
Topic 1: Geometry: Review, Half-plane Intersection, Adaptive Simpson Lecture Notes
CS 41100 - CP3 Competitive Programming III (Spring 2024) Purdue University
Instructor: Zhongtang Luo Date: February 3, 2024

Notes Preparer: Pedro Sugiyama

1 Considerations

1.1 Team Problem Considerations
This week, the contest will be solved in teams of up to three members. This is to help practice for official competitions,
where entering as a team is common. Below are some of the questions each team member should ask themselves before
and during team contests:

• How many problems can be reasonably solved within the time limit?

• Who should solve which problem?

• How can I best help my teammates?

• Reminder: each teammate is allowed to code one problem in class.

Remember: these factors are NOT static can change as time goes on / as your team solves problems.

2 Takeaways from Upsolve
Here’s some of the things we learned from analyzing last week’s problems:

• When the constraints are very small, do not try to waste time with any optimization.

• When solving a Simulation problem, tear down the problem into smaller steps. This will give a clearer view on
the different functions you need to write.

• Utilize symmetry to reduce the amount of computations and edge cases to consider.

3 Geometry!

3.1 Initial Considerations
When solving Geometry problems, a reliable template is necessary. However, one must consider a few things when
analyzing their template:

3.1.1 Completeness

How complete is your template, as in, how many questions can your template alone solve? Good examples of this are
Voronoi Diagrams, discussed as possible solutions to example problems below, and the use of Neural Networks to solve
very specific problems. If these approaches were not part of the template, solving such problems would prove much
more difficult.
A complete template will allow a user to solve all problems that necessitate a very specific data structure or algorithm
to be solved.

1

https://codeforces.com/blog/entry/60825

3.1.2 Understanding

How well do you know your template? Given that a template has the correct approach to solve the problem, how quickly
can you 1. identify and 2. find the code in your template? This is important because knowing what your template allows
you to do will broaden the possibilities you consider when analyzing a problem.

3.1.3 Content

How large is your template? What should you include / exclude? Ultimately, it is up to the user. If you know how to
code Dijkstra’s algorithm from memory, including it in your template will make it unnecessarily long and polluted.
The best way to narrow down what is essential to your template is by making and using your own!

3.2 Precision and Speed Considerations
In most (if not all) Geometry problems, some level of error is expected, as we are dealing with floating point numbers.
Although normally double precision is enough, repeatedly using some operations such as line intersections can lead to
rapid loss of precision. However, using more precision requires a time sacrifice:
A double can support 1̃5 digits, a long double, 3̃0, and a __float128, 6̃0. The performance degrades 4x per precision
increase (i.e. double is 16x slower than __float128).
In general, using a double should suffice. Figuring out, however, if the problem requires more precision or has an
implementation issue requires a lot of skill! For an example where more precision was necessary, read this article.

3.3 Point-based approach
A line / region contains infinite points. Trying to consider all possibilities within that line / region, therefore, is tremen-
dously inefficient and practically impossible. However, if we can define a few key points of interest, the problem
becomes enumerable. In last week’s problem Alice and Bomb, there were three types of points that had to be consid-
ered, making checking all of them a possibility. As long as the amount of points isn’t too large, the problem becomes
computable within the time constraints. Another example is the problem below:

Sample Problem: Birthday Cake
Link: https://vjudge.net/problem/Gym-104114B

Intuition. For this problem, we can realize that the optimal cut must lie on a strawberry. If an optimal cut does
not intersect any strawberry nodes, it can be translated until it intersects a strawberry without decreasing its chocolate
chip count. However, we do not have to consider all strawberries. Consider a convex hull of the strawberries. If the
cut crossed the hull at two points, it would divide the hull into two polygons, where it is guaranteed that a strawberry
vertex exists in each polygon. As such, there would be strawberries in both resulting slices. As such, we only need to
consider intersections with the strawberries that define the hull.

Implementation. First, create a convex hull of strawberries. For each strawberry vertex in the hull, calculate the
optimal cut at that strawberry. To do this, we can employ the sliding window technique. Since each cut divides the
cake in half, we are looking for the 180 degree window that satisfies two conditions:

• Does not contain the previous or next points in the strawberry hull, as this would mean the cut intersects with
the hull at another point.

• Contains the maximum number of chocolate chips as possible.

Again, we can use a point-based approach to simplify this check, as only chocolate chips or adjacent strawberry vertices
should be considered as a starting point for the window. Now, we can repeat this process for each strawberry vertex in
the convex hull to find the best possible cut.

2

https://zhtluo.com/cp/rant-on-incorrect-ecna-2023-c-computational-geometry.html
https://vjudge.net/problem/Gym-104114B

Analysis. Worse-case, all strawberries could be a part of the convex hull. As such, we would have to check each
of the 𝑛 chocolate chip starting points for each of the 𝑚 strawberries, taking 𝑂(𝑛𝑚). This is fast enough to pass, as
𝑛 ≤ 5 ⋅ 105 and 𝑚 ≤ 102.

Sample Problem: Panda Reserve
Link: https://vjudge.net/problem/Gym-498660B

Intuition. This problem looks like a bisection problem, as we are looking to find the minimum acceptable radius
of circles to cover the polygon. Trying to calculate the total area covered by the circles, however, is quite complicated
– the interlapping circles making it almost impossible to do so. How can we change this into a point-based approach?
Consider a circle with radius 𝑟 at some vertex 𝑣1. If the portion of this circle that lies within the polygon overlaps at
its boundary (an arc) with a portion of another circle at 𝑣2, we can be sure that the segment 𝑣1 and 𝑣2 is completely
covered by circles. To check a triangle with vertices 𝑣1, 𝑣2 and 𝑣3, a similar calculation can be performed. For each
arc, it must have some overlap at all points with another arc.

Implementation. Since this problem involves bisection, we must discuss the check function. Using our previously
discussed intuition, we must calculate if each portion of each arc within the polygon has some overlap at all points with
at least one other arc. This can be done by analyzing each arc one by one. For each arc, check its intersection with
all other circles using the circle-circle intersection template. If at any intersection point the arc fails to overlap with at
least one other circle, we must increase the radius. Otherwise, we can try to decrease it.

Analysis. Checking each intersection with all 𝑛 other circles takes 𝑂(𝑛2). Since the bisection should not take more
than 102 iterations to narrow down an acceptable radius, this passes as 𝑛 ≤ 2 ∗ 103.

4 Half Plane
A half plane is a planar region formed of points such that there exists a line where all points stand to one side of it, with
no points on the other side. This can be calculated in 𝑂(𝑛 log(𝑛)), where 𝑛 is the number of points considered. There
are 4 problems solved by this technique: Visibility in the plane, biggest circumference inscribed in a polygon, convex
polygon intersection, and 2D linear programming. For a more detailed explanation, read this article.

Sample Problem: Art Gallery
Link: https://vjudge.net/problem/Baekjoon-3800

Intuition. This is a direct implementation of the Half-Plane technique, as visibility is one of the properties guaran-
teed by the half-plane.
Implementation. Plug the given points into the half-plane template.
Analysis. This passes as there can be at most 1500 points.

4.1 Numerical Integration
When trying to integrate a complicated function, taking the anti-derivative can be very hard and time consuming. We
can numerically approximate the result by adding smaller and smaller rectangles under the graph together. One such
method is Adaptive Simpson. This has two main effects:

• Pro: Taking the anti-derivative is no longer necessary, and the programmer no longer needs a strong understand-
ing of calculus to solve the problem.

• Con: Turns every computation into a precision problem. It becomes difficult to understand if your solution is
correct or if the result is too imprecise.

3

https://vjudge.net/problem/Gym-498660B
https://cp-algorithms.com/geometry/halfplane-intersection.html
https://vjudge.net/problem/Baekjoon-3800

Most times, however, finding the anti-derivative becomes so complicated that numerical integration is much faster
to implement. A few such problems are described below:

Sample Problem: Garden of Thorns
Link: https://naq23.kattis.com/contests/naq23-fall/problems/naq23.gardeno

fthorns

Intuition. First, we must figure out a way to use a point-based approach to solve this problem. Instead of trying to
calculate random placements for the circle of thorns, consider that for a plant at point 𝑝 all centers within the radius 𝑟
of 𝑝 protect the circle. Put simply, all centers that protect 𝑝 lie in a circle of radius 𝑟 centered at 𝑝. If we let 𝐼 be the
intersection between this circle and the rectangle, the probability that a plant is protected will be equal to the area of 𝐼
divided by the area of the rectangle. This process can be repeated for each plant to obtain the expected value.

Implementation. Instead of trying to find the anti-derivative for all circles centered at the different plants, use a nu-
merical integration method such as Adaptive Simpson to approximate the result. Implementation-wise, this is simple,
as we can enumerate each plant and figure out its area quite easily.

Analysis. Even though it is difficult to estimate how quickly Adaptive Simpson runs, as it depends on the desired
𝜀, the small number of plants (10) means this will almost certainly pass given some tweaking.

Sample Problem: Military Maneuver
Link: https://vjudge.net/problem/Gym-104869G

Intuition. For this problem, instead of calculating the expected value of the donut that starts at radius 𝑟1 and ends
at 𝑟2, we instead consider the expected value of the outer circle of radius 𝑟2 and subtract the expected value of the inner
circle of radius 𝑟1. These radii, however, must enclose all enemies within their bounds. In other words, The larger
radius 𝑟2 must enclose all enemies within it while the smaller one, 𝑟1, must not enclose any. Not all pairs of given
enemies fulfill this requirement. Using brute force, we can enumerate all pairs of points to figure out which two are
the farthest / closest, depending on which circle we are considering. However, this is too slow, as it will take 𝑂(𝑛2).
However, we can use the slope trick to compute this in 𝑂(𝑛).

4

https://naq23.kattis.com/contests/naq23-fall/problems/naq23.gardenofthorns
https://naq23.kattis.com/contests/naq23-fall/problems/naq23.gardenofthorns
https://vjudge.net/problem/Gym-104869G

Birthday Cake
How exciting! Today is your little brother’s birthday! That’s why you ordered a huge (1 × 1)-meter cake. It is a special
vanilla cake with 𝑛 sweet chocolate chips and 𝑚 refreshing strawberries.

You show him your awesome surprise, and... bummer! It turns out that he hates fruit! “Of course, how could I
have forgotten?” you say. Nonetheless, he has a sweet tooth for chocolate, so he would be happy if you could cut him
a piece of the cake that contains no strawberries. To make him happy, you’d want to give him a piece having as many
chocolate chips as possible.

The picture above depicts the example test case.

You can only make one cut along a straight line through the cake, and you are not allowed to cut though either
chocolate chips or strawberries. What is the maximum number of chocolate chips that you may give your little brother?

Note: The picture above is for illustration purposes. You should consider both chocolate chips and strawberries to
be infinitesimally small.

Input
The first line of the input contains two positive integers 𝑛 (1 ≤ 𝑛 ≤ 50 000) and 𝑚 (1 ≤ 𝑚 ≤ 100) — the number of
chocolate chips and strawberries, respectively.

The 𝑖-th of the next 𝑛+𝑚 lines contains two decimal numbers 𝑥𝑖 and 𝑦𝑖, (0 < 𝑥𝑖, 𝑦𝑖 < 1), representing the coordinates
of the 𝑖-th ingredient: the first 𝑛 of the ingredients are chocolate chips, and the remaining 𝑚 are strawberries.

All numbers are given with at most 6 decimal places. The locations of all 𝑛 + 𝑚 ingredients are distinct.

Output
Output a single non-negative integer 𝑐, representing the maximum number of chocolate chips that you can give your
little brother after cutting the cake exactly once.

5

Example
Input

5 2
0.2 0.6
0.8 0.6
0.6 0.2
0.1 0.2
0.6 0.8
0.6 0.6
0.5 0.5

Output

3

Source
2022 ICPC Southeastern Europe Regional Contest

6

Panda Reserve
Last month, Sichuan province secured funding to establish the Great Panda National Park, a natural preserve for a
population of more than 1800 giant pandas. The park will be surrounded by a polygonal fence. In order for researchers
to track the pandas, wireless receivers will be placed at each vertex of the enclosing polygon and each animal will be
outfitted with a wireless transmitter. Each wireless receiver will cover a circular area centered at the location of the
receiver, and all receivers will have the same range. Naturally, receivers with smaller range are cheaper, so your goal
is to determine the smallest possible range that suffices to cover the entire park.

As an example, Figure G.1 shows the park described by the first sample input. Notice that a wireless range of 35
does not suffice (a), while the optimal range of 50 covers the entire park (b).

Figure G.1: Illustration of Sample Input 1.

Input
The first line of the input contains an integer 𝑛 (3 ≤ 𝑛 ≤ 2000) specifying the number of vertices of the polygon
bounding the park. This is followed by 𝑛 lines, each containing two integers 𝑥 and 𝑦 (|𝑥|, |𝑦| ≤ 104) that give the
coordinates (𝑥, 𝑦) of the vertices of the polygon in counter-clockwise order. The polygon is simple; that is, its vertices
are distinct and no two edges of the polygon intersect or touch, except that consecutive edges touch at their common
vertex.

Output
Display the minimum wireless range that suffices to cover the park, with an absolute or relative error of at most 10−6.

Example
Input

5
0 0
170 0
140 30
60 30
0 70

7

Output

50

Input

5
0 0
170 0
140 30
60 30
0 100

Output

51.538820320

Input

5
0 0
1 2
1 5
0 2
0 1

Output

1.581138830

Source
2018 ACM-ICPC World Finals

8

Art Gallery
The art galleries of the new and very futuristic building of the Center for Balkan Cooperation have the form of polygons
(not necessarily convex). When a big exhibition is organized, watching over all of the pictures is a big security concern.
Your task is that for a given gallery to write a program which finds the surface of the area of the floor, from which each
point on the walls of the gallery is visible. On the figure 1. a map of a gallery is given in some co-ordinate system. The
area wanted is shaded on the figure 2.

Input
The number of tasks 𝑇 that your program have to solve will be on the first row of the input file. Input data for each task
start with an integer 𝑁, 5 ≤ 𝑁 ≤ 1500. Each of the next 𝑁 rows of the input will contain the co-ordinates of a vertex
of the polygon — two integers that fit in 16-bit integer type, separated by a single space. Following the row with the
co-ordinates of the last vertex for the task comes the line with the number of vertices for the next test and so on.

Output
For each test you must write on one line the required surface — a number with exactly two digits after the decimal
point (the number should be rounded to the second digit after the decimal point).

Example
Input

1
7
0 0
4 4
4 7
9 7
13 -1
8 -6
4 -4

Output

80.00

Source
Southeastern Europe 2002

9

Garden of Thorns
Eddy owns a rectangular garden and has noticed some trespassers stomping through his garden. There are some plants
that he wants to protect. He hires an assistant, Zyra, to patrol and protect his garden.

Zyra cannot be bothered to monitor his garden, so she plants a circle of thorns centered at a randomly chosen
location within the boundaries of his garden. A plant is considered protected if it is strictly inside the circle of thorns -
that is, the distance from the plant to the center of the circle of thorns is less than the circle’s radius. The circle of thorns
may extend outside of the boundary of the rectangular garden, though all plants will be inside or on the boundary of
the garden.

Given the random nature of the placement of Zyra’s circle of thorns, compute the expected value of the plants that
will be protected. Note that Zyra’s circle of thorns does not have to be centered at integer coordinates.

Input
The first line of input contains four integers 𝑛 (1 ≤ 𝑛 ≤ 10), 𝑟 (1 ≤ 𝑟 ≤ 2000), 𝑤 and ℎ (1 ≤ 𝑤, ℎ ≤ 1000), where 𝑛 is
the number of plants in Eddy’s garden, 𝑟 is the radius of Zyra’s circle of thorns, 𝑤 is the width of Eddy’s garden and ℎ
is the height of the garden.

Each of the next 𝑛 lines contains three integers 𝑥 (0 ≤ 𝑥 ≤ 𝑤), 𝑦 (0 ≤ 𝑦 ≤ ℎ) and 𝑣 (1 ≤ 𝑣 ≤ 1000), where (𝑥, 𝑦)
denotes the position of a plant from the lower left corner of Eddy’s garden, and 𝑣 is the value of that plant. No two
plants will be at the same position.

Output
Output a single real number, which is the expected value of plants which will be protected by Zyra’s circle of thorns.
Any answer within an absolute or relative error of 10−6 will be accepted.

Example
Sample Input 1

3 50 100 100
30 10 3
40 10 7
50 90 8

Sample Output 1

8.41906486932450803806204930879

Sample Input 2

2 5 3 4
0 0 10
3 4 15

Sample Output 2

25.0

5 Source
North American Qualifier 2023

10

Military Maneuver
A military maneuver is going on a two-dimensional Cartesian plane, and 𝑛 enemy targets are hiding somewhere on the
battlefield, whose locations are known to our headquarters.

Our headquarters will airdrop a beacon in a rectangular region with sides parallel to the coordinate axes uniformly
at random to expose all the enemy targets to our troops on the battlefield so that our troops can surround all the enemy
targets. The bottom-left corner of the region is at coordinate (𝑥𝑙, 𝑦𝑙) while the top-right corner is at coordinate (𝑥𝑟, 𝑦𝑟).

After being dropped, the beacon will firstly receive two parameters 𝑟 and 𝑅 that satisfy 0 ≤ 𝑟 ≤ 𝑅 from our
headquarters, then scan an annulus region, that is, the region lying between two concentric circles, where the radius of
the inner circle is 𝑟 and that of the outer circle is 𝑅, and finally mark those enemy targets hiding in the scanned region
(including the boundary).

However, the beacon can only scan a unit area in a unit of time, and the commander would like to know the expected
minimum time for the beacon to scan the designated annulus region so that it can mark all the enemy targets.

Input
The first line contains four integers 𝑥𝑙, 𝑦𝑙, 𝑥𝑟, and 𝑦𝑟 (−10 000 ≤ 𝑥𝑙, 𝑦𝑙, 𝑥𝑟, 𝑦𝑟 ≤ 10 000, 𝑥𝑙 < 𝑥𝑟, 𝑦𝑙 < 𝑦𝑟), denoting the
coordinates of the bottom-left and the top-right corners of the rectangular region where the beacon will be dropped.

The second line contains a single integer 𝑛 (2 ≤ 𝑛 ≤ 2 000), denoting the number of enemy targets on the battlefield.
Each of the following 𝑛 lines contains two integers 𝑥 and 𝑦 (−10 000 ≤ 𝑥, 𝑦 ≤ 10 000), denoting an enemy target

located at coordinate (𝑥, 𝑦).
It is guaranteed that no two enemy targets share the same locations.

Output
Output a single real number, indicating the expected minimum time for the beacon to scan the designated annulus
region.

Your answer is acceptable if its absolute or relative error does not exceed 10−6. Formally speaking, suppose that
your output is 𝑎 and the jury’s answer is 𝑏, your output is accepted if and only if |𝑎−𝑏|

max(1,|𝑏|) ≤ 10−6.

Example
Input

0 0 2 2
2
3 1
1 3

Output

8.377580409572781970

Input

0 0 2 2
2
5 1
1 3

Output

37.699111843077518863

11

Note
In the first sample case, if the beacon is dropped to (0.5, 1.5), the minimum time as well as the minimum area of
the feasible annulus region is 4𝜋. The expected minimum time when the beacon dropped in the rectangular region
uniformly at random is 3

8𝜋.

Figure: The feasible annulus region for the beacon at (0.5, 1.5)

Source
The 2023 ICPC Asia Shenyang Regional Contest (The 2nd Universal Cup. Stage 13: Shenyang)

12

	Considerations
	Team Problem Considerations

	Takeaways from Upsolve
	Geometry!
	Initial Considerations
	Completeness
	Understanding
	Content

	Precision and Speed Considerations
	Point-based approach

	Half Plane
	Numerical Integration

	Source

