Non-Prime Factors Kattis - nonprime factors

In many programming competitions, we are asked to find (or count the number of) Prime Factors of an integer *i*. This is boring. This time, let's count the number of Non-Prime Factors of an integer *i*, denoted as NPF(i).

For example, integer 100 has the following nine factors: $\{1, 2, 4, 5, 10, 20, 25, 50, 100\}$. The two which are underlined are prime factors of 100 and the rest are non-prime factors. Therefore, NPF(100) = 7.

Input

The first line contains an integer Q ($1 \le Q \le 3 \cdot 10^6$) denoting the number of queries. Each of the next Q lines contains one integer i ($2 \le i \le 2 \cdot 10^6$).

Output

For each query i, print the value of NPF(i).

Warning

Sample 1

The I/O files are large. Please use fast I/O methods.

Input	сору	Output	сору
4		7	
100		1	
100 13		4	
12		2	
2018		L	

Modulo Ruins the Legend Gym - 104090A

Grammy has a sequence of integers a_1, a_2, \ldots, a_n . She thinks that the elements in the sequence are too large, so she decided to add an arithmetic progression to the sequence. Formally, she can choose two non-negative integers s, d, and add s + kd to a_k for each $k \in [1, n]$.

Since we want to ruin the legend, please tell her the minimum sum of elements modulo m after the operation. Note that you should minimize the sum **after** taking the modulo.

Input

The first line contains two integers n,m ($1\leq n\leq 10^5$, $1\leq m\leq 10^9$).

The second line contains n integers a_1, a_2, \ldots, a_n ($0 \le a_i < m$), denoting the initial sequence.

Output

Output exactly two lines.

The first line contains one integer, denoting the minimum sum of elements modulo *m*.

The second line contains two integers s, d ($0 \le s, d < m$), denoting the integers chosen by Grammy. If there are multiple solutions, output any.

Input co	ру	Output copy
6 24 1 1 4 5 1 4		1 0 5

Sample 2

Input co	ру	Output copy	
7 29 1 9 1 9 8 1 0		0 0 0	

What is the value this simple C++ function will return?

```
long long H(int n){
    long long res = 0;
    for( int i = 1; i <= n; i=i+1 ){
        res = (res + n/i);
     }
    return res;
}</pre>
```

Input

The first line of input is an integer T ($T \le 1000$) that indicates the number of test cases. Each of the next T line will contain a single signed 32 bit integer n.

Output

For each test case, output will be a single line containing H(n).

Sample Input

2 5 10

Тı

Sample Output

10

27