
copy copy

copy copy

Mega Inversions Kattis - megainversions 

The upper bound for any sorting algorithm is easy to obtain: just take two elements

that are misplaced with respect to each other and swap them. Conrad conceived an

algorithm that proceeds by taking not two, but three misplaced elements. That is, take

three elements with and place them in order . Now if

for the original algorithm the steps are bounded by the maximum number of inversions

, Conrad is at his wits’ end as to the upper bound for such triples in a given

sequence. He asks you to write a program that counts the number of such triples.

Input
The first line of the input is the length of the sequence, . The next line

contains the integer sequence . You can assume that all .

Output
Output the number of inverted triples.

Sample 1

Input Output

3

1 2 3

0

Sample 2

Input Output

4

3 3 2 1

2

n2

a >i a >j ak i < j < k a , a , ak j i

2
n(n−1)

1 ≤ n ≤ 105

a , a , … , a1 2 n a ∈i [1, n]

Overlapping Rectangles 计蒜客 - A1282 

There are rectangles on the plane. The problem is to find the area of the union of these

rectangles. Note that these rectangles might overlap with each other, and the

overlapped areas of these rectangles shall not be counted more than once. For example,

given a rectangle with the bottom left corner located at and the top right corner

at , and the other rectangle with the bottom left corner located at and the

top right corner at , it follows that the area of the union of and should be ,

instead of .

Although the problem looks simple at the first glance, it might take a while to figure out

how to do it correctly. Note that the shape of the union can be very complicated, and the

intersected areas can be overlapped by more than two rectangles.

Note:

(1) The coordinates of these rectangles are given in integers. So you do not have to

worry about the floating point round-o� errors. However, these integers can be as large

as .

(2) To make the problem easier, you do not have to worry about the sum of the areas

exceeding the long integer precision. That is, you can assume that the total area does

not result in integer overflow.

Input Format
Several sets of rectangles configurations. The inputs are a list of integers. Within each

set, the first integer (in a single line) represents the number of rectangles, n, which can

be as large as . After n, there will be n lines representing the n rectangles; each line

contains four integers , which means that the bottom left corner of the

rectangle is located at , and the top right corner of the rectangle is located at .

Note that integers , , , can be as large as .

These configurations of rectangles occur repetitively in the input as the pattern

described above. An integer (zero) signifies the end of input.

n

A (0, 0)

(2, 2) B (1, 1)

(3, 3) A B 7

8

1, 000, 000

1000

< a, b, c, d >

(a, b) (c, d)

a b c d 1, 000, 000

n = 0

copy copy

Output Format
For each set of the rectangles configurations appeared in the input, calculate the total

area of the union of the rectangles. Again, these rectangles might overlap each other,

and the intersecting areas of these rectangles can only be counted once. Output a single

star '*' to signify the end of outputs.

Sample 1

Input Output

2

0 0 2 2

1 1 3 3

3

0 0 1 1

2 2 3 3

4 4 5 5

0

7

3

*

Supercomputer Kattis - supercomputer 

Jóhann, Marteinn and Símon have decided to make

the next generation of supercomputers! They know that it probably won’t be long

before Quantum computers take over, but since they don’t know anything about

Quantum mechanics, they want to rush these new supercomputers out into the market,

make their money, and hopefully retire with their wealth.

Since they’re trying to sell these things, they decide they need some cool features to

promote the computers. Marteinn suggests painting flames on the back of the

computers to make it look like they’re computing faster. Jóhann agrees, but suggests

also adding a second keyboard so people can type faster, just like in that TV show: NCIS.

Símon also agrees, but he thinks there’s something missing. What are they forgetting?

Ah, of course, faster memory!

They decide to add an -bit memory that supports the following two operations:

• given an integer , flip the :th bit of the memory (changing a to a , and a to a

), and

• given integers and , count how many bits between the :th bit and the :th bit

are set to .

After announcing their new supercomputer with these three awesome features, they

immediately received a large amount of orders. Of course everyone wants a

supercomputer with flames painted on the back! But now it’s time to actually

implement these features. While Jóhann, Marteinn and Símon are busy painting the

computers and supplying more keyboards, they’ve hired you to implement their

memory.

Input
The input consists of:

• one line containing two integers (), the number of bits in the

N

k k 0 1 1

0

l r l r

1

N 1 ≤ N ≤ 10
6

copy copy

memory, and (), the number of queries;

• lines each of the form:

◦ F () representing a query to flip the :th bit in memory;

◦ C () representing a query to count the number of bits in

the range from to , inclusive.

All bits in the memory are initially set to .

Output
For each query of the second type, output a single line containing the number of bits set

to in the given range.

Sample 1

Input Output

6 7

F 3

C 2 5

F 3

F 4

F 5

C 2 5

C 1 4

1

2

1

K 1 ≤ K ≤ 10
5

K

i 1 ≤ i ≤ N i

l r 1 ≤ l ≤ r ≤ N 1

l r

N 0

1

Find my Family Kattis - findmyfamily 

You are looking for a particular family photo with

you and your favorite relatives Alice and Bob. Each

family photo contains a line-up of people. On the

photo you’re looking for, you remember that Alice,

who is taller than you, was somewhere on your left from the perspective of the

photographer. Also, Bob who is taller than both you and Alice, was standing somewhere

on your right.

Since you have a large number of family photos, you want to use your computer to

assist in finding the photo. Many of the photos are quite blurry, so facial recognition

has proven ine�ective. Luckily, the Batch Apex Photo Classifier, which detects each

person in a photo and outputs the sequence of their (distinct) heights in pixels, has

produced excellent results. Given this sequence of heights for photos, determine

which of these photos could potentially be the photo you’re looking for.

Input
• The first line contains , the number of photos you have to process.

• Then follow two lines for each photo.

◦ The first line contains a single integer , the number of people

on this photo.

◦ The second line contains distinct integers , the

heights of the people in the photo, from left to right.

It is guaranteed that the total number of people in all photos is at most .

Output
• On the first line, output the number of photos that need further investigation.

• Then print lines each containing a single integer , the sorted indices

n

k

1 ≤ k ≤ 1 000

3 ≤ n ≤ 3 ⋅ 105

n 1 ≤ h , … , h ≤1 n 109

3 ⋅ 105

k

k 1 ≤ a ≤i n

copy copy

copy copy

of the photos you need to look at.

Sample 1

Input Output

1

3

2 1 3

1

1

Sample 2

Input Output

4

4

140 157 160 193

5

15 24 38 9 30

6

36 12 24 29 23 15

6

170 230 320 180 250 210

2

2

4

Antimatter Rain Kattis - antimatterrain 

You’ve heard of acid rain but have you heard of antimatter rain? Antimatter rain is so

potent that when it comes into contact with another object, it immediately

disintegrates both itself and the object. Kayla’s job as a SpaceFleet Researcher is

gathering weather data on exotic planets. This time, their assignment is to monitor the

antimatter rainfall.

Sensors are set up in the planet’s atmosphere and are about to be rained on with

antimatter rain. Oh no! Kayla monitors a single 2D section. Each sensor is either a single

horizontal strip or a single point. When one or more antimatter droplet fall on a single

sensor, all of those droplets and the sensor disintegrate simultaneously. That is, they

disappear. All other droplets will drop past where the sensor used to be.

Kayla sees all the antimatter rain drops the moment before they all start to fall. All

droplets fall at exactly the same rate.

For each droplet, Kayla wants to know if and where it will disintegrate. Help them out

with this demanding task!

Illustration of the first sample. The vertical lines connect the drops to the sensor they

hit. The drop with no associated vertical line will not hit any sensor.

copy copy

Input
The first line of input contains two integers (), which is the number

of antimatter droplets, and (), which is the number of sensors.

The next lines describe the droplets, in order. Each of these lines contains two

integers (), which is the -coordinate of the droplet and (),

which is the -coordinate of the droplet.

The next lines describe the sensors. Each line contains three integers , (

), which is the leftmost and the rightmost -coordinate of the sensor,

and (), which is the -coordinate of the sensor.

It is guaranteed that no two drops will start in the same location, no drop will start on

any sensor, and no two sensors touch (not even at a single point).

Output
For each droplet, in order, display a single number indicating the -coordinate that it

will disintegrate. If the droplet does not disintegrate, display instead. These values

should appear on separate lines.

Sample 1

Input Output

5 3

1 8

2 3

2 8

5 8

5 9

3 6 6

1 7 4

1 3 1

4

1

4

6

0

Sample 2

D 1 ≤ D ≤ 100 000

S 1 ≤ S ≤ 100 000

D

x 1 ≤ x ≤ 10
9 x y 1 ≤ y ≤ 10

9

y

S x1 x2 1 ≤

x ≤1 x ≤2 10
9 x

y 1 ≤ y ≤ 10
9 y

y

0

copy copyInput Output

6 3

1 2

4 8

5 10

6 10

7 10

8 10

1 1 1

3 4 3

5 7 9

1

3

9

9

9

0

Toll Kattis - toll 

A trucking company wants to optimize its internal

processes—which mainly means saving money. The

company serves a region where a toll must be paid

for every single street. Each street connects two

places (cities, villages etc.) directly. The company

serves a set of orders; each order tells them to carry

goods from one place to another. When serving an

order, the company wants to pay the minimum

overall toll. As the region’s street network can be

modeled by a graph where each edge has a specific cost (the toll for the respective

street), the company actually wants to know (the cost of) the cheapest path between

two nodes in this graph.

However, the region’s street network graph has an interesting property: it is directed

(i.e. all streets are oneway), and there can only be an edge from to if

 (for some constant).

Write a program that for each of a given list of orders outputs the minimum toll the

company has to pay to serve the respective order.

Input
The first line contains four integers: (with the meaning described above), (the

number of places), (the number of streets), and (the number of orders).

Each of the next lines contains three integers (). This means that

there is a (oneway) street from to with toll . You are guaranteed that

 is satisfied, and that no two locations are connected by more than one street.

Finally lines follow, each containing two integers : this means that there is an

order to carry goods from place to place .

a b ⌊b/K⌋ = 1 +

⌊a/K⌋ K

K N

M O

M a, b, t 0 ≤ a, b < N

a b t ⌊b/K⌋ = 1 +

⌊a/K⌋

O a, b

a b

copy copy

We always have , and . Moreover, we have

 for all orders and for all tolls .

Output
Your output should consist of lines, each with one integer. The -th line should

contain the toll on a cheapest path between the two places in order . If no such path

exists, output in this line.

Sample 1

Input Output

5 14 5 5

0 5 9

5 12 10

0 7 7

7 12 8

4 7 10

0 12

0 5

0 7

7 12

0 13

15

9

7

8

-1

1 ≤ N ≤ 50 000 1 ≤ O ≤ 10 000 1 ≤ K ≤ 5

0 ≤ a < b < N a, b 1 ≤ t ≤ 10 000 t

O i

i

−1

