Given an array of integers nums and an integer k, return the total number of subarrays whose sum equals to k.

A subarray is a contiguous non-empty sequence of elements within an array.

Example 1:

Input: nums $=[1,1,1], k=2$
Output: 2

Example 2:

Input: nums = [1,2,3], k = 3
Output: 2

Constraints:

- $1<=$ nums. length $<=2 * 10^{4}$
- -1000 <= nums[i] <= 1000
- $-10^{7}<=k<=10^{7}$

Accepted 1M Submissions 2.4M Acceptance Rate 43.3\%

Discussion (80)

Similar Questions

Related Topics

Copyright © 2023 LeetCode All rights reserved

1109. Corporate Flight Bookings

Medium 円 1.5 K W 155

B Companies

There are n flights that are labeled from 1 to n .

You are given an array of flight bookings bookings, where bookings [i] = [first ${ }_{i}$, last $_{i}$, seats ${ }_{i}$] represents a booking for flights first t_{i} through last $_{i}$ (inclusive) with seats ${ }_{i}$ seats reserved for each flight in the range.

Return an array answer of length n , where answer [i] is the total number of seats reserved for flight i.

Example 1:

```
Input: bookings = [[1,2,10],[2,3,20],[2,5,25]], n = 5
Output: [10,55,45,25,25]
Explanation:
Flight labels: 1 2 3 4 5
Booking 1 reserved: 10 10
Booking 2 reserved: 20 20
Booking 3 reserved: 25 25 25 25
Total seats: 10 55 45 25 25
Hence, answer = [10,55,45,25,25]
```


Example 2:

Input: bookings = [[1,2,10],[2,2,15]], n = 2
Output: [10,25]
Explanation:
Flight labels: 1
Booking 1 reserved: 1010
Booking 2 reserved: 15
Total seats: 1025
Hence, answer = [10,25]

Constraints:

- $1<=\mathrm{n}<=2 * 10^{4}$
- $1<=$ bookings.length $<=2 * 10^{4}$
- bookings[i].length == 3
- $1<=$ first $_{i}<=$ last $_{i}<=n$
- $1<=$ seats $_{i}<=10^{4}$

Accepted 55.1 K Submissions 90.5 K Acceptance Rate 60.9\%

Discussion (7)

Related Topics

Copyright © 2023 LeetCode All rights reserved

Hard 円16.9K 叩 570 K
© Companies
You are given an array of integers nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.

Return the max sliding window.

Example 1:

```
Input: nums = [1,3,-1,-3,5,3,6,7], k = 3
Output: [3,3,5,5,6,7]
Explanation:
Window position Max
[1
1 [\begin{array}{llllllllll}{3}&{-1}&{-3]}&{5}&{3}&{6}&{7}&{3}\end{array}]
1 3 [-1 [-3 5] 3 6 7 7 5
1 3 -1 [-3 5 5 3] 6 7 7 5
1 3 -1 -3 [\begin{array}{llll}{5}&{3}&{6]}&{7}\end{array}06
1 3
```


Example 2:

Input: nums = [1], $\mathrm{k}=1$
Output: [1]

Constraints:

- 1 <= nums.length <= 10^{5}
- $-10^{4}<=$ nums $[i]<=10^{4}$
- 1 <= k <= nums.length

Medium 1.6 K 叩 55 \&
 B Companies

You are given a series of video clips from a sporting event that lasted time seconds. These video clips can be overlapping with each other and have varying lengths.

Each video clip is described by an array clips where clips[i] = [start ${ }_{i}$, end ${ }_{i}$] indicates that the ith clip started at start $_{i}$ and ended at end ${ }_{i}$.

We can cut these clips into segments freely.

- For example, a clip [0, 7] can be cut into segments [0, 1] + [1, 3] + [3, 7] .

Return the minimum number of clips needed so that we can cut the clips into segments that cover the entire sporting event [0, time]. If the task is impossible, return -1.

Example 1:

Input: clips $=[[0,2],[4,6],[8,10],[1,9],[1,5],[5,9]]$, time $=10$
Output: 3
Explanation: We take the clips [0,2], [8,10], [1,9]; a total of 3 clips.
Then, we can reconstruct the sporting event as follows:
We cut $[1,9]$ into segments $[1,2]+[2,8]+[8,9]$.
Now we have segments $[0,2]+[2,8]+[8,10]$ which cover the sporting event [0, 10].

Example 2:

Input: clips = [[0,1], [1,2]], time = 5
Output: -1
Explanation: We cannot cover $[0,5]$ with only $[0,1]$ and $[1,2]$.

Example 3:

Input: clips = [[0,1], [6, 8], [0, 2], [5,6], [0,4], [0,3], [6, 7], [1,3], [4, 7], [1, 4], $[2,5],[2,6],[3,4],[4,5],[5,7],[6,9]]$, time $=9$
Output: 3
Explanation: We can take clips $[0,4],[4,7]$, and $[6,9]$.

Constraints:

- 1 <= clips. length <= 100
- $0<=\operatorname{start}_{\mathrm{i}}<=\operatorname{end}_{\mathrm{i}}<=100$
- 1 <= time <= 100

Accepted 59.7K Submissions 118.1K Acceptance Rate 50.6\%

Discussion (8)

Related Topics

Copyright © 2023 LeetCode All rights reserved
84. Largest Rectangle in Histogram

Hard \qquad 15.6K225

Θ
B. Companies

Given an array of integers heights representing the histogram's bar height where the width of each bar is 1 , return the area of the largest rectangle in the histogram.

Example 1:


```
    Input: heights = [2,1,5,6,2,3]
    Output: 10
    Explanation: The above is a histogram where width of each bar is 1.
    The largest rectangle is shown in the red area, which has an area = 10 units.
```


Example 2:

Input: heights = [2,4]
Output: 4

Constraints:

- 1 <= heights. length <= 10^{5}
- $0<=$ heights[i] <= 10^{4}

Accepted 730K Submissions 1.7M Acceptance Rate 43.2\%

Discussion (68)

Similar Questions

Related Topics

Copyright © 2023 LeetCode All rights reserved

