
Lasagne: A Multi-Layer Graph Convolutional
Network Framework via Node-aware Deep

Architecture
(Extended Abstract)

Xupeng Miao†$ Wentao Zhang†$ Yingxia Shao‡ Bin Cui†¶ Lei Chen§ Ce Zhang� Jiawei Jiang�
† School of Computer Science & Key Lab of High Confidence Software Technologies (MOE), Peking University

¶Institute of Computational Social Science, Peking University (Qingdao)
‡School of Computer Science, BUPT, §Department of CSE, HKUST, �ETH Zurich, $Tencent Inc.

†{xupeng.miao, wentao_zhang, bin.cui}@pku.edu.cn
‡shaoyx@bupt.edu.cn §leichen@cse.ust.hk �{ce.zhang, jiawei.jiang}@inf.ethz.ch

Abstract—In this paper, we propose Lasagne, a novel multi-
layer graph convolutional network (GCN) framework to over-
come the over-smoothing problem and realize the full poten-
tials of deep GCNs. We analyze how node localities affect the
information propagation in GCN, propose an adaptive novel
node aggregation mechanism and further demystify from a
mutual information view. Evaluation results on both real-world
benchmark data sets and large-scale industrial production data
sets show Lasagne significantly outperforms the state-of-the-
art methods without considering the node locality.

I. INTRODUCTION

GCNs [1], [2] are becoming more and more attractive in
the graph data management community. They generalize
CNNs by applying the “graph convolution” operation on
the neighbors of a node to obtain the node embedding
layer by layer. With the rapid growth of graph data,
stacking multiple GCN layers with a deep architecture
becomes promising to learn complex node representations
at different levels of abstraction.

However, deep GCNs often achieve the best perfor-
mance with limited depth even on large graphs [3]. The
degradation of learning occurs due to the over-smoothing
problem, in which the output features may be over-
smoothed and nodes may become indistinguishable.

(a) “central” node (b) “non-cnetral” node

Fig. 1. Illustration of the nodes (red) with different localities and their
2-hop neighborhoods (blue).

In this work, we surprisingly notice that the node locality
on the graph can be used to reduce the information
loss caused by the over-smoothing problem. As shown

in Figure 1, central nodes and non-central nodes lead
to different number of neighborhoods within the same
hops. Therefore, we propose Lasagne, the node-aware
architecture to adaptively aggregate the node embeddings
for different nodes in a layer level, which makes the
architecture fundamentally different from previous studies
forcing all nodes using the same network depth. We further
demystify the model from a mutual information view and
confirm that our approach preserves more useful informa-
tion across layers than vanilla GCN and its variants.

II. PROBLEM DEFINITION

For the input undirected graph G = (V ,E) with N nodes
vi ∈ V , edges (vi , vj) ∈ E , let AAA ∈ �N ×N be the adjacency
matrix and XXX ∈ �N ×M be the node feature matrix, where
M is the dimension of the attributive features. GCN follows
the layer-wise propagation rule. At layer l , the output is
the hidden representation HHH (l):

HHH (l) = δ(ÂAAHHH (l−1)WWW (l)), (1)

where ÂAA = �DDD − 1
2 �AAA �DDD − 1

2 and �AAA = AAA + III N . III N is the iden-
tity, �DDD i i =
∑

j
�AAAi j and WWW (l) is a layer-specific trainable

weight matrix. δ(·) denotes an activation function, such
as ReLU(·) =max(0, ·). HHH (l−1) is the input of l th layer and
HHH (0) = XXX . An L-layer GCN makes predictions with HHH (L).

III. METHODS

Overview. We illustrate the architecture of Lasagne in
Figure 2. The dense connection makes each layer collects
information from different hops of neighbors and becomes
a unique convolutional filter based on the previous layer,
which is similar to the scheme in CNNs. It not only helps
to reduce the gradients vanishment but also preserves the
node representations at different levels of abstraction and
prevents the information loss. Considering the different
node localities, we propose a layer aggregator structure
and design three different node-aware aggregators. They
can automatically learn the hidden representations from

1561

2022 IEEE 38th International Conference on Data Engineering (ICDE)

2375-026X/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDE53745.2022.00157

20
22

 IE
EE

 3
8t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
(IC

DE
) |

 9
78

-1
-6

65
4-

08
83

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

DE
53

74
5.

20
22

.0
01

57

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 02:01:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The main architecture of Lasagne.

the needed layers respectively for each node, which helps
to alleviate the over-smoothing problem to some extent.

Layer Aggregator. Figure 2 shows the layer aggregator
after each layer’s output. It aggregates all previous layers’
hidden representations and makes up of a dense connec-
tion structure. DenseGCN uses a straightforward vertex-
wise concatenation to densely fuses the input graph with
all the intermediate GCN layer outputs. However, as the
concatenation just treats the node hidden representations
from different layers in the same way, it cannot capture
the node locality. To better utilize different levels of node
abstraction, we propose the node-aware layer aggregators:

HHH (l) = Aggregator(CCC (l), HHH (1), HHH (2), ..., HHH (l)), (2)

where 1< l < L , CCC (l) ∈�N ×l is the weight matrix, enabling
different nodes using a different weighted aggregation for
the previous layers. For the l -th layer’s output of a specific
node vi , the trainable parameter C(l)i , j represents for the
contribution from the j -th layer’s output. In our approach,
we explore three special approaches below.

1) Weighted aggregator: To learn the node preference of
previous layers’ information, we use the trainable weight
matrix CCC (l) to capture the different contribution of pre-
vious layers for each node. The operation is a kind of
weighted-sum on the hidden representations.

2) Max Pooling aggregator: This operation adaptively
captures the most informative layer for each feature coor-
dinate without any additional parameters to learn. It can
be viewed as a special case of weighted aggregator but
scale CCC (l) to the hidden dimension where each column
only has one 1 item and the rest of them are 0.

3) Stochastic aggregator.: We adopt a layer-wise dropout
manner that using the Bernoulli sampling procedure to
aggregate embeddings. Shortening the depth during train-
ing reduces the chain of forward propagation steps and
gradient computations, which strengthens the information
propagation. Specifically, we propose a learnable activa-
tion function for each layer of each node and each item of
CCC (l) becomes an independent Bernoulli random variable.

TABLE I
THE TEST ACCURACY (IN %) ON THE CITATION DATASET. ∗ INDICATES THAT

WE RAN OUR OWN IMPLEMENTATION.

Models Cora Citeseer Pubmed

GPNN 81.8 69.7 79.3
NGCN 83.0 72.2 79.5
DGCN 83.5 72.6 80

DropEdge 82.8 72.3 79.6
STGCN 83.6 72.6 79.5

DGI 82.3±0.6 71.8±0.7 76.8±0.6
GMI 82.7±0.2 73.0±0.3 80.1±0.2
GIN 77.6±1.1 66.1±0.9 77.0±1.2
SGC 81.0±0.0 71.9±0.1 78.9±0.0

LGCN 83.3±0.5 73.0±0.6 79.5±0.2
APPNP 83.3±0.5 71.8±0.5 80.1±0.2

GAT 83.0±0.7 72.5±0.7 79.0±0.3
Pairnorm∗ 81.4±0.6 68.5±0.9 79.1±0.5

ADSF∗ 83.8±0.5 72.8±0.7 80.1±0.8
MixHop∗ 82.1±0.4 71.4±0.8 80.0±1.1
MADReg∗ 82.3±0.8 71.6±0.9 79.5±0.6

GCN∗ 81.8±0.5 70.8±0.5 79.3±0.7
JK-Net∗ 81.8±0.5 70.7±0.7 78.8±0.7

ResGCN∗ 82.2±0.6 70.8±0.7 78.3±0.6
DenseGCN∗ 82.1±0.5 70.9±0.8 79.1±0.9

Lasagne (Weighted)∗ 84.1±0.2 73.2±0.5 79.5±0.4
Lasagne (Stochastic)∗ 84.2±0.5 73.1±0.6 80.2±0.5

Lasagne (Max pooling)∗ 84.1±0.8 73.3±0.5 79.6±0.6

IV. EXPERIMENTS

End-to-end Comparison. We compare our method with
20 representative state-of-the-art methods on benchmark
datasets. Table I shows that Lasagne outperforms the
baselines by a significant margin (e.g., o.4% on Cora,
0.3% on Citeseer and 0.1% on Pubmed). Besides, different
aggregators may result in different performance.

Model Interpretation We also the mutual information
between the last layer’s hidden representation and the
input feature. The results of a 10-layer Lasagne and other
baselines on Cora shows that, our method indeed helps
deep GCN to preserve more information than other ap-
proaches, thus improving the model effectiveness. More
detailed experimental results are in [4].

ACKNOWLEDGEMENT

This work is supported by the National Natural Sci-
ence Foundation of China under Grant (No. 61832001,
U1936104), Beijing Academy of Artificial Intelligence
(BAAI), PKU-Baidu Fund 2019BD006, and PKU-Tencent
Joint Research Lab.

REFERENCES

[1] W. Zhang, X. Miao, Y. Shao, J. Jiang, L. Chen, O. Ruas, and
B. Cui, “Reliable data distillation on graph convolutional network,”
in SIGMOD. ACM, 2020, pp. 1399–1414.

[2] X. Miao, H. Zhang, Y. Shi, X. Nie, Z. Yang, Y. Tao, and B. Cui,
“Het: Scaling out huge embedding model training via cache-enabled
distributed framework,” in Proc. VLDB Endow., 2022.

[3] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in ICLR, 2017.

[4] X. Miao, W. Zhang, Y. Shao, B. Cui, L. Chen, C. Zhang, and J. Jiang,
“Lasagne: A multi-layer graph convolutional network framework via
node-aware deep architecture,” TKDE, pp. 1–1, 2021.

1562

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 06,2022 at 02:01:30 UTC from IEEE Xplore. Restrictions apply.

