
Topic 2: Combinatorics: Review, Linear Recurrence Lecture Notes
CS 41100 - CP3 Competitive Programming III (Spring 2024) Purdue University
Instructor: Zhongtang Luo Date: February 3, 2024

Notes Preparer: Zhongtang Luo

1 Look for Patterns!

1.1 Become OEIS

Sample Problem: Pyramid
Link: https://vjudge.net/problem/CodeForces-101981G

In problems like these, we need to observe that there is one (or two) input(s) and one output. Maybe we can bash
possible sequences in our head! (or in a non-ICPC style contest, refer to OEIS)

Common sequences to look for are listed below:

• Binomial Coefficients (look at the various identities listed)

• Pascal’s Triangle

• Catalan Numbers

• Stirling Numbers

• A common trick while recognizing sequences is to look at differences and possibly, difference of differences.

Something that could help is simply listing out the first 10-15 numbers in the above sequences (write code to generate
more!) and checking for possible patterns that correlate to the sequence.

There are a lot of ways to recognize the sequence listed in this particular problem but the simplest sequence that
could be found is just (𝑛+3

4 ). (Look out for modular arithmetic in this problem!)

An AC solution to the problem: Submission

1.2 Or Cheat (kinda!)
There is a complex algorithm that can find out a linear recurrence (if it exists) associated with the given sequence.

The description of the algorithm can be found here: Berlekamp-Massey Algorithm.
The template for the algorithm can be found here: Template.

Try plugging the annoying sequence into this algorithm in dire situations before giving up!

1

https://vjudge.net/problem/CodeForces-101981G
https://oeis.org
https://en.wikipedia.org/wiki/Binomial_coefficient
https://en.wikipedia.org/wiki/Pascal%27s_triangle
https://en.wikipedia.org/wiki/Catalan_number
https://en.wikipedia.org/wiki/Stirling_number#:~:text=Stirling%20numbers%20express%20coefficients%20in,the%20Pochhammer%20symbol)%20as%20polynomials.&text=with%20(signed)%20Stirling%20numbers%20of%20the%20first%20kind%20as%20coefficients.&text=for%20the%20rising%20factorial%20are%20also%20often%20used.
https://codeforces.com/gym/101981/submission/243316133
https://en.wikipedia.org/wiki/Berlekamp–Massey_algorithm
https://github.com/zhtluo/LMR/blob/master/src/mathematics/recurrence-relation/linear-recurrence.cpp


2 Basic Combinatorics

2.1 What You Need to Know
A brief list of topics that show up (semi-)regularly is listed here:

• Power, Fast power, Inverse

• Permutation, Combination, Binomial coefficient

• Stars and Bars

The sequences listed in Section 1.1 also contain useful identites that come up often!

Helpful resources on the algorithms/concepts described above are these CF blogs:

• Part 1 - addition / multiplication principle, factorial, permutation and combination, special binomial theorem,
principle of inclusion-exclusion, pigeonhole principle

• Part 2 - Quick power, Fermat’s little theorem, extend-gcd, multiplicative inverse of an integer

2

https://codeforces.com/blog/entry/110376
https://codeforces.com/blog/entry/110390


2.2 Observational Problem involving Combinatorics

Sample Problem: Doremy’s Pegging Game
Link: https://vjudge.net/problem/CodeForces-1764D

This problem involves making a string of observations which will lead to a combinatorial closed form for the answer.
The solution used here is adapted from this comment on the editorial for the problem.

(There is also an O(n) solution to the problem listed here.)

The first observation we should make is that we can use symmetry (which is common in problems involving games/op-
erations on circles).
Let us observe the ending state. The rubber band would be stretched over the blue peg, some corner peg 𝑎 and the other
corner peg 𝑏, forming a sector of the circle with possibly some pegs not used.
So, we can arbitrarily start finding out a closed form by fixing peg 𝑎 to be peg 0. Then, before outputting the answer, we
can multiply it by 𝑛 as we would have computed the same closed form if we had fixed any other peg to be peg 𝑎 than peg 0.

Now, we obviously have to remove all pegs between peg 𝑏 and peg 𝑛 − 1.

We can choose to remove any pegs between [1, 𝑏 − 1] as they don’t change our overall structure.

Another observation to be made is that peg 𝑏 (given that peg 𝑎 is fixed to be peg 0) must be in the range [0, ⌈𝑛
2 ⌉ − 1].

This can be explained by thinking of peg ⌈𝑛
2 ⌉ as diametrically opposite to peg 0 which would mean plucking any peg

after ⌈𝑛
2 ⌉ would collapse the rubber band onto the blue peg.

The last peg to be removed using this ”diametrically opposite” way of thinking must lie in the range [⌈𝑛
2 ⌉, ⌊𝑛

2 + 𝑏⌋].

Now, we have found all the observations that we need to lead us to the final result. The final algorithm is now as
follows:

• Efficiently precompute factorials and binomial coefficients.

• Initialize the answer to 0.

• Start at peg 0 (as peg 𝑎) and enumerate all possible peg 𝑏’s.

• With this structure of pegs 𝑎 and 𝑏, find out the number of pegs that must to be removed, pegs that are optional
to be removed and the last peg that is removed.

• Enumerate the number of optional pegs we remove.

• Now, if we choose 𝑜 optional pegs from the total 𝑂 optional pegs, the number of ways to pick an order of all pegs
to be removed before the last peg is (𝑂

𝑜) × (𝑚 + 𝑜)! where 𝑚 is the number of pegs that must be removed.

• We also have 𝑙 pegs that can be the last peg to be removed. However, these 𝑙 pegs are included in the 𝑚 + 𝑜 pegs.
So, we multiply the above (𝑂

𝑜) × (𝑚 + 𝑜)! by 𝑙
𝑚+𝑜 . Add this to the answer.

• Once we’re done with this, output the answer multiplied by 𝑛.

An AC solution to this problem: Submission

3

https://vjudge.net/problem/CodeForces-1764D
https://codeforces.com/blog/entry/109468?#comment-976144
https://codeforces.com/blog/entry/109468?#comment-976107
https://codeforces.com/contest/1764/submission/243194076


3 Ability to List Formulae

Sample Problem: Sky Full of Stars
Link: https://vjudge.net/problem/CodeForces-997C

For this problem, we just need to have the ability to decompose the problem into disjoint combinatorial formulae.

Here, we want to find out the number of grid colorings with at least one row and one column both. This can be
decomposed into grids which have at least one row colored, grids which have at least one column colored and grids
which have both. Now, this seems like the perfect problem to count and use inclusion-exclusion.

Call grids with at least one column colored 𝑆1, grids with at least one row colored 𝑆2 and grids with at least one
row and at least one column colored 𝑆3.

By symmetry, 𝑆1 = 𝑆2. The final answer is, thus, 𝑆1 + 𝑆2 − 𝑆3 by inclusion-exlusion principle.

𝑆1 = 𝑆2 =
𝑛

∑
𝑖=1

3𝑖 × 3𝑛×(𝑛−1) × (𝑛
𝑖) × (−1)𝑖−1

𝑆3 = 3 ×
𝑛

∑
𝑖=1

𝑛
∑
𝑗=1

3(𝑛−𝑖)×(𝑛−𝑗) × (𝑛
𝑖) × (𝑛

𝑗) × (−1)𝑖+𝑗

However, calculating 𝑆3 takes 𝒪(𝑛2) time to compute which is too slow. However, we can make an observation to
speed this up.

𝑆3 = 3 ×
𝑛

∑
𝑖=1

3(𝑛−𝑖) × (𝑛
𝑖) × (−1)𝑖

𝑛
∑
𝑗=1

3(𝑛−𝑗) × (𝑛
𝑗) × (−1)𝑗

𝑆3 = 3 ×
𝑛

∑
𝑖=1

3(𝑛−𝑖) × (𝑛
𝑖) × (−1)𝑖 × ((3 − 1)𝑛 − 3𝑛)

Now, we can compute all of these in 𝒪(𝑛) time.

An AC submission implementing a different (maybe easier idea) is this: Submission. This implements the idea from
this comment.

4

https://vjudge.net/problem/CodeForces-997C
https://codeforces.com/contest/997/submission/243970556
https://codeforces.com/blog/entry/60357?#comment-441928


4 Linear Recurrence
A lot of problems can be decomposed into a linear recurrence similar to the form:

𝑓 (𝑖) =
𝑘

∑
𝑗=1

𝑐𝑗 × 𝑓 (𝑖 − 𝑗)

There is a way to solve these recurrences quick and easily: Matrix Exponentiation. A helpful blog on this topic is:
Guide on Matrix Exponentiation.

This technique can help us solve easier problems like computing Fibonacci numbers quickly as well as solve harder
problems like finding the number of paths with length 𝑘 in an unweighted undirected graph.

4.1 Spoilers: this is not so easy!

Sample Problem: So Easy!
Link: https://vjudge.net/problem/HDU-4565

For this problem, we see that we can easily compute 𝑆1 = 𝑎 + √𝑏. Now, we can express 𝑆𝑛 in a linear recurrence and
use matrix exponentiation to find out 𝑆𝑛. Observe:

𝑆𝑛+1 = −2𝑎 × 𝑆𝑛 + (𝑎2 − 𝑏) × 𝑆𝑛−1

We can prove that this works as follows:
𝑆𝑛+1 = (𝑎 + √𝑏)𝑆𝑛

2𝑎 × 𝑆𝑛 = (𝑎 + √𝑏)𝑆𝑛 + (𝑎 − √𝑏)𝑆𝑛

= 𝑆𝑛+1 + 𝑎2 − 𝑏

𝑎 + √𝑏
𝑆𝑛

= 𝑆𝑛+1 + (𝑎2 − 𝑏)𝑆𝑛−1

⟹ 𝑆𝑛+1 = −2𝑎 × 𝑆𝑛 + (𝑎2 − 𝑏) × 𝑆𝑛−1

And this is a linear recurrence that can be solved by matrix exponentiation.

5

https://codeforces.com/blog/entry/67776
https://vjudge.net/problem/HDU-4565


Pyramid
The use of the triangle in the New Age practices seems to be very important as it represents the unholy trinity (Satan the
Antichrist and the False Prophet bringing mankind to the New World Order with false/distorted beliefs). The triangle
is of primary importance in all Illuminati realms whether in the ritual ceremonies of the Rosicrucians and Masons or
the witchcraft astrological and black magic practices of other Illuminati followers.

One day you found a class of mysterious patterns. The patterns can be classified into different degrees. A pattern
of degree 𝑛 consists of 𝑛(𝑛 + 1)/2 small regular triangles with side length of 1 all in the same direction. The figure
below shows the pattern of degree 3. All small regular triangles are highlighted.

Since the pattern contains many regular triangles which is very evil and unacceptable, you want to calculate the
number of regular triangles formed by vertices in the pattern so that you can estimate the strength of Illuminati. It is
not necessary that each side of regular triangles is parallel to one side of the triangles. The figure below shows two
regular triangles formed by vertices in a pattern of degree 3.

Since the answer can be very large, you only need to calculate the number modulo 109 + 7.

Input
The first line contains an integer 𝑡 (1 ≤ 𝑡 ≤ 106) — the number of test cases. Each of the next 𝑡 lines contains an integer
𝑛 (1 ≤ 𝑛 ≤ 109) — the degree of the pattern.

Output
For each test case, print an integer in one line — the number of regular triangles modulo 109 + 7.

Examples
Input

6
1
2
3

6



4
5
6

Output

1
5
15
35
70
126

Source
2018-2019 ACM-ICPC Asia Nanjing Regional

7



Doremy’s Pegging Game
Doremy has 𝑛 + 1 pegs. There are 𝑛 red pegs arranged as vertices of a regular 𝑛-sided polygon, numbered from 1 to 𝑛
in anti-clockwise order. There is also a blue peg of slightly smaller diameter in the middle of the polygon. A rubber
band is stretched around the red pegs.

Doremy is very bored today and has decided to play a game. Initially, she has an empty array 𝑎. While the rubber
band does not touch the blue peg, she will:

1. choose 𝑖 (1 ≤ 𝑖 ≤ 𝑛) such that the red peg 𝑖 has not been removed;

2. remove the red peg 𝑖;

3. append 𝑖 to the back of 𝑎.

Doremy wonders how many possible different arrays 𝑎 can be produced by the following process. Since the answer
can be big, you are only required to output it modulo 𝑝. 𝑝 is guaranteed to be a prime number.

game with 𝑛 = 9 and 𝑎 = [7, 5, 2, 8, 3, 9, 4] and another game with 𝑛 = 8 and 𝑎 = [3, 4, 7, 1, 8, 5, 2]

Input
The first line contains two integers 𝑛 and 𝑝 (3 ≤ 𝑛 ≤ 5000, 108 ≤ 𝑝 ≤ 109) — the number of red pegs and the modulo
respectively.

𝑝 is guaranteed to be a prime number.

Output
Output a single integer, the number of different arrays 𝑎 that can be produced by the process described above modulo
𝑝.

Examples
Input

4 100000007

Output

16

Input

1145 141919831

8



Output

105242108

Note
In the first test case, 𝑛 = 4, some possible arrays 𝑎 that can be produced are [4, 2, 3] and [1, 4]. However, it is not
possible for 𝑎 to be [1] or [1, 4, 3].

Source
Codeforces Global Round 24

9



Sky Full of Stars
On one of the planets of Solar system, in Atmosphere University, many students are fans of bingo game.

It is well known that one month on this planet consists of 𝑛2 days, so calendars, represented as square matrix 𝑛 by
𝑛 are extremely popular.

Weather conditions are even more unusual. Due to the unique composition of the atmosphere, when interacting
with sunlight, every day sky takes one of three colors: blue, green or red.

To play the bingo, you need to observe the sky for one month — after each day, its cell is painted with the color of
the sky in that day, that is, blue, green or red.

At the end of the month, students examine the calendar. If at least one row or column contains only cells of one
color, that month is called lucky.

Let’s call two colorings of calendar different, if at least one cell has different colors in them. It is easy to see that
there are 3𝑛⋅𝑛 different colorings. How much of them are lucky? Since this number can be quite large, print it modulo
998244353.

Input
The first and only line of input contains a single integer 𝑛 (1 ≤ 𝑛 ≤ 1000 000) — the number of rows and columns in
the calendar.

Output
Print one number — number of lucky colorings of the calendar modulo 998244353

Examples
Input

1

Output

3

Input

2

Output

63

Input

3

Output

9933

10



Note
In the first sample any coloring is lucky, since the only column contains cells of only one color.

In the second sample, there are a lot of lucky colorings, in particular, the following colorings are lucky:

While these colorings are not lucky:

Source
Codeforces Round 493 (Div. 1)

11



So Easy!
A sequence 𝑆𝑛 is defined as:

𝑆𝑛 = ⌈(𝑎 + √𝑏)𝑛⌉ %𝑚

where 𝑎, 𝑏, 𝑛, and 𝑚 are positive integers. ⌈𝑥⌉ is the ceiling of 𝑥. For example, ⌈3.14⌉ = 4. You, a top coder, are tasked
with calculating 𝑆𝑛.

You, a top coder, say: ”So easy!”

Input
There are several test cases, each test case in one line contains four positive integers: 𝑎, 𝑏, 𝑛, 𝑚. Where 0 < 𝑎, 𝑚 < 215,
(𝑎 − 1)2 < 𝑏 < 𝑎2, 0 < 𝑏, 𝑛 < 231. The input will finish with the end of the file.

Output
For each case, output an integer 𝑆𝑛.

Examples
Input

2 3 1 2013
2 3 2 2013
2 2 1 2013

Output

4
14
4

Source
2013 ACM-ICPC Changsha Invitational

12


	Look for Patterns!
	Become OEIS
	Or Cheat (kinda!)

	Basic Combinatorics
	What You Need to Know
	Observational Problem involving Combinatorics

	Ability to List Formulae
	Linear Recurrence
	Spoilers: this is not so easy!


