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ABSTRACT
Predicting users’ future locations has become an important task in

various aspects, such as ride-sharing, tourism recommendation and

urban planning. However, existing methods disregard that users’

interest over next location is dynamic. The dynamic preference over

next location involves two aspects: First, preference over distance

is dynamic when users move; Second, preference over related terms

vary on different target times. Hence, directly predicting next loca-

tion with static network would result in unsatisfactory accuracies.

Dynamic location prediction problem is still open now.

We propose a multilayer recurrent attention model DAPred to

solve the problem. The effectiveness of DAPred is underpinned by

the following reasons: (1) An embedding recurrent module to map

historymovements into latent place, which helps build the attention

module for the following layers; (2) A historical attention module

that detects multiple distance preference from dynamic movement

history; (3) A prediction module for learning different weights on

different time gaps. Compared to the state-of-art baselines, DAPred

reaches 49.8% improvement in hitting ratio accuracy, and 18.5%

improvement in average distance predictor error on three real-life

datasets.
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1 INTRODUCTION
Location prediction is a task on predicting users’ movements based

on their preceding GPS trace, which has many applications in real

life. For example, in car-pool services, by applying an optimized
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strategy and planning, location prediction is useful in selecting

the pick up locations and destination based on the users’ report.

Another example is logistic planning and location-aware recom-

mendation for advertisements. With accurate location prediction,

advertisements can be precisely-targeted for individuals based on

their past movements. Moreover, location prediction is also benefi-

cial for urban planning and traffic jam prediction for governments.

In the past, the obstacle in location prediction is the lack of data

source. Recent years, with the burst of geo-annotated social media

data, such as Foursquare, Facebook, Twitter[5, 24, 28, 29, 31, 32, 34],

location prediction has been made possible.

Existing studies predict locations in a static way without real-

izing that users’ preferences may change with time and their past

movements. To begin with, when considering time, both users’ long-

term and short-term preferences should be considered for location

prediction. Most studies only consider long-term preferences for

location prediction [9, 10, 14, 24, 32]. As short-term preferences

indicate users’ current interest, studies which lack short-term pref-

erence modeling fail to capture users’ current interest, resulting

in unsatisfactory prediction accuracies. Although some proposed

to predict location with both long and short-term preferences by

introducing long trajectories and short trajectories [9, 23], they still

failed to realize that users preferences would change dynamically

when they move.

We study the problem of Dynamic Location Prediction (DLP) by

discussing user’s dynamic preferences. Figure 1 shows an example.

Given a user, with the user’s past movements, we want to predict

his or her future location at different target times. Although some

previous methods embed time in their model, they cannot explicitly

model the inherent relationships among movements, preferences

and target times. For different target times, previous methods apply

static preferences over all the terms, instead of changing prefer-

ences with times. As a result, they fail to truely predict locations at

different target times.

In this paper, we proposeDynamicAttention LocationPrediction
(DAPred) to solve DLP problem. There are three key challenges

need to be addressed. First, integrating diverse types of user prefer-
ences is important. Users’ movement preferences include multiple

terms: long-term preference and short-term preference. Before min-

ing the users’ dynamic preferences, exploiting the difference and

correlation between users’ long-term/short-term preferences and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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effectively integrating them are challenging. Second, finding the
dynamic influence of past movements over distance preference has not
been discussed before. Users’ past movements may have an influence

on the distance selection of next movement. For example, if users

keep moving in a long time, they would feel tired to visit a place

far away. Extracting the dynamic influence of records over distance

preference is worth-considering. Third, modeling the influence of
target time over user’s term preference is important. The target time

could not be considered as a simple factor, it should interact with

other factors. For example, if the gap time between current time

and target time is short (e.g., 15 min), users tends to visit nearby

locations that can meet their short-term interests, while if the gap

time is long (e.g., 5 hours), users will rely more on their long-term

interests.

DAPred adopts three modules to tackle the above challenges. The

first module is an embedding-recurrent module to integrate terms

into latent place and capture transitions. Then, DAPred employs

the historical attention module to discover the movement influence

over distance preference. Finally, DAPred sets the predictionmodule

to capture different interests over terms on different time gaps.

Figure 1: A comparison between next location prediction
and dynamic attention location prediction

The major contributions are summarized as follows:

(1) We propose dynamic attention location prediction(DLP) prob-

lem, where users’ location preferences would change dynam-

ically when they move.

(2) We propose a long-short memory enriched attention recur-

rent model DAPred to solve the DLP problem. DAPred learns

the users’ dynamic preferences in two terms: first, users’ pref-

erences over distance is dynamic when they move; second,

users’ long/short-term preferences are dynamic when target

times are different.

(3) We test our algorithm on three large-scale geo-tagged tweet

datasets: Foursquare, Gowalla New York and Gowalla Los

Angeles. Comparing with other algorithms, DAPred makes

significant improvement.

2 RELATEDWORK
In this section, we review existing works related to our problem,

including: (1) Long-termmovement prediction; (2) Short-termmove-

ment prediction; (3) Long-term and short-term movement predic-

tion.

2.1 Long-term location prediction
Most studies [3, 13, 15, 20, 21, 23, 24] predict locations based on

users’ long-term behavior. For those who use only long-term be-

havior, we call them long-term location prediction.

Generally, existing model-based long-term location prediction

could be classified into two categories: HMM model and RNN

model. HMMmodel use the Hidden Markov Model to predict users’

locations[2, 12, 18]. Their transition matrices consist of different fac-

tors: location type [4], personalized point-of-interest locations[3],

social/geo-distance knowledge for unvisited location prediction[13],

grouping information[32].

RNN model uses the recurrent network to model trajectories.

By introducing recurrent network, these methods are able to cap-

ture the sequential characters for each movement[8, 16, 19, 24–

27]. Liu et al. [16] construct a temporal recurrent network with

distance/time-specific transition matrices; Yao et al. [24] introduce

textual information into recurrent network to improve the perfor-

mance; Yao et al. [27] introduce a unified deep learning framework

for mobile sensing data.

The abovemethods are all designed for discovering the long-term

preference of users. However, there exists long-term preference

and short-term preference for a user. For example, a user prefers to

go to the gym from home at 6 pm, which is his or her long-term

preference. When there is a mid-term exam to prepare, he or she

would go to the library instead, which is the short-term preference.

Hence, users’ short-term preference is also an important factor

which should be applied separately.

2.2 Short-term location prediction
Lots of studies separate long-term movements into pieces to fully

investigate the short-term preference of users. [6] segment long-

term trajectories into short ones and concat them again to find the

noisy movements. However, this method only works in short tra-

jectory prediction and unable to predict the next location in a wide

time range. Besse et al.[1] also use the segmentation trajectories for

their next location prediction. By clustering the short trajectories,

they are able to predict the next location.

Although the above studies take short-term movements into

consideration, they fail in integrating long-term movements to-

gether. Short-term movement and long-term movement indicate

the short and long-term interest respectively. The lack of either of

them would result in an unconformity with real life. Hence, the

results of methods with only short-term location prediction stay

unsatisfactory.

2.3 Long-term and Short-term location
prediction

For long-term and short-term location prediction, most models

adopt recurrent network(RNN) to model trajectories, e.g. long-term

and short-term trajectories recurrent network [23], attention peri-

odicity [9]. Although they are all designed with both long-term and

short-term, but they still fail to solve this problem: how to predict

the locations at different target time? While many studies take the

history timestamp as an important feature for location prediction,

they neglect the future target time as an important input. They

could only predict next location in the future but unable to predict

future locations with different target time stamps(e.g. 8 pm at the

library and 6 pm at the restaurant). Here we propose the problem

as target-time location prediction, which is designed for predicting

multiple future locations at different time stamps.
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3 PRELIMINARIES
In this section, we formulate the dynamic attention location predic-

tion problem, and explore its characteristics, which motivate the

design of DAPred.

3.1 Problem Definition
For brevity, we present a table of notations in Table 1.

For users’ check-ins, we denote them as Ru . Let Ru = (r1, r2, ...rn )

Table 1: Notations

Notations Description

Ru The sequential records of u
Lu Long trajectory of user u
Su Short trajectories of user u
est Short trajectories embedding results

el t Long trajectory embedding results

hs Short trajectories hidden state results

hl Long trajectory hidden state results

lri The location of in record ri
Fri The attention score of previous movements for record ri
Dri The attention score of previous distance for record ri
ari The attention vector for record ri

be sequential records in chronological order for user u. Each record

ri is a tuple of < lri , tri ,u >, where lri is the geo-location, tri is the
post time and u is the user id. Given records Ru , we aim to predict

the locations where usersu would be at multiple future time stamps

with a dynamic framework. To construct the dynmaic framework,

we transform Ru into long trajectory and short trajectory to repre-

sent user’s long-term and short-term interests relatively [23].

Definition 3.1 (Long Trajectory). For a user u, long trajectory
Lu is his or her whole movement history. Here,

Lu = [lr1 lr2 ... lrn ] (1)

where lrk represents the location of the k-th record.

Definition 3.2 (Short Trajectories). For a user u, short trajec-
tories Su are his or her fragmentedmovements. We split long trajectory
into a sequence of short ones if the gap time between consecutive visits
is greater than a threshold(e.g., 6 hours), then we would cut them into
different group.

Formally,

Su =


[lr1 lr2 ... lri−1 ]
[lri lri+2 ... lr j ]
[... ... ... ...]

 (2)

Note that, the length of each short trajectory could be different.

Definition 3.3 (Time). Given a user u with records Ru , the time
stamps for each records areTu = [tr1 , tr2 , ...trn ].

3.2 The Overall Architecture
In a nutshell, DAPred embeds all terms into a latent space, and uses

recurrent network to capture the sequential information. By using

attention mechanism, DAPred chooses what to pay attention with

based on different timestamps.

The intuition behind our architecture is, users’ interests over

next location are dynamic in two terms: 1) Users’ preferences over

distance vary when users move. Comparing to the users move in

a relatively short route, those who move a long route would be

more sensitive to distance. 2) The next locations users would visit

differ with target times. Different target times would influence the

users’ preference over long/short-term memory and distance. For

example, when the time gap between target time and current time

is small, users tend to make their decision based on short-term

memory and more sensitive to distance, otherwise, their preference

would be more on long-term memory. Later, this intuition will be

proved in experiment part.

To construct our model, our steps are as following: Given a user

u, we transform the records Ru into Lu , Su andTu . As mentioned

earlier, dynamic attention location prediction still poses several

challenges: 1) How to introduce long-term and short-term interests

for dynamic attention location prediction? 2) How to detect the

dynamic attention over distance preferences when users move?

3) For different target times, how to apply dynamic preferences

over multiple terms? In the following, we introduce embedding-

recurrent, historical attention and prediction modules to address

the three challenges above respectively. Figure 2 shows a concise

architecture of our model.

4 PROPOSED METHOD
DAPred aims to predict users’ location dynamically. To this end,

we exploit users’ movements and spatial-temporal features in a

unified framework, which consists of embedding-recurrent module,

historical attention module and prediction module.

4.1 Embedding-Recurrent Module
Embedding-recurrent network has been investigated in lots of stud-

ies. In this section, we would not introduce the detailed procedures

about how and why embedding-recurrent network works, instead,

we discuss how long-term/short-term interests work in dynamic

attention location prediction[23, 33].

Multimodal embedding jointly maps all the features into latent

space. To represent users’ mobility, exisiting algorithms only em-

bed three terms: long trajectory Lu , time stamps Tu and user u,
which represent movements, time and user’s personal preferences

respectively. Nevertheless, this strategy is problematic because long

trajectories Lu could not reveal the user’s short-term preference

overmobility.Motivated by [23], we add short trajectories Su , which
are fragmented from long trajectory Lu , to uncover the short-term

preferences of users. To help model the transitional relationship

between the above four features, we design the multimodal embed-

ding module to jointly embed them. Then, we get est ,el t ,et and

eu as the embedding results of short trajectories, long trajectory,

times and user.

Given est ,el t , we then capture their sequential information

through GRU and RNN respectively and obtain the hidden states of

each step i , denoting hl(i) and hs(i). To compute the hidden states,

we adopt two layers:



KDD ’20, August 22–27, 2020, San Diego, CA Jiayi Liu, Quan Yuan, Carl Yang, He Huang, Chao Zhang, and Philip Yu

Figure 2: The overall architecture. The inputs consist of users and all their check-ins. The outputs are the probability lists
of locations for different target time. (a) Embedding-Recurrent Module uses embedding and RNN/GRU to encode inputs for
other modules. (b) Historical Attention Module leverages embedding-recurrent results of trajectories and time to learn users’
preference over distance. (c) Prediction Module learn the locations’ possiblities by capturing all previous modules’ results.

• Long-term Trajectory Layer: The GRU Layer. In this module,

we construct a gated recurrent unit network for long trajec-

tories. The intuition behind the adoption of GRU network

is that, compared to RNN with vanishing gradient problem,

GRU is better at memorizing and learning long-term hidden

state dependencies[23]. For long trajectories, their lengths

are quite large and shouldn’t be forgotten. So we adopt GRU

network to model long trajectory. As stated above, the em-

bedding result for long trajectory is el t . So the computation

of hidden states would be [7]:

z(i) = σ (Wzel t
(i) +Uzhl

(i−1))

r (i) = σ (Wr el t
(i) +Urhl

(i−1))

˜hl
(i)
= tanh(Wtel t

(i) +Ut (r
(i) ⊙ hl (t−1)))

hl (i) = (1 − z(i))hl (i−1) + z(i) ˜hl
(i)

(3)

In which, r (i) is the reset gate, z(i) is the update gate of i − th
step, ⊙ is the element-wise multiplication, σ is the sigmoid

function,Wz ,Uz ,Wr ,Ur ,Wt ,Ut represent the parameter ma-

trices for update gate, reset gate and candidate gate. Finally,

we get the long trajectories features, which would flow to

the attention module.

• Short-term Trajectory Layer: The RNN Layer. In this layer, we

construct an RNN network for short trajectories. As recur-

rent network could capture the sequential information, we

adopt RNN to model the complicated transitions of short

trajectories, which is an advantageous model for sequential

data in a short time window[23]. As stated above, the embed-

ding result for short trajectory is est . So the computation of

hidden states would be:

hs(i+1) = f (W · hs(i) +G · e
(i)
st + b) (4)

where hs(i) represents the i-th hidden state,W andG reprent

the parameter matrices and b represents the parameter vec-

tor. Finally, we get the short trajectories features, which

would flow to the attention module.

The process of embedding-recurrent module is summarized in

Algorithm 1.

Algorithm 1: Embedding-Recurrent Module

Input: Check-ins Ru ; User u
Output: Embeddings et , eu , hidden states hl,hs

1 /* Pre-processing*/

2 Extract long trajectory Lu and timeTu from record Ru .

3 Split short trajectory Su from Lu .

4 /* Embedding-Recurrent*/

5 Embed Su ,Lu ,Tu and u into latent place to obtain

est ,el t ,et and eu .

6 foreach e
(i)
st ∈ est do

7 Train e
(i)
st to obtain hidden steps hs(i) via Eq.(4).

8 end
9 foreach e

(i)
l t ∈ el t do

10 Train e
(i)
l t to obtain hidden steps hl (i) via Eq.(3).

11 end

4.2 Historical Attention Module
The historical attention module helps learn users’ dynamic interest

over locations. Instead of keeping a static interest over time [9, 24,

32], we model users’ dynamic preferences over distance when they

move. The key idea is to find the attention of distance preference

on previous records [17, 22]. However, it would be too expensive to

directly iterate over all possible locations. To alleviate this problem,

for each location lri , we generate the next-location candidate list

𭟋lri
from the whole location set based on geo-distance and previous
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records. That is, we first estimate the probablity of locations to be

chosen as candidates:

dis(lk |lri ) =
e−d (lk ,lri )∑n
k=1 e

−d (lk ,lri )
(5)

pop(lk |lri ) =
f (lk ∧ lri )

f (lri )
(6)

In which d(lk , lri ) is the distance between lk and lri , n is the total

number of locations, f (·) is the frequency.
The process of historical attention module is summarized in

Algorithm 2.

Algorithm 2: Historical Attention Module

Input: Embeddings et , hidden states hl,hs , geo-distance
matrix d

Output: Distance score Sd
1 Construct distance vector and popularity vector for each

location l based on Eq.5 and Eq.6.

2 foreach record ri ∈ Ru do
3 Construct attentional score Fri ,Dri via Eq.(7)-(8).

4 foreach ri j ∈ ri do
5 Train attention vector ari by decoding Fri j and

Dri j .

6 end
7 foreach lc ∈ l do
8 Predict distance score Sd,lc via Eq.(10).

9 end
10 end

After we select candidates for lri , we introduce the distance-

aware attention module to find the correlation between mobility

and distance preferences. When involved with distance, previous

studies usually concat distance factors with others[16]. However,

users’ preference over distance may change when they move. Thus,

directly concating these factors lacks in discovering the intrinsic

interaction between distance and other factors.

Inspired by human attention mechanism, we develop a distance-

aware attention module to solve the problem. The detailed flow of

this layer is shown in Figure 3. The attention model aims at summa-

Figure 3: The detailed architecture of Distance-aware Atten-
tion Module

rizing the influence of movement history over users’ distance pref-

erence. To begin with, the influence containing two parts: 1) Trajec-

tory and time. 2) Distance. For trajectory and time, we adopt the re-

sults from embedding-recurrent network. For distance, we select the

geo-distance between next location and other locations in trajectory

to measure the influence. Let f (i) = [R(hl(i)),R(hs(i)),R(e(i)t )] be

the concatenation of embedding result e
(i)
t , long-term GRU result

hl(i) and short-term RNN result hs(i) at i − th step, in which, R(·)
indicates the ReLU function: R(x) = x+.

Formally, for record ri , given the embedding-recurrent feature

f (i) at a time step ti and location li , to capture its attentional score,
we consider the correlations between its previous step and all move-

ment history. Then we define the attentional score as:

Fri = f (i+1) ·
[
f (1) f (2) ... f (n)

]T
(7)

Dri =
[
d(lri+1 , lr1 ) d(lri+1 , lr2 ) ... d(lri+1 , lrn )

]
(8)

Then we encode Fri and Dri to get the attentional vector over

distance.

ari =Wa · Fri +Wb · Dri +C (9)

whereWa ,Wb ,C respectively represent the weight for past history,

geo-distance and bias.

After obtaining the attentional vector ari , our goal is to optimize

the distance scores of next-location candidates such that we could

predict users next target-time location based on their movement

history and the geo-distance between locations. Suppose the current

location is lri , for a location candidate lc in the candidates list 𭟋lri
,

we define its distance score Slc
d

as:

Slc
d
= σ (ari ) · [e

−d (lc ,lr
1
) e−d (lc ,lr2 ) · · · e−d (lc ,lrn )]T (10)

where, σ (·) is a normalization. The intuition behind this formula

is that: the likelihood of a candidate to be chosen is based on two

aspects: 1) The attention vector, which represents the history pref-

erence over next location. 2) The distance between this candidate

and the locations user visits. We apply attention vector on distance

preference to indicate the possibility of this candidate to be chosen.

4.3 Prediction Module
The prediction module aims to predict the next locations at differ-

ent target times. By using a linear feed-forward neural network,

we concatenate embedding-recurrent scores above and distance

score together. Note that, for different time gaps, we train different

weights over feed-forward neural network [29]. Here, we set 1 hour

as the smallest unit to deal with underfit. For those with decimal,

we adopt the following strategy: Given a gap time дt , suppose its
upper bound isдtu = ceil(дt) and its lower bound isдtl = f loor (дt)
the weightwдt of its linear network would be:

wдt = wдtu · (дtu − дt) +wдtl · (дtl − дt) (11)

wherewдtu is the weight at дtu andwдtl is the weight at дtl .
Finally, for different time gap, we obtain their own preferences

over the terms by:

Sl = [St Su Shs Shl Sd ]
T ·

n∑
1

wдtL(WL, bL) (12)
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where St , Su , Shs , Shl , Sd indicate the prediction score for time, user,

short trajectories, long trajectories and distance, L(WL, bL) refers

to the linear network for a time gap,WL and bl are the weight and
bias for this network.

The process of prediction module is summarized in Algorithm 3.

Algorithm 3: Prediction Module

Input: Sd , et , eu,hs,hl
Output: next location scores Sl

1 Init time gap weight matrixwt .

2 foreach record ri ∈ Ru do
3 Decode et , eu,hs and hl to obtain scores St , Su, Shs and

Shl over location candidates l .
4 foreach target time t ∈ Γ do
5 Caculate their own weight vectorwдt via Eq.(11).

6 end
7 Predict next location scores Sl via Eq.(12).

8 end

5 EXPERIMENT
5.1 Experiment Setting
5.1.1 Datasets. Our experiments are based on three datasets: Foursquare,

Gowalla NewYork andGowalla Los Angeles. The source of Foursquare

dataset is the same as [24, 30]. Gowalla dataset is a location-based

social networking website similar to Facebook, the source of this

dataset is the same as [5]. For foursquare dataset, it consists of 1.4

million check-ins from 2009-01 to 2012-01 in New York City. For

Gowalla dataset, it consists of 1.95 million check-ins in New York

and 3.33 million check-ins in Los Angeles from 2009-01 to 2012-01.

For each dataset, we firstly merge records with the same user to

set trajectories for users. Then, we remove the users with less than

5 records and the locations with less than 10 records[9, 24]. This

operation guarantees that each trajectory is long enough to be cut

into the training set and testing set.

After such preprocessing, for Foursquare dataset, we obtain 500

users, 3555 locations and 9968 trajectories in training set, 2829

trajectories in the testing set. For Gowalla dataset at New York, we

obtain 500 users, 5670 locations and 5019 trajectories in training

set, 22851 trajectories in the testing set. For Gowalla dataset at Los

Angeles, we obtain 404 users, 777 locations and 18405 trajectories

in training set, 5202 trajectories in the testing set.
1

5.1.2 Experimental Protocol. For each dataset, we randomly select

70% records of users for training, 10% for tunning and the remaining

records for testing. To evaluate the performance of each method,

we use the hitting ratio @k and average distance error δd . Hitting
ratio is the percentage of the ground-truth location appears in

our top-k location result list, average distance error is the average

distance between our top-1 prediction and ground-truth. These two

evaluation methods are the same as [9, 24].

1The code is available at https://github.com/JYLEvageline/DAPred

5.1.3 Parameter Settings. DAPred owns the following major pa-

rameters: (1) For the embedding layer, the latent dimension Dv for

both long and short trajectories, Dt for time and Du for users. (2)

For the recurrent layer, the recurrent dimension Dh for both RNN

and GRU. (3) For attention layer, the number of candidates N . (4)

The dropout probability O (5) The batch size of minibatchM . After

tuning, we set Dv as 16, Dt as 8, Du as 32, Dh as 16, N as 16, O as

0.5, andM as 50. We tested on various parameter settings and did

not find much difference, the details of our tuning process would

be discussed in 5.5.

5.2 Quantitative Results
As aforementioned, we use the ground truth locations in the re-

maining 20% testing data to evaluate all methods. To quantify the

performance of all the methods, we use the hitting ratio @k as our

criteria. Here, hitting ratio refers to the percentage of ground truth

appears in our top-k list. Here, we present the hitting ratio of top

1, top 5 and top 10. The other criterion is δd , which is the average

geographical distance between the ground-truth location and the

top-1 prediction. The metrics we adopt are same as previous work

[9, 24].

HR@k =
1

n

n∑
i=1

k∑
j=1

∨(yi j == ŷi )

δd =
1

n

n∑
i=1

| |yi0 − ŷi | |

We compare DAPred with the following methods: (1)DSSM[11]

(2)JNTM[23] (3)ST-RNN[16] (4)SERM*[24] (5)DeepMove[9].

• JNTM[23] is the first method in location prediction consider-

ing both long-term movements and short-term movements

by adopting long trajectories and short trajectories as fea-

tures.

• DSSM[11] is an algorithm for Web Search. Here, we make

an analogy between queries and users, documents and tra-

jectories to adapt it for location prediction.

• ST-RNN[16] is a model which employs both time-specific

and distance-specific features to predict next location. By

constructing a distance matrix between time points, ST-RNN

is able to capture both temporal and spatial interests for

users.

• SERM*[24]is the variant of SERM, a semantics-enriched re-

current model. As there is no semantic information, we apply

SERM*, which is the variant of SERM, only models location,

time, and user factors without using textual information.

• SERM[24]is also tested by us with their semantic informa-

tion.

• DeepMove[9] is the state-of-the-art attentional recurrent

network in location prediction. By applying historical atten-

tion model, DeepMove captures the periodicity to augment

recurrent network.

Table 2 reports the performance comparison of our methods and

the State-of-the-Art algorithms on our three datasets. In Foursquare(4SQ)

dataset, compared to the best baseline DeepMove, DAPred yields

around 29.1% improvement in top 1 hitting ratio, 71.2% improve-

ment in top 5 hitting ratio and 127.6% improvement in top 10 hitting
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Table 2: Performance Comparison between DAPred and STRNN, DSSM, JNTM, SERM*, DeepMove. HR is the hitting ratio

Previous Algorithm Our algorithm

Data Metrics STRNN DSSM JNTM SERM* SERM DeepMove TPred TLSPred TDPred DAPred

4SQ

HR@1 0.016 0.128 0.06 0.137 0.170 0.148 0.128 0.124 0.186 0.191

HR@5 0.054 0.245 0.121 0.353 0.405 0.306 0.244 0.236 0.51 0.524

HR@10 0.083 0.286 0.156 0.486 0.553 0.352 0.291 0.274 0.769 0.801

GNY

HR@1 0 0.052 0.038 0.098 0.113 0.100 0.101 0.083 0.135 0.146

HR@5 0.004 0.110 0.092 0.185 0.254 0.248 0.19 0.16 0.336 0.362

HR@10 0.008 0.141 0.126 0.306 0.392 0.313 0.238 0.201 0.641 0.678

GLA

HR@1 0 0.066 0.020 0.126 0.159 0.198 0.066 0.066 0.176 0.182

HR@5 0.004 0.145 0.061 0.223 0.285 0.262 0.129 0.125 0.254 0.289

HR@10 0.008 0.188 0.086 0.440 0.572 0.565 0.161 0.157 0.533 0.619

(a) Test on Foursquare (b) Test on Gowalla.NY (c) Test on Gowalla.LA

Figure 4: δd (average distance predictor error) comparison among state-of-art algorithms

ratio. In Gowalla New York(GNY) dataset, compared to the best

baseline DeepMove, DAPred yields around 46.0% improvement in

top1 and top 5 hitting ratio and 116.6% improvement in top 10

hitting ratio. In Gowalla Los Angeles(GLA) dataset, DAPred yields

around 10.3% improvement in top 5 hitting ratio and 9.6% improve-

ment in top 10 hitting ratio. Distance predictor error δd comparison

is shown in 4, in which DAPred outperfroms the best baseline

SERM by 13% in Foursquare and DeepMove by 43.3% in Gowalla

at New York. Compared to the strongest baseline DeepMove, the

huge improvements in DAPred are mainly attributed to two main

reasons: (1) The dynamic preferences over distance when users

move; (2) The introduction of various interests over all terms on

different target times. To further prove our conclusion, we conduct

experiments on the variants of our models.

As we stated before, dynamic location prediction own three key

challenges to be solved. (1) Integrating diverse types of user pref-

erences. (2) Dynamic influence of past movements over distance

preference. (3) Influence of target time. To illustrate the effective-

ness of each component, we conduct experiments on four models,

including: TPred (Embedding and LSTM), TLSPred (Embedding and

LSTM-RNN), TDPred (Embedding,LSTM-RNN and attention) and

DAPred

As shown in Table 2, the attention-based model outperform oth-

ers consistently. Addtionally, DAPred combines both structure of

TLSPred and TDPred, achieving the best results among all models.

Hence, DAPred is more effective in modeling dynamic relations

than simple structures.

5.3 Illustrative Cases
In this section, we present several illustrative cases for our algo-

rithm. Figure 5 shows the location prediction for three different

users from 4SQ, GNY and GLA dataset. In these figures, the blue

markers are starting points and the green marker are end points.

Markers with other colors indicate the ground truth of next loca-

tion and the blue lines are users’ past movements. Black circles in

the figures refer to the results of our predictions. A larger circle

indicates a higher ranking of the prediction.

By visualizing users’ movements and our prediction, it is obvious

that we can correctly predict users’ next location at different target

times. Moreover, for the movements in figure 5(b), for the first

target time with black circles indicate our prediction, we find the

black circles are almost around the short trajectory, showing a

preference for short-term memory. For the second target time with

green circles, they are almost around the endpoint, indicating a

preference over locations in the neighborhood. While for the third

target time with brown circles, most of the predicted locations are

far away, showing a preference on long-term memory.
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(a) 4SQ (b) GNY (c) GLA

Figure 5: Visualization of dynamic attention location prediction with different interest over long-term and short-term prefer-
nce.

Figure 6: The change of weights with gap times on
Foursquare

5.4 Effect of dynamic attention mechanism
As we discussed above, we attribute our improvements to two

aspects. In this section, we would further discuss the effects of

these two parts.

In Figure 6, we present the change of weights on different time

gaps (from 1 hour to 6 hours). When the time gap becomes larger,

the weight of distance tends to grow, and the weight of short-term

preference tend to decrease. Such a phenomenon further validates

the change of users’ preference over target time. Due to limitations

of space, we don’t present the results for all datasets

5.5 Parameter Tuning
As mentioned above, there are three main parameters of DAPred:

the embedding demension for long-term and short-term trajec-

tory Ev , the embedding demension for time Et and the embedding

demension for user Eu .
We first study the effects of Et and Ev . In Figure 7, the orange bar

implies the accuracy of HR@10, the blue bar implies the accuracy of

HR@5, while the red bar implies the accuracy of HR@1. From the

figure, we could find that the when Et = 16 and Ev = 16, we could

reach the highest accuracy. We could also draw the conclusion that

the effects of parameters of Et and Ev are limited on accuracy. Then

we study the effects of Eu . Comparing to the parameters above, the

value of Eu influence the accuracy a lot. Based on the figure, we

select Eu = 32.

6 CONCLUSION
In this paper, we studied the problem of dynamic attention location

prediction problem with a new algorithm DAPred. To the best of

our knowledge, DAPred is the first method to predict next location

with multiple target time. To solve the target-time aware location

prediction problem, DAPred enjoys two novel characteristics: 1) An

attentional module to model the temporal and historical movements

influence over next movement selection 2) Various target time

preference over multiple factors. Our extensive experiments with

three real-life datasets have proved that DAPred owns a significant

improvement over the accuracy of the state-of-the-art method in

terms of HR@1, HR@5, HR@10 and average distance predictor

error. Further more, we also conduct comparison between different

models origined from our algorithm, which further proved the

significance of dynamic attention on time.

As part of our future work, we plan to discuss more on the dy-

namic attention location prediction problem. We would incorporate

our dynamic location prediction with inner-purpose in time cycle

(e.g. habits, travels, etc).
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