𝑖

𝒇𝒕 (𝒙 𝒊) ℎ𝑡 ’s predicted node embedding on 𝑣𝑖

𝑃𝑟 (𝒙 𝒊) The pagerank value of 𝑣𝑖

𝐻 (𝑙) = ReLU
(
𝐴𝐻 (𝑙−1)𝑊 (𝑙) ), 𝑙 = 1..., 𝐿,

𝑍 = softmax
(
𝐻 (𝐿) ) . (2)

𝐻 (𝑙) ∈ R𝑁×𝐷 (𝑙 )
, where𝐷 (𝑙) is the parameter for the embed-

dings dimension for the 𝑙th layer, and 𝐷 (𝐿) = 𝑘 . The softmax
activation function, defined as softmax(𝑥𝑖 ) = 1

𝑍 exp(𝑥𝑖 ) with
𝑍 =

∑
𝑖 exp(𝑥𝑖 ), is applied row-wise. We then evaluate the

cross-entropy error over all labeled examples:

L = −
∑

𝑣𝑖 ∈Vl

𝑦𝑖 log𝑍𝑖 , (3)

Equation 1 shows that the information contained in a node
is propagated to its neighbors at each layer: a 𝐾-layer GCN
only propagates node information up to 𝐾-hops neighbor-
hood. When only a few labels are given, e.g., a 5% label rate,
a shallow GCN cannot effectively propagate the labels to the
entire data graph. For a shallow GCN, the unlabeled nodes
may get limited attention and make less contribution to the
learning process, thus the performance of GCN drops quickly
as the labeled training size shrinks.

Research 16: Graph and Stream Processing  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1402



A natural approach to make better use of the unlabeled
data is to use a deeper network [2, 51]. For example, the
residual connection [33] enables GCN to carry over infor-
mation from the previous layer’s input. Even with residual
connections, GCNs with more layers do not perform as well
as the 2-layer GCN on many datasets, e.g., the citation net-
works. Indeed, stacking more layers into a GCN leads to the
over-smoothing problem [35], which means back-propagation
through the network eventually leads to the convergence of
the features of nodes to the same value. In fact, most state-
of-the-art GCNs are no deeper than 4 layers, which limits
the representation ability of GCN [35].

Existing GCNs and their variants cannot make full use of
the unlabeled nodes. We propose RDD to solve this problem
by considering a data-oriented approach. The teacher model
in RDD can generate reliable node embeddings for unlabeled
nodes, and these nodes can be trained with back-propagation,
not exclusively by using the label information contained in
their adjacent nodes. As a result, the unlabeled nodes can be
used no matter how far they are from labeled nodes.

2.3 Ensemble Learning

Ensemble Learning [13] is a class of machine learning tech-
niques that combines the predictions of different models into
a more accurate one. Ensemble Learning has demonstrated
its effectiveness in many problems in which it has become a
part of the most efficient state-of-the-art techniques, such as
in the notorious Netflix Prize [4] and various Kaggle compe-
titions [26]. It is also widely used in semi-supervised tasks,
as the knowledge learned on the unlabeled data can be used
to train a new classifier that is then combined to the previous
ones to obtain an even more accurate classifier.
One of the most widely used ensemble methods is Bag-

ging [8]. Bagging trains multiple models on sampled train-
ing sets and then combined them into one. The final model
predicts the class of an item by making each base model
estimating the class of the item and then selecting the most
plausible class out of these estimations. While Bagging aims
at reducing the variance of the model’s predictions, Boost-
ing [20, 30] aims at lowering the bias of the model. To achieve
this, Boosting combines multiple weaker models into a sin-
gle strong one [31, 59]. Similarly, Stacking [9] combines the
outputs of several base models by feeding them to another
algorithm that combines them to make the final predictions.

Based on these three methods, many works have been pro-
posed in recent years. For example, XGBoost is an efficient
implementation of gradient Boosting decision trees [17]. A
neural network in Snapshot Ensemble [27] converges to dif-
ferent local minimums along its optimization path. Unlike
Bagging [9], which trains each network independently, Snap-
shot Ensemble saves the model parameters before resetting

the learning rate and treats each model replica as a base
model. Besides, Born Again Neural Networks [21] initializes
each base model from a different random seed and each of
them is trained from the supervision of the earlier model.

Evidence suggests that the two key factors for the efficient
use of Ensemble Learning techniques are the diversity and
the accuracy of the base models used [13]. However, from
diversity and accuracy point-of-view, the above methods are
not suitable for GCN. Bagging-based methods individually
train each base model on a subsampled training set, leading
to a low accuracy for each base model, especially only a few
labeled nodes are available. Furthermore, semi-supervised
techniques usually overfit the labeled nodes in GCN [33],
making Boosting unsuitable since the base models can al-
most classify all the labeled nodes. Finally, both BANs and
Snapshot Ensemble face the problem of limited diversity
since they train each base model based on the former one.

Considering the accuracy and diversity of base models, all
the existing ensemble methods are not suitable for learning
over GCN. According to the characteristic of GCN and graph
data, we introduce the concept of data reliability and propose
a new graph-based ensemble method in RDD. Based on the
reliability, the bias of basemodels is reduced since the student
cannot only be trained with the label information like the
traditional GCN but also get reliable supervision from the
teacher model and Graph Laplacian Regularization. Besides,
the diversity in RDD is higher than BANs because the student
model in RDD actively learns the reliable data knowledge
predicted by the teacher, so it has more chance to relearn the
unreliable data and make different predictions on these data.

2.4 Knowledge Distillation

Knowledge Distillation (KD) [25] is proposed to transfer the
knowledge acquired by one model (the teacher) to another
model (the student) that is typically smaller. In particular,
KD is widely used in model compression [11]. Knowledge
Distillation aims at minimizing the following loss function:

L𝐾𝐷 =
𝑁∑
𝑖=1

𝑙
(
ℎ(𝑥𝑖 ), 𝐻 (𝑥𝑖 )

)
, (4)

where 𝑙 is a loss function that measures the prediction dis-
tance between the teacher model 𝐻 and student model ℎ.
Besides the supervision of the labeled data, ℎ also gets extra
supervision from a powerful teacher model 𝐻 . By doing so,
it can achieve higher accuracy in many classification tasks
than a regular model trained only on the labeled data.
KD can achieve more than just improving the training

of a student model: recent works have combined KD with
Ensemble Learning to improve even further the accuracy of
the final model. BANs [21] and Mean Teacher [46] interac-
tively integrate the distilled student models into an ensemble

Research 16: Graph and Stream Processing  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1403



model. The resulting ensemble model is much more accurate
than a single model.
Unfortunately, all these KD-based ensemble methods do

not consider the reliability of the teacher’s predictions, lead-
ing to inaccurate base models and limited diversity. To better
use the knowledge from the teacher model, we improve KD
by introducing the concept of data reliability.

3 RELIABILITY IN GRAPH DATA

In classical KD, the student models consider the outputs of
the teacher model as ground truth, even the misclassified
ones. Not only it provokes a bias, but the fact that the stu-
dents learn all predicted knowledge from the teacher lowers
the diversity in the ensemble. We introduce the notion of
reliability to address these two issues. Reliability answers
the following question: can I trust this data for my learning?
Data reliability in RDD is used to make a distinction between
correct and incorrect teacher outputs, to prevent the student
to learn the incorrect knowledge. For graph data, the reliabil-
ity of the data also determines what nodes and edges should
be taken into account when propagating information during
the training of GCN.

3.1 Node reliability

In order to avoid the student models to mimic the wrong
teacher outputs, we introduce the node reliability. The
node reliability is a property of the nodes stating whether
their outputs by the teacher model can be used for training
the student model. By preventing the student models to learn
the mistakes of the teacher models, node reliability reduces
the bias of the overall model.
For labeled nodes, knowing if the output can be used is

easy: if the output is the same as the label, the node is reliable,
otherwise the node is unreliable. For unlabeled nodes, how-
ever, assessing the correctness of the output is difficult since
we do not know their labels. We use the concept of Informa-
tion Entropy to evaluate if the probability that the output
is correct: the lower the entropy, the higher the certainty in
the prediction [32]. Instead of using a threshold that may
vary significantly for different data and models, we consider
that the 𝑝-percent outputs with the lowest entropy are seen
as correct while all the others are considered as incorrect.
Furthermore, from an Ensemble Learning perspective, the
prediction is more certain if all the base models predict the
same labels for a given node. To ensure this, we only consider
the nodes with a correct output for which the student and
the teacher models predict the same labels.

To summarize, a node is reliable if (1) it is a labeled node
and the predicted label of the teacher is correct or (2) it is an
unlabeled node, the entropy of its prediction by the teacher
model is among the 𝑝-percent lowest, and its predicted labels

Algorithm 1 Update the node reliability

Require:

Dataset: 𝑋 and 𝑌 ;
𝐸: Number of training epochs;
𝐻 : The teacher model;
Graph G = (V, E);

Ensure:

Vr: Reliable nodes
Vb: Nodes teacher learns reliably but student

learns incorrectly
1: ∀𝒙 𝒊, 𝐼𝐻 (𝒙 𝒊) = −𝑯 (𝒙 𝒊) log𝑯 (𝒙 𝒊)
2: sort 𝐼𝐻 (𝒙) in ascending order
3: for 𝑒 = 1 to 𝐸 do

4: ∀𝑣𝑖 ∈ Vl, add 𝑣𝑖 toVr if ℎ𝑒 (𝑥𝑖 ) = 𝑦𝑖
5: ∀𝒙 𝒊, 𝐼ℎ𝑒 (𝒙 𝒊) = −𝒉𝒆 (𝒙 𝒊) log𝒉𝒆 (𝒙 𝒊)
6: sort 𝐼ℎ𝑒 (𝒙) in descending order
7: ∀𝑣𝑖 ∈ Vu, add 𝑣𝑖 toVr if 𝐼𝐻 (𝒙 𝒊) ∈ top 𝑝% of 𝐼𝐻
8: ∀𝑣𝑖 ∈ Vr, remove 𝑣𝑖 fromVr if ℎ𝑒 (𝑥𝑖 ) ≠ 𝐻 (𝑥𝑖 )
9: ∀𝑣𝑖 ∈ Vr, add 𝑣𝑖 toVb if 𝐼ℎ𝑒 (𝒙 𝒊) ∈ top 𝑝% of 𝐼ℎ𝑒
10: end for

by the teacher and student models are the same. All the
other nodes are unreliable.
Algorithm 1 shows how the node reliability is updated

during each training epoch. In Algorithm 1, we first compute
the information entropy 𝐼𝐻 (𝒙) for every node feature, using
the predicted softmax output 𝑯 (𝒙 𝒊) made by the teacher
model (line 1 in Algorithm 1). Next, these values are sorted
in ascending order (line 2 in Algorithm 1). Labeled nodes are
seen as reliable if they have been correctly classified (line 4 in
Algorithm 1). For unlabeled nodes, the information entropy
𝐼ℎ𝑒 (𝒙) is computed using the student model’s predictions.
The nodes are considered as reliable if they have consistent
label predictions with the former teacher model𝐻𝑇 and if the
predicted information entropy 𝐼𝐻 (𝒙 𝒊) is low in the top 𝑝% of
𝐼𝐻 (𝒙) (line 7-8 in Algorithm 1). Unlike 𝐼𝐻 (𝒙), the values of
𝐼ℎ𝑒 (𝒙) are sorted in decreasing order (line 6 in Algorithm 1).
For each reliable node 𝑣𝑖 , if 𝐼ℎ𝑒 (𝒙 𝒊) is high in top 𝑝% of the
sorted 𝐼ℎ𝑒 (line 9 in Algorithm 1), the student 𝐼ℎ𝑒 is unsure
of its prediction ℎ𝑒 (𝑥𝑖 ). This means the student learns data
𝑣𝑖 incorrectly but teacher learns it reliably, so we add it to
the setVb (line 9 in Algorithm 1).

3.2 Edge reliability

Existing GCNs generally fail to consider the local consis-
tency in the training process. That is, if the connected two
nodes share similar features, then their labels and represen-
tations should also be similar. A simple method [47] to solve
this problem is Graph Laplacian Regularization [33] (GLR).
GLR relies on the heuristic that two nodes sharing an edge
connection and similar features are more likely to have the
same class and should have similar node embedding. As a

Research 16: Graph and Stream Processing  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1404



Algorithm 2 Update the edge reliability

Require:

Dataset: 𝑋 and 𝑌 ;
𝐸: Number of training epochs;
𝐻 : The teacher model;
𝐴: The adjacent matrix;
Graph G = (Vr, E);

Ensure:

The reliable edge:Er
1: Initialize 𝐵 and 𝐶 with the Zero Matrix
2: for 𝑒 = 1 to 𝐸 do

3: ∀(𝑣𝑖 , 𝑣 𝑗 ) ∈ E, set 𝐵𝑖, 𝑗 = 1 if 𝑣𝑖 and 𝑣 𝑗 are both inVr
4: ∀(𝑣𝑖 , 𝑣 𝑗 ) ∈ E, set 𝐶𝑖, 𝑗 = 1 if ℎ𝑒 (𝑥𝑖 ) = ℎ𝑒 (𝑥 𝑗 )
5: 𝑤 = 𝐴 ∗ 𝐵 ∗𝐶
6: ∀(𝑣𝑖 , 𝑣 𝑗 ) ∈ E, add (𝑣𝑖 , 𝑣 𝑗 ) to Er if𝑤𝑖, 𝑗 = 1
7: end for

consequence, GLR forces adjacent nodes to have similar em-
beddings. While this assumption seems intuitive, it fails to
grasp the complexity of many real cases such as an edge be-
tween two nodes with different classes. We introduce edge
reliability to refine the heuristic used during GLR.
While it is true that two connected nodes have similar

node embedding if they have the same predicted label [39],
the challenge is to be sure that their predicted labels are
correct. As seen in Sec. 3.1, using node reliability prevents
from using the teacher’s predictions that may be wrong. Two
nodes should have similar embedding only if they are both
reliable and their predicted labels are the same.

An edge is reliable if both its nodes are reliable and they
have the same predicted class. Algorithm 2 shows our edge
reliability-computation. After each iteration, we use𝑤𝑖, 𝑗 to
measure the edge reliability between two node embeddings
𝒙 𝒊 and 𝑥 𝑗 (line 5 in Algorithm 2). Suppose the immediate
neighborhood of 𝒙 𝒊 is {𝑥 𝑗 , 𝑥 𝑗 ∈ 𝑁 (𝒙 𝒊)}, we have

𝑤𝑖, 𝑗 = 𝐴𝑖, 𝑗 ∗ 𝐵𝑖, 𝑗 ∗𝐶𝑖, 𝑗 , (5)

where 𝐴, 𝐵 and𝐶 are all zero matrix. We have 𝐴𝑖, 𝑗 = 1, if the
two nodes are linked. 𝐵𝑖, 𝑗 = 1, if the two nodes are reliable
(line 3 in Algorithm 2). 𝐶𝑖, 𝑗 = 1, if their predictions ℎ𝑡 (𝒙 𝒊)

and ℎ𝑡 (𝑥 𝑗 ) belong to the same class (line 4 in Algorithm 2).
After the updating of the matrix𝑤 , we considered the edge
(𝑣𝑖 , 𝑣 𝑗 ) as reliable if𝑤𝑖, 𝑗 = 1 (line 6 in Algorithm 2).

4 RELIABLE DATA DISTILLATION

4.1 Overview

Our Reliable Data Distillation method follows the KD frame-
work with two roles: teacher model and student model. The
teacher model is an ensemble model, it is a combination of
all the previous student models. It aims at producing reliable
predictions for the unlabeled nodes. The student model is
a basic GCN model and it is trained over the reliable nodes,

Algorithm 3 Reliable Data Distillation

Require:

Dataset: 𝑋 and 𝑌 ;
𝑇 : Number of base GCNs;
𝛽 : Controls the proportion of knowledge transfer;
𝛾 : Controls the strength of edge regularization;
Graph G = (V, E);

Ensure:

The boosted classifier:𝐻𝑇
1: 𝑡 = 1;
2: ℎ1 ← GCN(V, E)
3: ∀𝒙 𝒊, 𝐼1 (𝒙 𝒊) = −𝒉1 (𝒙 𝒊) log𝒉1 (𝒙 𝒊)
4: 𝛼1 = 1∑𝑁

𝑖=1 𝐼1 (𝒙𝒊)𝑃𝑟 (𝑥𝑖 )

5: Update 𝐻1 with ℎ1 and 𝛼1
6: for 𝑡 = 2 to 𝑇 do

7: UpdateVr and Er in each epoch
8: for 𝑣𝑖 inVl do
9: L1+ = −𝒚𝒊 log𝒉𝒕 (𝒙 𝒊)
10: end for

11: for 𝑣𝑖 inVb do

12: L2+ = ‖𝒇𝒕 (𝒙 𝒊) − 𝑭𝒕−1(𝒙 𝒊)‖2
13: end for

14: for (𝑣𝑖 , 𝑣 𝑗 ) in Er do

15: Lreg+ =
��𝒇𝒕 (𝒙 𝒊) − 𝒇𝒕 (𝒙𝒋)

��2
16: end for

17: L = L1 + 𝛾L2 + 𝛽Lreg
18: ℎ𝑡 ← GCN(V, E, 𝐻𝑡−1, 𝐿)
19: ∀𝒙 𝒊, 𝐼𝑡 (𝒙 𝒊) = 𝒉𝒕 (𝒙 𝒊) log𝒉𝒕 (𝒙 𝒊)
20: 𝛼𝑡 = 1∑𝑁

𝑖=1 𝐼𝑡 (𝒙𝒊)𝑃𝑟𝑡 (𝒙𝒊)

21: Update 𝐻𝑡 with ℎ𝑡 and 𝛼𝑡
22: end for

23: 𝐻𝑇 =
∑𝑇
𝑖=1 𝛼𝑡ℎ𝑡

including both the labeled nodes and the unlabeled nodes
with the node embeddings predicted by the teacher model.

Figure 4 displays our RDD framework with a two-layers
GCN. The teacher model in RDD firstly predicts the last
layer’s node embedding. Secondly, the student measures the
data reliability in each training epoch based on the outputs
of the teacher and student. After getting reliable data, the
student will be trained with two types of data: (i) the labeled
data and (ii) the reliable data the student model misclassified.
Finally, we integrate the student into the ensemble system
to construct a more powerful teacher.
The training procedures of RDD. Algorithm 3 shows

the pseudo-code of our training procedure. A regular GCN
is trained on the training set as the first student model (line
2 in Algorithm 3) and the initial teacher model is generated
from it (line 3-5 in Algorithm 3). The teacher model predicts
outputs for all nodes. The reliability of the teacher outputs
is measured and the outputs are then classified into reliable
and unreliable outputs (line 7 in Algorithm 3). Each GCN

Research 16: Graph and Stream Processing  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1405



Input

G
C
1

Label
G
C
2

Embedding2

Teacher

0
0
…
1
0

Embedding1

Input

G
C
1

G
C
2

Embedding2

SoftmaxStudent

0.1
0.2
…
0.3
0.1

BP

Embedding1

Added to teacher model
Measure the data 
reliability

Learn the reliable 
data knowledge

Softmax

Figure 4: Overview of Reliable Data Distillation

student model is trained under the supervision of the re-
liable knowledge given by the teacher. Once trained, the
student model is integrated into the ensemble system to get
a more powerful teacher model (line 18-21). We propose a
new loss function for the training of the student, which con-
tains the supervised loss L1 (line 8-10 in Algorithm 3), the
unsupervised loss L2 (line 11-13 in Algorithm 3) and the
regularization loss (line 14-16 in Algorithm 3). The training
process is iteratively done 𝑇 times, and we combine 𝑇 base
models with the ensemble.
In the following, we describe more in details two keys

components of our approach: the Reliable Data Driven GCN
(Sec. 4.2) that makes the student model learns from reliable
data; and the Graph Data Based Ensemble (Sec. 4.3) that
considers data reliability and data importance.

4.2 Reliable Data Driven GCN

We now present how we make the full use of the reliability
of the data to improve semi-supervised KD GCN. Node and
edge reliability are used to provide Reliable Node Distillation
and Reliable Edge Distillation respectively.

4.2.1 Reliable Node Distillation. The training process of
reliable node distillation is shown in Figure 5. The teacher
model produces the reliable node set while the student model
produces the incorrect node set. The incorrect nodes here
refer to nodes whose prediction’s entropy by the student’s

model is among the 𝑝-percent highest. What is incorrect is
not necessarily the label, but the corresponding embeddings
which have high entropy. A new loss function is used to
learn over the incorrect predicted data by the student model.

For each node 𝑣𝑖 ∈ Vb, the teacher model𝐻𝑡−1 has learned
it reliably and the current student model ℎ𝑡 has leaned it in-
correctly. Usually, the teacher model is more powerful than
the current student model ℎ𝑡 . To correct what ℎ𝑡 misclassi-
fied, the student model learns its correct labels from 𝐻𝑡−1.

Full dataset

owerful 
teacher

: Labeled dataset

Update in  each epoch

Learn the correct data 

Correct the error
Incorrect set : Reliable set

Update in  each epoch

: Student learns incorrectly 
but teacher learns reliably Intersect

:Unsupervised loss

weak 
student

:Supervised loss

Figure 5: Training process of reliable node distillation

Like the traditional GCN, we firstly apply the supervised
loss on the labeled nodes as shown in Eq. 6.

L1 = −
∑
𝑖

𝒚𝒊 log𝒉𝒕 (𝒙 𝒊),∀𝑣𝑖 ∈ Vl, (6)

To correct its wrong values, the student model ℎ𝑡 tries to
mimic the embedding 𝑭𝒕 (𝒙 𝒊) of each reliable node 𝒙 𝒊 . Simi-
larly to KD, we use a student model ℎ𝑡 to mimic the outputs
of the teacher model 𝐻𝑡−1. However, we have two main dif-
ferences. First, we mimic the whole node embeddings, not
the softmax outputs which are used in KD, since the orig-
inal node embedding contains more information than the
softmax outputs. Besides, the student model ℎ𝑡−1 actively
learns reliable knowledge from the teacher model while tra-
ditional KD just learns all the knowledge without selection.
We formulate our method as a part of loss function:

L2 = ‖𝒇𝒕 (𝒙 𝒊) − 𝑭𝒕−1(𝒙 𝒊)‖2,∀𝑣𝑖 ∈ Vb. (7)

For the training pipeline, we train𝐻𝑡−1 to correct the error
of the student model ℎ𝑡 .

4.2.2 Reliable Edge Distillation. We briefly review the
basic assumptions of graph representation learning study:

Research 16: Graph and Stream Processing  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1406



• Assumption 1. Two nodes with edge connection are
more likely to have the same class.

• Assumption 2. Two nodes with edge connection have
similar node embeddings.

Based on Assumption 1 and 2, the semi-supervised graph
node classification problem can be framed as a Graph Lapla-
cian Regularization [33]:

L = L1 +Lreg,with Lreg =
∑
𝑖, 𝑗

𝐴𝑖, 𝑗 ‖ 𝑓 (𝒙 𝒊) − 𝑓 (𝑥 𝑗 )‖
2, (8)

where L1 denotes the supervised loss and 𝑓 (·) is the label
map function. The formulation of Eq.8 relies onAssumption 1
that connected nodes in the graph are likely to share the same
labels. Besides, there are many graph embedding studies [23,
42] built on top of Assumption 1 and 2 that the connected
nodes are more likely to have the same class and similar
node embeddings. Unfortunately, this assumption differs
from reality in many nodes.
Reliable Edge Distillation is based on an intuition that

when the two connected nodes have different labels, using
a Graph Laplacian Regularization on the edge can highly
degrade the learning. For the concerned edges, it is better not
to use a Graph Laplacian Regularization. Therefore Reliable
Edge Distillation imposes a strict limitation on when to use
the edge: only reliable edges should be used to express nodes

adjacency information. An edge between two nodes is reliable
only if the nodes are themselves reliable and if their predicted
labels belong to the same class.
More concretely, we improve the regularization item in

Eq. 8 by exploiting the edge reliability. Based on the reliable
edges, we minimize the following regularization loss:

Lreg =
��𝒇𝒕 (𝒙 𝒊) − 𝒇𝒕 (𝒙𝒋)

��2,∀(𝑣𝑖 , 𝑣 𝑗 ) ∈ Er . (9)

4.2.3 Reliable Data Driven Optimization . After get-
ting the reliable nodes and edges, we train the GCN with
reliable data driven optimization. The optimization loss func-
tion for student models is in Eq. 10.

L = L1 + 𝛾L2 + 𝛽Lreg, (10)

where 𝛾 controls the proportion of reliable node knowl-
edge ℎ𝑡 should transfer from the former teacher model 𝐻𝑡−1,
and 𝛽 controls the strength of the edge distillation. We use
the standard Back Propagation (BP) algorithm [43] to opti-
mize each GCN and its weights are updated with Eq. 10.

4.3 Graph Data Based Ensemble

After getting the student model ℎ𝑡 , we compute the informa-
tion entropy of node 𝑣𝑖 by(line 19 of Algorithm 3)

𝐼𝑡 (𝒙 𝒊) = −𝒉𝒕 (𝒙 𝒊) log𝒉𝒕 (𝒙 𝒊) (11)

A low 𝐼𝑡 (𝒙 𝒊) means the ℎ𝑡 is confident on its prediction on
node 𝑣𝑖 . To evaluate the performance of each base model. A
higher 𝑃𝑟 (𝒙 𝒊)means the node 𝒙 𝒊 is relativelymore important
since it has a high PageRank value and more nodes need its
help to update their embeddings in the training process. So,
we should give more attention to this node. Considering the
importance of each node, we calculate the weights of each
base model by (line 20 of Algorithm 3)

𝛼𝑡 =
1∑𝑁

𝑖=1 𝐼𝑡 (𝒙 𝒊)𝑃𝑟 (𝒙 𝒊)
(12)

As the GCN can easily overfit while training on the labeled
nodes, we consider the information entropy of the predic-
tions given by ℎ𝑡 on both the labeled and unlabeled nodes,
unlike traditional Boosting techniques which measure 𝛼𝑡 by
the accuracy on the labeled nodes. The higher 𝛼𝑡 the more
confident the model ℎ𝑡 is about its predictions, thus the more
important its role in the final ensemble process.

After 𝑇 iterations, we can get 𝑇 student models. For each
base model ℎ𝑡 , we can accordingly get its weight 𝛼𝑡 , and
then add it to the final ensemble teacher model 𝐻𝑡 . More
concretely, we average the softmax outputs of each base
model ℎ𝑡 with the model weight 𝛼𝑡 , and the ensemble model
𝐻𝑇 is defined as (line 23 of Algorithm 3)

𝐻𝑇 =
𝑇∑
𝑖=1

𝛼𝑡ℎ𝑡 (13)

5 EXPERIMENTS

5.1 Experimental settings

To validate the effectiveness of RDD, we performed an ex-
tensive evaluation in graph-based semi-supervised learning
tasks on several real-world datasets. We first introduce the
four datasets used in the experiments and then list the com-
parative baselines and their settings. Finally, we present the
raw experimental results and discuss them.

Datasets. For comparison, we use the released partitioned
datasets for the three citation networks as in [33] and the
knowledge graph as in [36]. Table 2 displays an overview of
these four datasets.

• Citation networks [33] produce node embeddings by
truncating the Chebyshev polynomial to the first-order
neighborhoods. Each node in the citation networks
represents an article published in the corresponding
journal. Edges between two nodes represent citations
from one article to another, and labels represent the
topic of the article. The feature vector of each node
corresponds to a bag-of-word representation of the
document. For the three citation datasets, 20 instances
are sampled for each class as labeled data, 1000 in-
stances as test data, and the rest are used as unlabeled

Research 16: Graph and Stream Processing  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1407



Table 2: Overview of the Four Datasets

Dataset #Nodes #Features #Edges #Classes

Cora 2708 1433 5429 7
Citeseer 3327 3703 4732 6
Pubmed 19717 500 44338 3
NELL 65755 61278 266144 210

data. We use an additional validation set of 500 labeled
nodes for tuning hyperparameters as in [33].

• Knowledge GraphNELLNELL is a dataset extracted
from the knowledge graph presented in [12]. For this
dataset, each relation is described as a triplet (𝑒1, 𝑟 , 𝑒2)
and will be assigned with separate relation nodes 𝑟1
and 𝑟2 as (𝑒1, 𝑟1) and (𝑒2, 𝑟2), where 𝑒1 and 𝑒2 are enti-
ties and 𝑟 is the relation between them. As set in [33],
we extend the features by assigning a unique one-hot
representation for every node, which results in a 61278-
dim sparse feature vector. For this semi-supervised
task, we consider the label rates of 10% per class in the
training set. An additional validation set of 500 labeled
nodes is used for tuning hyperparameters and we do
not use the labels for model training.

Baseline Methods. To evaluate the performances of the
single model in RDD, we compare our method with four
types of representative methods. First, we compare RDD
with two representative graph-based SSL methods: label
propagation(LP) [62] and Planetoid [54].
As RDD is an ensemble-based method, we first compare

its final ensemble accuracy with other ensemble methods.
Note that our method is not limited to the architecture of the
base model. To make it fair, the base models of each ensemble
method all use a two-layers GCN. We compare RDD with
Bagging [9] and BANs [21].

Usually, the high computation cost renders ensemble mod-
els unsuitable for online prediction. The models are too large
to fit into the main memory, especially for mobile phones.
Still, a single model is much smaller than the ensemble model
it contributing to and can be used as a classifier on its own.
Especially the last single model in RDD has been trained
under the supervision of the most powerful teacher model,
hence it exhibits the best performances in terms of accuracy
among all the base models. We compare the performances
of the last single model in RDD with other start-of-the-art
non-ensemble models: GAT [48], GPNN [36], APPNP [19],
LGCN [22], NGCN [1], and DGCN [64].

Finally, some current methods aim at training a deep GCN
to make full use of the unlabeled data. Since we have the
same motivation, we also compare RDD with those: Res-
GCN [33], Dense-GCN [34] and JK-Net [51].

Settings. We use PyTorch to implement the following
models: GCN, Bagging, BANs, JKNet, ResGCN, DenseGCN
and our RDD models (both single and ensemble). For the
other models (LP, Planetoid, LGCN, GPNN, NGCN, DGCN,
APPNP and GAT), all the experimental results are drawn
from their respective publications.
We train our models using Adam optimizer with a learn-

ing rate of 0.01 for each dataset. We set the 𝑙2 regularization
factor to 5e-4 for the citation networks and to 1e-5 for NELL.
The dropout is applied to all feature vectors with rates of 0.8
to the citation networks and 0.2 to NELL. For the network ar-
chitecture, the dimension of hidden features for the ResGCN
and GCN is 16 for three citation networks and 100 for NELL.
We increase the dimension of hidden features by 20 with each
additional layer for JK-Net and DenseGCN. For example, the
feature dimension of a 6 layers JK-Net is {90, 70, 50, 30, 10, 𝐹 },
where 𝐹 is the number of the classes of the given node clas-
sification task. Note that JK-Net has three aggregators and
we choose the concatenation as the final aggregation layer
since it performs best on the citation networks. We use the
validation data to tune how many layers each method should
use. Besides, for all ensemble methods, we train their base
models with a two-layer GCN.
We tune three hyperparameters in RDD using the vali-

dation set. For each dataset, we set the parameter 𝛽 to 10
and 𝑝 to 40. Besides, to better transfer the knowledge of the
teacher model, we proposed a cosine annealing method to
adjust 𝛾 . Similar to SGDR [37], for the 𝑒th epoch in the total
𝐸 training epochs, we adjust it as,

𝛾 = 𝛾𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∗
(
1 − cos(𝑒 ∗ 𝜋/𝐸)

)
, (14)

We set the corresponding initial values of 𝛾𝑖𝑛𝑖𝑡𝑖𝑎𝑙 to 1,3,3 and
0.01 for the Cora, Citeseer, Pubmed and NELL. At the first
of the training process, the prediction of the student model
is inaccurate, so we should focus less on the L2 and Lreg
loss. By using such a cosine annealing schedule, the student
model converges faster.

For the training budget, we train every single model with
500 epochs and we terminate the training process if the
validation accuracy does not improve for 20 consecutive
steps. Besides, for each ensemble method, we train five base
models and combine their outputs to get the final prediction.
Note that we do not train base models in Bagging on the
sampled data. That is because the labeled data in SSL is
usually limited and sampling the dataset will introduce a
high bias of base models due to the limited training data.

To eliminate random factors, we run each method 10 times
and report the mean prediction accuracy on the test set. We
use numbers to denote classification accuracy in percent.

5.2 Comparison to ensemble methods

We compare our RDD models –both the single model ( la-
beled "RDD(Single)" ) and the ensemble model ( labeled

Research 16: Graph and Stream Processing  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1408



Table 3: The accuracy comparison of RDD ensemble and

single models with other ensemble methods on the citation

and knowledge graph datasets. For each dataset, the best per-

formance of the baselines are underlined. Not only our RDD

ensemble model outperforms its competitors but the single

models achieves highly competitive results.

Models Cora Citeseer Pubmed Nell

Single GCN 81.8 70.8 79.3 83.0
RDD(Single) 84.8 73.6 80.7 85.2

Bagging 84.2 72.6 80.1 85.1
BANs 84.5 72.1 79.8 85.4

RDD(Ensemble) 86.1 74.2 81.5 86.3

"RDD(Ensemble)" )– to the other ensemble methods. The
single regular GCN model is dubbed "Single GCN". After
the ensemble of five base models, we compare the final en-
semble accuracy, and the result is shown in Table 3. Table 3
shows how performs Reliable Data Distillation –both the
single model and the ensemble model– compared to the two
ensemble baselines: Bagging and BANs.
All the ensemble methods outperform the single GCN

by at least 2.3%, 1.3%,0.5% and 2.1% on the four datasets
respectively. It confirms that the use of an aggregation of
multiple base models is less noisy and has its accuracy im-
proved. While there is no clear winner between BANs and
Bagging, the ensemble model of RDD provides the highest
accuracy. For these four datasets, the ensemble RDD out-
performs the other methods in all cases and provides gains
from 0.9% to 1.6% in accuracy compared to BANs and Bag-
ging. Surprisingly, the single RDD model also outperforms
ensemble methods in three of the four datasets, showing the
effectiveness of our approach.
Compared to BANs, RDD improves the diversity by pre-

venting the student model to learn every prediction of the
teacher model as ground truth, making the student more
diverse than its teacher model than it would be otherwise.
On the other hand, although Bagging has a high diversity by
individually training each base model, its base models suffer
from poor quality of prediction.

5.3 Comparison to single model

To demonstrate the performance of the single model, we
compare the accuracy of the last base model of our method
with other state-of-the-art methods. Table 4 shows the results
obtained in terms of accuracy. Note that the best performance
of each column is highlighted in boldface.

Our single RDD model outperforms the most competitive
baseline (whose value is underlined), yielding significant im-
provement on each dataset: it achieves better performances

Table 4: Accuracy (in %) of the predictions of ourRDD single

model and its competitors on the citationnetworks. For each

dataset, the best baseline values are underlined. Our model

outperforms its competitors.

Models Cora Citeseer Pubmed

LP 68.0 45.3 63.0
Planetoid 75.7 64.7 79.5

LGCN 83.3 73.0 79.5
GPNN 81.8 69.7 79.3
NGCN 83.0 72.2 79.5
DGCN 83.5 72.6 80
APPNP 83.3 71.8 80.1
GAT 83.0 72.5 79.0
GCN 81.8 70.8 79.3

RDD(Single) 84.8 73.6 80.7

Table 5: The accuracy comparison of our RDDmodels with

deep GCN models. The best baseline is underlined for each

dataset. Our models outperforms deep GCN models.

Models Cora Citeseer Pubmed Nell

GCN 81.8 70.8 79.3 83.0
JK-Net 81.8 70.7 78.8 84.1
ResGCN 82.2 70.8 78.3 82.1

DenseGCN 82.1 70.9 79.1 83.4

RDD(Single) 84.8 73.6 80.7 85.2

over the current state-of-the-art methods by a margin of
1.3%, 0.6%, and 0.6% on Cora (DGCN), Citeseer (LGCN), and
Pubmed (APPNP), respectively. Note that the base model in
RDD is GCN, and our single model exceeds the original GCN
by 3.0%, 2.8%, and 1.4% when we train it on the Cora, Citeseer,
and Pubmed datasets. While we chose GCN for its simplicity
of implementation and its relatively low computational cost,
our method is not limited to the base model we use, so the
margin can be further improved if we use a more powerful
base model like GAT [48].

Compared with other baselines, every model in RDD can-
not only be trained with a supervised loss but can also learn
the reliable knowledge from a powerful teacher model to
correct what it wrongly classifies. Through the comparison
of the accuracy, we observe that RDD is capable of getting
a high accuracy if we only use a single model, which is an
important asset for mobile devices and online prediction.

5.4 Comparison to deep GCN

To make full use of the unlabeled data in a graph, a naive
algorithm-based method is to train a deep GCN. RDD solves

Research 16: Graph and Stream Processing  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1409



Table 6: Impact of the use of ensemble technique on

the Cora dataset. RDD singlemodels are both accurate

and diverse enough to benefit the most of ensemble

technique.

Accuracy Bagging BANs RDD(Ensemble)

Average 81.8 83.7 84.3
Ensemble 84.2 84.5 86.1
Gain 2.4 0.8 1.8

this problem from a data-driven perspective, and we com-
pared it with ResGCN, DenseGCN, and JK-Net since all of
them aim at training a deeper model. We gradually increase
the layers of each deep GCNs and tune the number of layers
for all compared methods on the validation dataset. Note
that we report the best accuracy in all network architectures,
and the raw results are displayed in Table 5.
ResGCN, DenseGCN, and JK-Net keep more information

about the original features compared with GCN. However,
their performances do exceed GCN by a small margin: they
ignore the difference between each node and thus introduce
the over-smoothing problem for the high degree nodes in the
deep layers. For unlabeled nodes, How to train a deep GCN
to make full use of their potential is still an open problem.

RDD outperforms all its competitors: its accuracy exceeds
the next best competitor model by 2.6%, 2.7%, 1.4% and 1.1%
in Cora, Citeseer, Pubmed and Nell respectively. So, RDD
can make better use of the unlabeled nodes.

5.5 Analysis on Ensemble

To assess the effectiveness of our ensemble strategy, we first
compute the average accuracy obtained by five base models
of Bagging, BANs, and RDD. We compared that value to the
corresponding ensemble accuracy. Table 6 shows the raw
results and the gain for each method.
Among these three ensemble methods, Bagging gets the

highest improved accuracy of 2.4%. Bagging trains each base
model individually, thus it can get the highest diversity. How-
ever, the accuracy of every single model is low if we have
only a few labeled nodes.

The single models of BANs have higher accuracy but, due
to its KD learning which enforces the student model to mimic
the knowledge of the teacher model, the diversity among the
models is poor, leading to a limited increase in accuracy.

On the other hand, RDD takes the best of the two worlds:
its use of reliability increases the diversity among the models
while providing accurate single models. Not only RDD has
the more accurate base models (+0.6% compared to BANs)
but it also benefits from ensemble learning, leading to the

10 20 30 40 50 60 70 80
Labeled data per class

74
76
78
80
82
84
86

Ac
cu

ra
cy

(%
)

GCN
ResGCN
DenseGCN
JK-Net
RDD(Single)

(a) Single model comparison

10 20 30 40 50 60 70 80
Labeled data per class

76

78

80

82

84

86

88

Ac
cu

ra
cy

(%
)

Bagging
BANs
RDD(Ensemble)

(b) Ensemble model comparison

Figure 6: Performance of GCN using different number

of labeled data on the Cora citation network

.
best performances. RDD is thus the most suitable approach
for GCN.

5.6 Analysis on graph sparsity

In this section, we evaluate the impact of the sparsity of
the graph on the test accuracy. To change the sparsity, we
change the number of labeled nodes per class. We compare
RDD to its main competitors. For a fair comparison, we do
not change the validation set and test set in Cora. We found
each class has at least 77 labeled nodes in the training set,
so we set the maximum number of labeled nodes per class
to 77. We calculate the corresponding test accuracy when
the labeled data per class is 5, 10, 15, 20, 35, 50, 65 and 77
respectively. The experiment results are shown in Figure 6.
As shown in Fig. 6(a), RDD(Single) always exceeds the

compared baselines by a large margin when we increase the
number of labeled data per class. This is because the single
model in RDD can get extra supervision from the power-
ful ensemble model (teacher model). When we gradually
increase the number of labeled data per class to 77, Fig. 6(b)
shows the margin of RDD and Bagging decreases, which
means the base models in Bagging also gain from the many
labeled data per class. Both Bagging and RDD outperforms
BANs when the number of labeled data per class is larger
than 35. The student model in BANs mimics all the soft-
max outputs of teacher, leading to the low diversity of base
models and an inaccurate ensemble model.

5.7 Exploration of hyperparameters

We investigate the impact of the hyperparameters on RDD. It
has three hyperparameters: 𝑝 controls the threshold of node
reliability, 𝛾 controls the proportion of knowledge transfer
and 𝛽 controls the strength of the edge regularization. To
evaluate their influence, we change their value and monitor
the impact it causes. Note that we adjust 𝛾 using our defined
cosine annealing method and the 𝛾 we use here means the

Research 16: Graph and Stream Processing  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1410



Table 7: Impact of the hyper-parameters on the accuracy

(in %) on Cora dataset.

Parameters
𝑝=40 𝑝=80

𝛾 = 0 0.5 1 1.5 𝛾 = 0 0.5 1 1.5

𝛽 = 0 84.2 84.8 85.2 85.3 84.2 84.8 85.1 84.9
𝛽 = 5 84.5 84.7 85.4 85.2 84.4 84.9 85.0 85.1
𝛽 = 10 84.4 84.9 86.1 85.5 84.3 84.8 85.3 85.4
𝛽 = 15 84.6 84.7 85.8 85.3 84.5 84.5 85.2 85.1

initial value of 𝛾 . For these experiments, we focus on the
Cora dataset. Table 7 shows the raw results.
For analyzing the influence of 𝑝 , we set 𝑝 to 40 and 80.

We observe from Table 7 that RDD with the setting 𝛾 of
0.4 gets the higher accuracy in most cases. When setting a
high value of 𝑝 , more nodes and edges in a graph will be
considered as reliable. Correspondingly, the student model
in RDD can get more knowledge from the teacher model.
However, the reliability of transferred knowledge may be
reduced, which may introduce a student model with high
bias. Besides, as the student mimics more knowledge from
the teacher model, the diversity of the ensemble system may
be reduced accordingly. As both the accuracy and diversity
are important to an ensemble system, it is inappropriate to
set a high value of 𝑝 .
Setting 𝛾 to 0 means that each student model is trained

without the 𝐿2 loss function. In that case, the model only
benefits from the reliable edge regularization and, as a result,
the test accuracy of RDD suffers from an important drop.
Similarly, if we set 𝛽 to 0, the model will ignore the reliable
edge regularization. In the extreme case where both 𝛾 and
𝛽 are set to 0, every base model is trained individually: it is
similar to Bagging.
Table 7 shows that the three parameters are important.

The best combination on Cora to obtain the best accuracy
of 86.1% is 𝑝 = 40, 𝛾 = 1 and 𝛽 = 10. While changing their
values impact the accuracy, in the large majority of cases
the results are still better than the ones of BANs and Baggin,
showing the superiority of RDD over its competitors.

5.8 Impact of each contribution

To measure the impact of each contribution on the final
accuracy, we test RDD while removing each feature at a time.
We perform predictions with the obtained methods on the
three citation networks datasets. We test RDD: (i) without
the L2 loss function (called "No L2"), (ii) without the Lreg
loss function (called "No Lreg"), (iii) without our ensemble
weighting scheme, i.e. use the same weighting scheme as
Bagging (called "WEW"), (iv) without node reliability (called
"WNR"), (v) without edge reliability (called "WER"), and (vi)

without the knowledge reliability, i.e. without node and edge

Table 8: Impact of the different key contributions of RDD

on the accuracy (%). All of them have an important impact

and cannot be removed without impacting the accuracy.

Method Cora Δ Citeseer Δ Pubmed Δ

No L2 84.4 -1.7 73.5 -0.7 80.2 -1.3
No Lreg 85.2 -0.9 73.6 -0.6 80.9 -0.6

WNR 84.9 -1.2 73.3 -0.9 80.4 -1.1
WER 85.5 -0.6 73.4 -0.8 80.8 -0.7
WKR 84.8 -1.3 73.1 -1.1 79.8 -1.7
WEW 85.3 -0.8 73.7 -0.5 80.9 -0.6

RDD 86.1 – 74.2 – 81.5 –

reliability (called "WKR"). Table 8 displays the results of the
seven methods.

Loss functions. The use of the 𝐿2 loss function has a more
important impact on the accuracy than the 𝐿𝑟𝑒𝑔 loss function.
Knowledge transfer from the teacher knowledge plays is thus
of the most importance.

Ensemble weighting scheme. Compared with the weighting
scheme used in Bagging, our method improves the accuracy
in all datasets. This is because we calculate the model weight
according to node importance and prediction confidence.

Reliability cannot be overlooked. Reliability has a profound
impact on the accuracy of the system. It worth noting that the
node reliability contributes the most: for example on Cora
when the node reliability is removed, the additional removal
of the edge reliability decreases the accuracy by only 0.1%.
This shows that, on the Cora dataset, most of the knowledge
provided by the edge reliability is already contained in the
node reliability. On PubMed, this value increases to 0.6%,
showing that knowledge reliability cannot be reduced to the
sole node reliability but that both notions are useful.
There is no clear winner between 𝐿2 loss function and

knowledge reliability, showing that both methods play an
important part in RDD.

5.9 Efficiency analysis

Since RDD updates the reliable nodes and edges in each
epoch, the training time will increase accordingly. It is nec-
essary to analyze the extent to which the extra computation
can affect efficiency. To achieve the accuracy of 84% on Cora,
we report the training time each method needs on a GPU.
The results are shown in Table 9.

Bagging has the fastest training time since both RDD and
BANs rely on KDwhich requires a longer training time. RDD
is slower due to its more elaborated training. RDD takes
roughly twice the amount of time to train a single model.

Research 16: Graph and Stream Processing  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1411



Table 9: Training time using different ensemble methods

on the cora dataset.

Bagging BANs RDD(Ensemble)

Average time per model (s) 2.032 2.652 4.158
Number of base models 4 3 2

Total time (s) 8.128 7.956 8.316

However, as seen in Sec. 5.5, RDD needs fewer base models
to reach an accuracy of 84% than its competitors: 4 for Bag-
ging, 3 for BANS and only 2 for RDD. This leads to similar
training time to achieve satisfactory performances.

6 RELATEDWORKS

Graph data has been widely studied in recent years [28, 38,
40], and a large number of graph-based semi-supervised
learning methods have been proposed since labeling an en-
tire graph is extremely time-consuming. Among these meth-
ods, most of them make the cluster assumption that nearby
nodes are likely to have the same labels [15]. Based on this
idea, a series of works has been proposed in recent years.
For example, we can learn a smooth low-dimensional em-
bedding for each node with Markov random walks [45] and
spectral kernels [58]. Besides, as a type of low-pass graph fil-
tering [18], the label propagation [62] and its variants [5, 61]
are also very popular.
The feature vectors of each node also contain much use-

ful information, so many methods were proposed to jointly
model graph structures and node features. A commonly used
method is to regularize a supervised learner with the regu-
larization. For example, Manifold regularization [3] exploits
the geometry of the marginal distribution that generates
the data and incorporates it as an additional regularization
term. Besides, both deep semi-supervised embedding [49]
and Planetoid [54] regularize a neural network with a Lapla-
cian regularizer or an embedding-based regularizer.

Currently, the neural networks on the graph have attracted
much attention due to its great performances [16, 53]. By in-
troducing filters from the perspective of graph signal process-
ing [44], a variant of graph convolution [10] is well designed
for GCN. Accordingly, there are more and more improve-
ments, expansions and approximations on spectral-based
GCNs [50]. However, the spectral methods usually handle
the whole graph simultaneously, and thus they are difficult
to parallel or scale to large graphs.

To solve this problem, Spatial-basedGCNs formulate graph
convolutions as aggregating node features from neighbors.
For example, Graphsage [24] samples the neighborhoods for
each node, and then updates its feature by aggregating the
adjacent information. Together with sampling strategies, the
computation of Graphsage can be performed in a batch of

nodes instead of the whole graph, thus it can be efficiently
implemented in a large graph.

Based on these two types of GCN, many alternative GCNs
have been proposed in the recent years, some representa-
tive methods include GAT [48], GPNN [36], APPNP [19],
LGCN [22], NGCN [1] and DGCN [64]. However, due to the
over-smoothing problem [35], these approaches cannot con-
verge well using a deep architecture, thus limits the usage of
the unlabeled nodes. Some recent algorithms are proposed
to solve this problem, such as ResGCN [33], DenseGCN [34]
and JK-Net [51].
Instead of finding a deep architecture, we consider this

problem from a data perspective. Based on KD, we train each
student model under the supervision of the teacher, and then
the student can actively learn the transferred knowledge to
correct what it learns incorrectly on both the labeled and
unlabeled data. Compared with current GCNs, our method
can take better advantage of the unlabeled nodes.

7 CONCLUSION

GCN is widely used in many applications, but it fails to use
the full potential of the unlabeled nodes in a Semi-Supervised
Learning task. In this paper, we proposed Reliable Data Distil-
lation, a semi-supervised learning GCN learning method that
makes better use of the unlabeled nodes. We introduced the
notion of node and edge reliability in a graph. Using those
notions, we designed a KD model, dubbed Reliable Data Dis-
tillation, which improves the learning by focusing on the
learning of the student on reliable knowledge only. The ob-
tained models are then combined into an ensemble learning
method that outperforms the use of a single model. Our
extensive evaluation on several real-world datasets demon-
strated that Reliable Data Distillation –both the single and
the ensemble models– outperforms its competitors by a sig-
nificant margin on the node classification task.

ACKNOWLEDGMENTS

This work is supported by NSFC (No. 61832001, 61702015,
61702016, U1936104), the National Key Research and Devel-
opment Program of China (No. 2018YFB1004403), Beijing
Academy of Artificial Intelligence (BAAI), and PKU-Tencent
joint research Lab. Lei Chen’s work is partially supported
by the Hong Kong RGC GRF Project 16214716, CRF Project
C6030-18GF, AOE Project AoE/E-603/18, China NSFC No.
61729201, Guangdong Basic and Applied Basic Research
Foundation 2019B151530001, Hong Kong ITC ITF grants
ITS/044/18FX and ITS/470/18FX, Didi-HKUST joint research
lab project, Microsoft Research Asia Collaborative Research
Grant and Wechat and Webank Research Grant. Yingxia
Shao is the corresponding author, and the first two authors
contributed equally.

Research 16: Graph and Stream Processing  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1412



REFERENCES
[1] Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee.

2019. N-GCN: Multi-scale Graph Convolution for Semi-supervised

Node Classification. In Proceedings of the Thirty-Fifth Conference on

Uncertainty in Artificial Intelligence, UAI 2019, Tel Aviv, Israel, July 22-25,

2019. 310.

[2] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Hrayr Harutyunyan,

Nazanin Alipourfard, Kristina Lerman, Greg Ver Steeg, and Aram

Galstyan. 2019. Mixhop: Higher-order graph convolution architectures

via sparsified neighborhood mixing. arXiv preprint arXiv:1905.00067

(2019).

[3] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. 2006. Manifold

regularization: A geometric framework for learning from labeled and

unlabeled examples. Journal of machine learning research 7, Nov (2006),

2399–2434.

[4] Robert M Bell, Yehuda Koren, and Chris Volinsky. 2010. All together

now: A perspective on the netflix prize. Chance 23, 1 (2010), 24–29.

[5] Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. 2006. 11 label

propagation and quadratic criterion. (2006).

[6] Iwo Białynicki-Birula and Jerzy Mycielski. 1975. Uncertainty rela-

tions for information entropy in wave mechanics. Communications in

Mathematical Physics 44, 2 (1975), 129–132.

[7] Stephen Bonner, Ibad Kureshi, John Brennan, Georgios Theodoropou-

los, Andrew Stephen McGough, and Boguslaw Obara. 2019. Exploring

the Semantic Content of Unsupervised Graph Embeddings: An Empir-

ical Study. Data Science and Engineering 4, 3 (2019), 269–289.

[8] Leo Breiman. 1996. Bagging predictors. Machine learning 24, 2 (1996),

123–140.

[9] Leo Breiman. 1996. Stacked regressions. Machine learning 24, 1 (1996),

49–64.

[10] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013.

Spectral networks and locally connected networks on graphs. arXiv

preprint arXiv:1312.6203 (2013).

[11] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. 2006.

Model compression. In Proceedings of the 12th ACM SIGKDD inter-

national conference on Knowledge discovery and data mining. ACM,

535–541.

[12] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Este-

vam R Hruschka, and Tom M Mitchell. 2010. Toward an architecture

for never-ending language learning. In Twenty-Fourth AAAI Conference

on Artificial Intelligence.

[13] Arjun Chandra, Huanhuan Chen, and Xin Yao. 2006. Trade-off between

diversity and accuracy in ensemble generation. In Multi-objective

machine learning. Springer, 429–464.

[14] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. 2009. Semi-

supervised learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE

Transactions on Neural Networks 20, 3 (2009), 542–542.

[15] Olivier Chapelle and Alexander Zien. 2005. Semi-supervised classi-

fication by low density separation.. In AISTATS, Vol. 2005. Citeseer,

57–64.

[16] Hongxu Chen, Hongzhi Yin, Tong Chen, Quoc Viet Hung Nguyen,

Wen-Chih Peng, and Xue Li. 2019. Exploiting Centrality Information

with Graph Convolutions for Network Representation Learning. In

2019 IEEE 35th International Conference on Data Engineering (ICDE).

IEEE, 590–601.

[17] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree

boosting system. In Proceedings of the 22nd acm sigkdd international

conference on knowledge discovery and data mining. ACM, 785–794.

[18] Venkatesan N Ekambaram, Giulia Fanti, Babak Ayazifar, and Kan-

nan Ramchandran. 2013. Wavelet-regularized graph semi-supervised

learning. In 2013 IEEE Global Conference on Signal and Information

Processing. IEEE, 423–426.

[19] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation

learning with PyTorch Geometric. arXiv preprint arXiv:1903.02428

(2019).

[20] Fangcheng Fu, Jiawei Jiang, Yingxia Shao, and Bin Cui. 2019. An

Experimental Evaluation of Large Scale GBDT Systems. PVLDB 12, 11

(2019), 1357–1370.

[21] Tommaso Furlanello, Zachary C Lipton, Michael Tschannen, Laurent

Itti, and Anima Anandkumar. 2018. Born again neural networks. arXiv

preprint arXiv:1805.04770 (2018).

[22] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. 2018. Large-scale

learnable graph convolutional networks. In Proceedings of the 24th

ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining. ACM, 1416–1424.

[23] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature

learning for networks. In Proceedings of the 22nd ACM SIGKDD in-

ternational conference on Knowledge discovery and data mining. ACM,

855–864.

[24] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive repre-

sentation learning on large graphs. In Advances in Neural Information

Processing Systems. 1024–1034.

[25] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the

knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015).

[26] Thomas Hoch. 2015. An Ensemble Learning Approach for the Kaggle

Taxi Travel Time Prediction Challenge.. In DC@ PKDD/ECML.

[27] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and

Kilian Q Weinberger. 2017. Snapshot ensembles: Train 1, get m for

free. arXiv preprint arXiv:1704.00109 (2017).

[28] Pramod Jamkhedkar, Theodore Johnson, Yaron Kanza, Aman Shaikh,

NK Shankaranarayanan, and Vladislav Shkapenyuk. 2018. A Graph

Database for a Virtualized Network Infrastructure. In Proceedings of

the 2018 International Conference on Management of Data. ACM, 1393–

1405.

[29] Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. 2019. Semi-

Supervised Learning With Graph Learning-Convolutional Networks.

In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 11313–11320.

[30] Jiawei Jiang, Bin Cui, Ce Zhang, and Fangcheng Fu. 2018. DimBoost:

Boosting Gradient Boosting Decision Tree to Higher Dimensions. In

Proceedings of the 2018 International Conference on Management of

Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018.

1363–1376.

[31] Jie Jiang, Jiawei Jiang, Bin Cui, and Ce Zhang. 2017. TencentBoost: A

Gradient Boosting Tree System with Parameter Server. In 33rd IEEE

International Conference on Data Engineering, ICDE 2017, San Diego,

CA, USA, April 19-22, 2017. 281–284.

[32] Reza Khatami, Giorgos Mountrakis, and Stephen V Stehman. 2017.

Mapping per-pixel predicted accuracy of classified remote sensing

images. Remote Sensing of Environment 191 (2017), 156–167.

[33] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification

with graph convolutional networks. arXiv preprint arXiv:1609.02907

(2016).

[34] Guohao Li, Matthias Müller, Ali Thabet, and Bernard Ghanem. 2019.

Can GCNs Go as Deep as CNNs?. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision. 29–38.

[35] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights

into graph convolutional networks for semi-supervised learning. In

Thirty-Second AAAI Conference on Artificial Intelligence.

[36] Renjie Liao, Marc Brockschmidt, Daniel Tarlow, Alexander L Gaunt,

Raquel Urtasun, and Richard Zemel. 2018. Graph partition neu-

ral networks for semi-supervised classification. arXiv preprint

arXiv:1803.06272 (2018).

Research 16: Graph and Stream Processing  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1413



[37] Ilya Loshchilov and Frank Hutter. 2016. Sgdr: Stochastic gradient

descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016).

[38] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo

Kyrola, and Joseph MHellerstein. 2012. Distributed GraphLab: a frame-

work for machine learning and data mining in the cloud. Proceedings

of the VLDB Endowment 5, 8 (2012), 716–727.

[39] Yucen Luo, Jun Zhu, Mengxi Li, Yong Ren, and Bo Zhang. 2018. Smooth

Neighbors on Teacher Graphs for Semi-Supervised Learning. In 2018

IEEE Conference on Computer Vision and Pattern Recognition, CVPR

2018, Salt Lake City, UT, USA, June 18-22, 2018. 8896–8905.

[40] Anil Pacaci and M Tamer Özsu. 2019. Experimental Analysis of Stream-

ing Algorithms for Graph Partitioning. In Proceedings of the 2019 Inter-

national Conference on Management of Data. ACM, 1375–1392.

[41] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.

1999. The PageRank citation ranking: Bringing order to the web. Techni-

cal Report. Stanford InfoLab.

[42] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk:

Online learning of social representations. In Proceedings of the 20th

ACM SIGKDD international conference on Knowledge discovery and data

mining. ACM, 701–710.

[43] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1985.

Learning internal representations by error propagation. Technical Report.

California Univ San Diego La Jolla Inst for Cognitive Science.

[44] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and

Pierre Vandergheynst. 2013. The emerging field of signal processing

on graphs: Extending high-dimensional data analysis to networks and

other irregular domains. IEEE signal processing magazine 30, 3 (2013),

83–98.

[45] Martin Szummer and Tommi Jaakkola. 2002. Partially labeled classifi-

cation with Markov random walks. In Advances in neural information

processing systems. 945–952.

[46] Antti Tarvainen and Harri Valpola. 2017. Mean teachers are better role

models:Weight-averaged consistency targets improve semi-supervised

deep learning results. In Advances in neural information processing

systems. 1195–1204.

[47] Gusi Te, Wei Hu, Amin Zheng, and Zongming Guo. 2018. Rgcnn:

Regularized graph cnn for point cloud segmentation. In Proceedings of

the 26th ACM international conference on Multimedia. 746–754.

[48] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana

Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention net-

works. arXiv preprint arXiv:1710.10903 (2017).

[49] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert.

2012. Deep learning via semi-supervised embedding. In Neural Net-

works: Tricks of the Trade. Springer, 639–655.

[50] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi

Zhang, and Philip S Yu. 2019. A comprehensive survey on graph neural

networks. arXiv preprint arXiv:1901.00596 (2019).

[51] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation learn-

ing on graphs with jumping knowledge networks. arXiv preprint

arXiv:1806.03536 (2018).

[52] Yan Yan, Zhongwen Xu, Ivor W Tsang, Guodong Long, and Yi Yang.

2016. Robust semi-supervised learning through label aggregation. In

Thirtieth AAAI Conference on Artificial Intelligence.

[53] Hongxia Yang. 2019. AliGraph: A Comprehensive Graph Neural Net-

work Platform. In Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining. ACM, 3165–3166.

[54] Zhilin Yang, WilliamW Cohen, and Ruslan Salakhutdinov. 2016. Revis-

iting semi-supervised learning with graph embeddings. arXiv preprint

arXiv:1603.08861 (2016).

[55] Qi Ye, Changlei Zhu, Gang Li, Zhimin Liu, and FengWang. 2018. Using

Node Identifiers and Community Prior for Graph-Based Classification.
Data Science and Engineering 3, 1 (2018), 68–83.

[56] Minji Yoon, Jinhong Jung, and U Kang. 2018. Tpa: Fast, scalable,

and accurate method for approximate random walk with restart on

billion scale graphs. In 2018 IEEE 34th International Conference on Data

Engineering (ICDE). IEEE, 1132–1143.

[57] Cha Zhang and Yunqian Ma. 2012. Ensemble machine learning: methods

and applications. Springer.

[58] Tong Zhang and Rie Kubota Ando. 2006. Analysis of spectral kernel de-

sign based semi-supervised learning. In Advances in neural information

processing systems. 1601–1608.

[59] Wentao Zhang, Jiawei Jiang, Yingxia Shao, and Bin Cui. 2020. Snapshot

boosting: a fast ensemble framework for deep neural networks. Sci.

China Inf. Sci. 63, 1 (2020), 112102.

[60] Kai Zhong, Guorui Feng, Liquan Shen, and Jun Luo. 2018. Deep learn-

ing for steganalysis based on filter diversity selection. SCIENCE CHINA

Information Sciences 61, 12 (2018), 129105:1–129105:3.

[61] Dengyong Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and

Bernhard Schölkopf. 2004. Learning with local and global consistency.

In Advances in neural information processing systems. 321–328.

[62] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. 2003. Semi-

supervised learning using gaussian fields and harmonic functions. In

Proceedings of the 20th International conference on Machine learning

(ICML-03). 912–919.

[63] Xiaojin Jerry Zhu. 2005. Semi-supervised learning literature survey.

Technical Report. University of Wisconsin-Madison Department of

Computer Sciences.

[64] Chenyi Zhuang and Qiang Ma. 2018. Dual graph convolutional net-

works for graph-based semi-supervised classification. In Proceedings

of the 2018 World Wide Web Conference. International World Wide Web

Conferences Steering Committee, 499–508.

Research 16: Graph and Stream Processing  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1414




