Non-Prime Factors kattis - nonprimefactors ¿

In many programming competitions, we are asked to find (or count the number of) Prime Factors of an integer i. This is boring. This time, let's count the number of NonPrime Factors of an integer i, denoted as NPF (i).

For example, integer 100 has the following nine factors: $\{1, \underline{2}, 4, \underline{5}, 10,20,25,50,100\}$. The two which are underlined are prime factors of 100 and the rest are non-prime factors. Therefore, NPF (100) $=7$.

Input

The first line contains an integer $Q\left(1 \leq Q \leq 3 \cdot 10^{6}\right)$ denoting the number of queries. Each of the next Q lines contains one integer $i\left(2 \leq i \leq 2 \cdot 10^{6}\right)$.

Output

For each query i, print the value of NPF (i).

Warning

The I/O files are large. Please use fast I/O methods.

Sample 1

Input	copy	Output	copy
4		7 1 100 13	
12			
2018			

Modulo Ruins the Legend gym-104090A

Grammy has a sequence of integers $a_{1}, a_{2}, \ldots, a_{n}$. She thinks that the elements in the sequence are too large, so she decided to add an arithmetic progression to the sequence. Formally, she can choose two non-negative integers s, d, and add $s+k d$ to a_{k} for each $k \in[1, n]$.

Since we want to ruin the legend, please tell her the minimum sum of elements modulo m after the operation. Note that you should minimize the sum after taking the modulo.

Input
The first line contains two integers $n, m\left(1 \leq n \leq 10^{5}, 1 \leq m \leq 10^{9}\right)$.
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i}<m\right)$, denoting the initial sequence.

Output

Output exactly two lines.
The first line contains one integer, denoting the minimum sum of elements modulo m.
The second line contains two integers $s, d(0 \leq s, d<m)$, denoting the integers chosen by Grammy. If there are multiple solutions, output any.

Sample 1

Input	copy	Output	copy
 1 1 4 5 1 4	1 5 0		

Sample 2

Input		copy	Output
1 29 1 9 1 9 8 1 0 0 0 0			

What is the value this simple $\mathrm{C}++$ function will return?

```
long long H(int n){
    long long res = 0;
    for( int i = 1; i <= n; i=i+1 ){
            res = (res + n/i);
        }
    return res;
}
```


Input

The first line of input is an integer $T(T \leq 1000)$ that indicates the number of test cases. Each of the next T line will contain a single signed 32 bit integer n.

Output

For each test case, output will be a single line containing $H(n)$.

Sample Input

```
2
```

5
10

Sample Output

10

