
copy copy

Non-Prime Factors Kattis - nonprimefactors 

In many programming competitions, we are asked to find (or count the number of)

Prime Factors of an integer . This is boring. This time, let’s count the number of Non-

Prime Factors of an integer , denoted as NPF(i).

For example, integer has the following nine factors: .

The two which are underlined are prime factors of and the rest are non-prime

factors. Therefore, NPF(100) = .

Input
The first line contains an integer () denoting the number of queries.

Each of the next lines contains one integer ().

Output
For each query , print the value of NPF(i).

Warning
The I/O files are large. Please use fast I/O methods.

Sample 1

Input Output

4

100

13

12

2018

7

1

4

2

i

i

100 {1, , 4, , 10, 20, 25, 50, 100}2 5

100

7

Q 1 ≤ Q ≤ 3 ⋅ 106

Q i 2 ≤ i ≤ 2 ⋅ 106

i

copy copy

Modulo Ruins the Legend Gym - 104090A 

Grammy has a sequence of integers . She thinks that the elements in the

sequence are too large, so she decided to add an arithmetic progression to the sequence.

Formally, she can choose two non-negative integers , and add to for each

.

Since we want to ruin the legend, please tell her the minimum sum of elements modulo

 after the operation. Note that you should minimize the sum after taking the modulo.

Input

The first line contains two integers (,).

The second line contains integers (), denoting the initial

sequence.

Output

Output exactly two lines.

The first line contains one integer, denoting the minimum sum of elements modulo .

The second line contains two integers (), denoting the integers

chosen by Grammy.

Sample 1

Input Output

6 24

1 1 4 5 1 4

1

0 5

, , … ,a1 a2 an

s, d s + kd ak

k ∈ [1, n]

m

n, m 1 ≤ n ≤ 105 1 ≤ m ≤ 109

n , , … ,a1 a2 an 0 ≤ < mai

m

s, d 0 ≤ s, d < m

If there are multiple solutions, output any.

copy copy

Sample 2

Input Output

7 29

1 9 1 9 8 1 0

0

0 0

What is the value this simple C++ function will return?

long long H(int n){

long long res = 0;

for(int i = 1; i <= n; i=i+1){

res = (res + n/i);

}

return res;

}

Input

The first line of input is an integer T (T ≤ 1000) that indicates the number of test cases. Each of the
next T line will contain a single signed 32 bit integer n.

Output

For each test case, output will be a single line containing H(n).

Sample Input

2

5

10

Sample Output

10

27

