Empirical Software Engineering manuscript No.
(will be inserted by the editor)

SWordNet: Inferring Semantically Related Words from
Software Context

Jingiu Yang - Lin Tan

Received: date / Accepted: date

Abstract Code search is an integral part of software development and program comprehen-
sion. The difficulty of code search lies in the inability to guess the exact words used in the
code. Therefore, it is crucial for keyword-based code search to expand queries with seman-
tically related words, e.g., synonyms and abbreviations, to increase the search effectiveness.
However, it is limited to rely on resources such as English dictionaries and WordNet to
obtain semantically related words in software because many words that are semantically
related in software are not semantically related in English. On the other hand, many words
that are semantically related in English are not semantically related in software.

This paper proposes a simple and general technique to automatically infer semantically
related words (referred to as rPairs) in software by leveraging the context of words in com-
ments and code. In addition, we propose a ranking algorithm on the rPair results and study
cross-project rPairs on two sets of software with similar functionality, i.e., media browsers
and operating systems. We achieve a reasonable accuracy in nine large and popular code
bases written in C and Java. Our further evaluation against the state of art shows that our
technique can achieve a higher precision and recall. In addition, the proposed ranking algo-
rithm improves the rPair extraction accuracy by bringing correct rPairs to the top of the list.
Our cross-project study successfully discovers overlapping rPairs among projects of similar
functionality and finds that cross-project rPairs are more likely to be correct than project-
specific rPairs. Since the cross-project rPairs are highly likely to be general for software of
the same type, the discovered overlapping rPairs can benefit other projects of the same type
that have not been analyzed.

Keywords Semantically related words - code search - program comprehension

1 Introduction

Code search is an integral part of software development; developers spend up to 19% of their
development time on code search (Ko et al, [2005). It becomes more difficult for one devel-
oper to understand and remember every piece of a software project, as software becomes

Jinqiu Yang - Lin Tan
Electrical and Computer Engineering, University of Waterloo, ON, Canada
E-mail: {j223yang, lintan} @uwaterloo.ca

2 Jingiu Yang, Lin Tan

larger and more complex, software is typically developed by hundreds of or thousands of
programmers across decades, and developers frequently join and depart from the software
development process. In order to find relevant code segments, code search is becoming a
crucial part of software development and program comprehension.

The search for relevant code segments is difficult, because there is a small chance (10-
15%) that developers guess the exact words used in the code (Furnas et all|{1987). For exam-
ple, if developers want to find methods that disable interrupts in the Linux kernel, a simple
regular expression based search “disable *interrupt’ﬂwill miss the functions “disable_irqg”
and “mask-irq”. Both functions disable interrupts. The problem is the mismatches between
the words interrupt and irq and between the words disable and mask. Similarly, if we want
to find functions which add auctions in jBidWatcher and search for “add*auction” in the
code, the method “AuctionsManager.newAuctionEntry (String)’ will not be returned,
although it is related to adding an auction entry.

Researchers proposed to expand search queries with semantically related words (e.g.,
synonyms and abbreviations) for more effective searches (Shepherd et all 2007). However,
leveraging an English dictionary (Merriam-Webster, |2012) and WordNet (Princeton Univer-
sity,|2012) for obtaining semantically related words is limited in the software domain for two
reasons. First, many words that are semantically related in software are not semantically re-
lated in English. In the previous example, the words disable and mask are not related words
either in an English dictionary (Merriam-Webster, [2012)) or WordNet (Princeton Universityl,
2012). Similarly, interrupt and irg are not semantically related in the English dictionary or
WordNet. A recent study evaluated six well known techniques for discovering semantically
related words in English and showed that these techniques are limited in identifying seman-
tically related words in software (Sridhara et al,|2008)). The best technique needs to find over
3,000 pairs of words in order to discover 30 out of the 60 semantically related word pairs in
the gold set.

Second, many words that are semantically related in English are not semantically related
in software. For example, the words disable and torture are semantically related in English,
but not semantically related in the interrupt context.

If we can automatically discover semantically related words from software, it would not
only improve search tasks, but also benefit other software engineering tasks. For example,
aComment (Tan et al, 2011) leverages semantically related words to find comments that have
similar meanings in order to check these comments against source code to detect bugs. Cur-
rently, aComment requires its users to manually specify synonyms and paraphrases, which is
challenging since it requires the users to have domain knowledge about the target software.
In addition, the ad hoc process is likely to miss important synonyms and paraphrases. An
automated approach can potentially discover more synonyms and paraphrases and reduce
the manual effort required.

Therefore, we propose to automatically identify semantically related words by leverag-
ing the context of words in comments and code. This includes relations such as synonyms,
antonyms, abbreviations, related words, etc., all of which are useful for code search.

We use semantically related word pairs or the shorter rPairs to denote a pair of semanti-
cally related words and phrases. Our intuition is that if two words or phrases are used in the
same context in comment sentences or identifier names, then they likely have syntactic and
semantic relevance. For example, by examining the two comment sentences from the Linux
kernel—“Disable all interrupt sources.”’ and “Disable all irg sources.”’, we

! It is possible to perform a relaxed search to find method names that contain either the word disable or
the word interrupt, but such an approach generally retrieves too many irrelevant matches to be useful.

SWordNet: Inferring Semantically Related Words from Software Context 3

can learn that the words interrupt and irg are likely to be related because both words ap-
pear in the same context. In this particular case, the two words have the same meaning.
Similarly, from the functions, for example, “void mask-all_interrupts()” and “void
disable_all_interrupts(...)”, we can infer that the word mask and the word disable
form an rPair in this context. In addition to learning nouns and verbs that have similar mean-
ings, we can learn adjectives with similar meanings. For example, we can infer that the two
adjectives disabled and off have the same meaning from the following two comments—
“Must be called with interrupts disabled.” and “It MUST be called with

interrupts off.”.

Shepherd et al. (Shepherd et al, 2006, [2007)) extract verb-DO (Direct Object) pairs from
software which can be leveraged to identify semantically related words. For example, if they
discover verb-DO pairs (add | element) and (find | element) in iReport, they would suggest
the word find to users to expand their query “add element” in iReport (Shepherd et all 2007),
because (add, find) are considered semantically related. This paper differs from the previous
work mainly in the following aspects. First, the previous work relies on heuristics regarding
the naming convention and the structure of code identifiers and comments. For example,
they use different heuristics to extract the DO from a method name, depending on whether
a verb exists in the method name, where the verb is, and what the verb is. Such heuristics
are manually designed by the authors and may not generalize if the naming convention or
structure is not followed. Our technique requires no heuristics about the naming convention
or the structure of the code identifiers and commenmﬂ and can potentially be applied to a
broader spectrum of code bases.

Second, the previous technique leverages Natural Language Processing (NLP) tech-
niques, such as part-of-speech (POS) tagging and chunking, which are trained from general
English text such as the Wall Street Journal, not from software. When applied to the software
domain, these techniques can cause inaccuracies in rPair extraction. For example, it would
fail to identify the verb-DO pair from “newParameter ()”, as new is a noun in English. But
in the software context, new is commonly used as a verb to refer to creating memory for
a new object. This inaccuracy prevents the previous techniques from discovering the rPair
(new, add) that our technique can discover, because our technique ignores the part of speech.
The detailed comparison is discussed in Section[7}

This paper makes the following contributions.

— We propose a context-based approach to automatically infer semantically related words
by leveraging the context of words in comments and code. Our technique can be used as
a building block for many other software engineering tasks including code search (Hill
et al, [2009; [Shepherd et al, 2007 and software bug detection (Tan et al, [2011).

— The proposed technique identifies semantically related words with a reasonable accu-
racy in nine large and popular code bases written in C and Java—the Linux kernel,
Apache HTTPD Server, Apache Commons Collections, iReport, jBidWatcher, javaHMO,
jajuk, NetBSD and OpenBSD. We classify the semantically related word pairs into five
categories—synonym, related, antonym, near antonym, and identifier. The majority of the
identified semantically related word pairs cannot be found in WordNet (Princeton Uni-
versity, |2012), an English dictionary (Merriam-Webster, 2012) or a computer specific
dictionary (Computer Dictionary Online, 2013). The total number of rPairs per software
discovered by our context-based approach ,which ranges from 111 to 108,571 (comment-

2 Except that we break method names into words based on camel case and underscore, which is also used
by the previous work

4 Jingiu Yang, Lin Tan

comment), from 685 to 606,432 (code-code) and up to 10,633 (comment-code), shows
the feasibility of our technique.

— Our further evaluation against the state of art (Hill,|2010; Shepherd et al, | 2007) shows that
our overall recall and precision in discovering semantically related word pairs and locating
relevant functions is higher. Since automatically expanding queries with inappropriate
synonyms may produce worse results than not expanding (Sridhara et all |2008), it may
be beneficial to leverage techniques similar to previous work (Hill et al, 2009; Shepherd
et al,2007)) to allow developers to pick from a list of semantically related words. Since our
technique has higher recall (finds more rPairs or more functions) with higher precision
(more of the pairs discovered are true rPairs, or more of the functions found are truly
relevant to the search task), it can help developers find more relevant code segments and
comments, as well as find them more quickly because developers will examine fewer
incorrect rPairs.

— We propose and evaluate an algorithm to rank the rPairs from our basic extraction results.
Although our basic technique presents new opportunities to discover more semantically
related words and improves the accuracy of discovering them, the absolute accuracy is
relatively low due to the inherent difficulty of the task. Therefore, we introduce a ranking
algorithm to further improve the extraction accuracy. We evaluate our ranking algorithm
on the nine projects using three ranking slots, i.e., top 10, top 30 and top 50, and find that
the ranking algorithm can significantly improve the accuracy, especially for projects of
a large size (i.e., Linux, OpenBSD and NetBSD). We discuss other techniques that can
potentially further improve the accuracy in Section [6.1]

— We study the cross-project rPairs from two sets of projects. The motivation is that if one
rPair occurs in multiple projects, especially projects of similar functionality, the rPair is
more likely to be correct and general, and benefit other projects of the same type. Our
cross-project study shows that we can find overlapping rPairs among different projects
of similar functionality, and that cross-project rPairs are more likely to be correct than
project-specific rPairs. Therefore, whether an rPair is a cross-project rPair may be used to
improve the ranking algorithm and results. Besides, the cross-project rPairs can supple-
ment the rPairs of the projects with the same kind, which further improves the feasibility
of our technique.

Paper Outline The rest of the paper is organized as follows. Section 2] describes our basic
approach to learn semantically related word pairs from software context. Section[3| proposes
an algorithm to rank the rPairs learned by our basic approach. Section] presents the motiva-
tions of our cross-project rPairs study. Section [5]describes how we conduct the experiments.
Detailed results and the analysis of the results are provided in Section [6] In Section[7] a
discussion of the related work is presented. Finally, we conclude our findings and discuss
about future work in Section|[8]

Availability The rPairs inferred from the software context, collectively called SWordNet (a
collection of semantically related word pairs in software), are available at
http://asset.uwaterloo.ca/SWordNet.

2 Basic rPair Extraction

Our goal is to automatically learn semantically related words and phrases by leveraging
the context of words and phrases in comments and code. Examples in Table [I] help il-
lustrate how semantically related words and phrases can be learned from comments and

SWordNet: Inferring Semantically Related Words from Software Context 5

Table 1 Learning semantically related word pairs from context. The comment and code examples are real
comments and code segments from the nine code bases used in our evaluation.

[Context | Semantically Related Word Pairs | Context Type |
Must be called with interrupts disabled. (disabled, off) Comment-Comment
It MUST be called with interrupts off.

Disable all interrupt sources. (interrupt, irq) Comment-Comment
Disable all irq sources.

Always called with interrupts disabled. (call, invoke) Comment-Comment
Always invoked with interrupts disabled.

None mounted file for this track. (mounted, accessible) Comment-Comment
None accessible file for this track.

Serializes this map to the given stream (serialize, deserialize) & (to, from) Comment-Comment
Deserializes this map from the given stream

Min of spare threads (thread,daemon) Comment-Comment
Min of spare d

Empty map with the specified maximum size (size,capacity) Comment-Comment
Empty map with the specified maximum capacity

Gets the value associated with the key (associate, map) Comment-Comment
Gets the value mapped with the key specified

get a node’s parent (parent, left child) Comment-Comment
get a node’s left child

An iovec to store the headers sent before the file | (header, trailer) & (before, after) Comment-Comment
An iovec to store the trailers sent after the file

it was finally rewritten to a remote URL (remote, local) & (URL, path) Comment-Comment
it was finally rewritten to a local path

mask all_interrupts() (mask, disable) Code-Code
disable_all_interrupts(...)

addParameter(...) (add, new) Code-Code
newParameter ()

FileTypeFileFilter () (file, directory) Code-Code
DirectoryTypeFileFilter ()

Initialize signal names (initialize, setup) Comment-Code
setup_signal_names (...)

Alloc a net device (alloc, add) Comment-Code
add_net_device(...)

code. Column ‘Context Type’ shows whether the context is from comments or source code:
comment-comment indicates that both contexts are from comments; code-code means that
both contexts are from source code; and comment-code denotes that one context is from
comments, and the other context is from source code. For example, both of the two jajuk
comments “None mounted file for this track.” and “None accessible file for
this track.” state that a file associated with the track is missing. Since the words mounted
and accessible are surrounded by the same context, “None ... file for this track.”,
we consider the word pair (mounted, accessible) an rPair.

Our analysis technique takes a code base and a stopword list as input, and outputs se-
mantically related word pairs. The analysis process consists of four steps: (1) parsing com-
ments and code: given a code base, we first parse it to extract all the comment sentences
and method names, and convert each of them into a sequence of words; (2) clustering com-
ments and code: we cluster the word sequences based on whether they contain at least one
common word to reduce the overhead of pairwise comparison in the next step, which is
a critical step for our technique to scale up to large code bases such as the Linux kernel;
(3) extracting semantically related word pairs: we calculate the similarity between a pair of
word sequences and extract the corresponding rPairs if the context is similar; and (4) refining
semantically related word pairs: we finally refine the rPairs by using stemming to remove
pairs with the same roots, merging duplicate word pairs, normalizing words, and generating
transitive rPairs.

6 Jingiu Yang, Lin Tan

2.1 Parsing Comments and Code

We extract all comment blocks from source code files and use a sentence segmentator to split
them into comment sentences. Each comment sentence is broken down into a sequence of
words by using space as the delimiter. For example, the comment sentence “called with
interrupts disabled” is represented as a sequence consisting of four words (case in-
sensitive): <called, with, interrupts, disabled>. Similarly, we extract method names
from source code files, and split them into words based on camel case or underscore. To
minimize the dependency on naming convention and code structure related heuristics, our
analysis ignores return types and parameters.

A sentence segmentator for English sentences does not work well for code comments
mainly because incorrect punctuation is common in comments. Therefore, in addition to

TRt

regular sentence delimiters, i.e., “!”, “?”, and “;”, we use ““.” and spaces together as sentence
delimiters instead of using “.” alone, and consider an empty line and the end of a comment
as the end of a sentence (Tan et al, [2011).

In order to discover semantically related identifiers and avoid duplicate analysis, we do
not break identifiers in comments into multiple words based on camel case or underscore.
For example, we can learn that the apr_pool_clear and apr_pool_destroy are semantically
related methods in HTTPD from comments “If you do not have apr_pool_clear in

a wrapper’ and “If you do not have apr_pool_destroy in a wrapper’ .

2.2 Clustering Comments and Code

It is expensive to conduct pairwise comparison for a large number of sequences. For ex-
ample, the Linux kernel contains 519,168 unique comment sentences. Pairwise comparison
requires us to compare on the order of 100 billion (134,767,706,112) pairs of word se-
quences to check if we can find rPairs from them. This is already the number after we filter
out sequences that are too short or too long to as described later in Section 2.3] We ran the
experiment on an Intel Core 2 Duo 3.06 HZ machine, and the pairwise comparison does not
finish in one day.

To speed up the process, we want to reduce the number of pairwise comparisons. Our
intuition is that there is no need to compare two sentences that do not share a single word.
Therefore, we group sequences into clusters, one cluster for each word, where each cluster
contains all the sequences that contain the word. We do not build clusters for words in
the stopword list, which are words that appear frequently in English and software such as
‘a’, ‘an’, ‘the’, ‘that’, ‘this’, etc. Only sharing these non-essential words does not increase
the similarity of the context for discovering rPairs. We then conduct pairwise comparisons
within each cluster. Since each cluster contains much fewer number of word sequences,
this approach can significantly reduce the number of pairwise comparisons. For example,
this step speeds up the analysis process for the Linux kernel by over 1,000 times: all the
comments are divided into 123,404 clusters, and the total number of pairwise comparisons
has been reduced to 90,483,147, which translates to only one hour on the same machine.

2.3 Extracting Semantically Related Word Pairs

The main step of the extraction process is to calculate the similarity between two word
sequences and extract the corresponding word pairs if the similarity is higher than a given

SWordNet: Inferring Semantically Related Words from Software Context 7

threshold. Since sequences are not always lined up from the first word, e.g., <must, be,
called, with, interrupts, disabled> and <it, must, be, called, with, interrupts,
off>, we apply the Longest Common Subsequence (LCS) algorithm to find the longest
overlapping subsequences (not necessarily continuous) between two sequences.

We define the similarity measure as

T Number of Common Words in the Two Sequences
SimilarityMeasure =

Total Number of Words in the Shorter Sequence

If the similarity measure of a pair of word sequences is greater than or equal to the threshold
(whose default value is 0.7 for the comment-comment context) and not 1 (meaning that
the two sequences are identical), we extract rPairs from the differences between the two
subsequences.

Our technique can find semantically related phrases, not only semantically related words.
For example, from the sequences <get, a, nodes’s, parent > and <get, a, nodes’s,
left, child >, we can find that the longest common subsequence of these two sequences
is <get, a, nodes’ s >, and that phrases/words (parent, left child) are semantically related,
because the SimilarityMeasure is 0.75, which is greater than the default threshold.

In addition, we can find more than one rPair from two sequences. For example, from
the sequences <an, iovec, to, store, the, headers, sent, before, the, file> and <an,
iovec, to, store, the, trailer, sent, after, the, file>, we can infer two rPairs (header,
trailer) and (before, after).

In addition to the threshold, three additional parameters are used to control the rPair
extraction process: shortest, longest, and gap. Our technique only analyzes word sequences
whose length is greater than or equal to shortest and less than or equal to longest, where se-
quence length is defined as the number of words in a sequence. Our technique only performs
pairwise comparisons between two sequences whose length difference is gap or less.

2.4 Refining Semantically Related Word Pairs

We finally refine the detected rPairs. First, the rPairs in such format, (<WI, W2>, <W3,
W4>) is separated into two rPairs, (W1, W3) and (W2, W4). Then we remove rPairs that
contain words in the stopword list, e.g., (a, the); and we use stemming E] to remove word
pairs with the same roots, e.g., (call, called). Stemming is not perfect, e.g., Porter’s stemmer
makes mistakes such as stemming ‘adding’ to ‘ad’ instead of ‘add’. However, it is widely
used and works well for our experiments. We would like to experiment with other stemmers
in the future.

In addition, since the same rPairs may be discovered from multiple pairs of sequences,
we merge the word pairs as one rPair. For example, we can learn that (interrupt, irq) is
an rPair from the two relevant comments in Table|l} as well as the two sequences <were,
called, from, interrupt, handlers> and <called, from, irqg, handlers>. We consider
it as one rPair only, and increase the support for this rPair. The support is not used in our
basic extraction technique, but it is used to rank the rPairs as described in Section

Lastly, we normalize words to their base forms. For example, we normalize the rPair
(called, invoked) to (call, invoke), and normalize the rPair (threads, daemons) to (thread,
daemon). A typical stemmer is inappropriate for this normalization step, because a stemmer

3 http://tartarus.org/ martin/PorterStemmer/

8 Jingiu Yang, Lin Tan

will revert words to their stems (e.g., invoked to invok), most of which are not words. In ad-
dition, stemming can cause inaccuracies as we discussed earlier regarding Porter’s stemmer.
Therefore, we build a reversely mapped dictionary that can return the base form of a word,
given the derived form (e.g., past participles and plural nouns) of the word. We extract all
base forms of English words and their derived forms from an English dictionary and build
the reversely mapped dictionary. We normalize an rPair only if both words can be normal-
ized. We require that both words can be normalized based on our observations. For example,
the rPair (disabled, off) should not be normalized to (disable, off) because disabled and off
are two semantically related adjectives, but the verb disable (the base form of disabled) is
not a synonym of off-

We introduce transitive rPairs. If (W1, W2) and (W1, W3) are rPairs, (W2, W3) is a
transitive rPair that requires one transition. If (W2, W4) is also an rPair, then (W3, W4)
is a transitive rPair after two transitions. Considering transitive rPairs increases recall but
reduces precision; our evaluation uses no transitive rPairs unless stated otherwise.

3 Improved Version of rPair Extraction

We propose two techniques to improve the rPair extraction accuracy: (1) we design a better
similarity measure; and (2) we use an effective ranking function to rank the rPair results so
that we can achieve a higher accuracy for the top ranked rPairs, i.e., top 10, top 30, and top
50 rPairs. Section 3.1]introduces how we use Inverse Document Frequency (idf) to redefine
the Similarity Measure in Section[2.3] Section [3.2]briefly describes the ranking function we
use.

3.1 An Improved Similarity Measure

In this section, we briefly describe how we adopt the idf technique to define a better simi-
larity measure.

3.1.1 The idf Weight

By observing the results from our basic rPair extraction experiments, we notice that many
false positives are introduced because many words in the shared context are less meaningful,
e.g., the words such as ‘both’, ‘via’, and ‘additional’ are less meaningful than the words
such as ‘irq’, ‘disable’, ‘kernel’, etc. Since the quality of the shared context could affect the
accuracy of the inferred rPair, we give different weight values to different words to improve
our similarity measure. In our experiment, we leverage the idf technique to assign different
scores to every word. Therefore, those important and unique words are distinguished from
those common and less meaningful words.

The idf is the inverse document frequency, and it is a widely-used metric to reflect how
important a word is in a document or a collection of words. Typically, idf (¢, D) is defined
a 2]

idf (t, D) = logyase [deD:tecd
where D represents all documents. The idf score ranges from 0 to logpase D. In our experi-
ment, we normalize the idf as
idf (t,D)

normalized,idf(t, D) = m
e’)

SWordNet: Inferring Semantically Related Words from Software Context 9

to make it within [0, 1) so that idf score is consistent across projects regardless of different
number of methods in different projects.

3.1.2 The New Similarity Measure Definition

Based on the normalized_idf scores, we redefine the similarity measure as the following
formula. To distinguish it from the similarity measure defined in Section [2.3] this improved
similarity measure is referred to as the new similarity measure. In the following formula,
s1 and sg are two sentences, S represents the common part between s1 and s2, ns is the
number of words in sentence s, and S represents all the sentences.

2% Enormalized,idf (SC)
Znormalized,idf(sl) + Znormalized,idf(s2)

NewSimilarityMeasure =

where

Z (s) = Z normalized_idf (t;, S)

normalized_idf =1

3.2 The Ranking Function

Our goal is to design a ranking function to further improve the accuracy of our rPair extrac-
tion results. Two factors can be indicative of the correctness of rPairs: (1) the new similarity
measure, and (2) the number of contexts in which one rPair can be learned, referred to as
support. If the similarity measure of a rPair is higher, it is likely that it is a correct rPair.
Similarly, if a rPair can be inferred from multiple contexts, it is likely that it is a correct
rPair. Therefore, we combine the support and the similarity measure for effective ranking.
One common way to combine two factors to form a ranking function (if the two factors
both have positive values), is to multiply these two factors. However, in our experiment,
we observe that although the support plays an important role in ranking, the support and
the similarity measure are in different ranges, e.g., the support of rPairs in the Linux kernel
can be greater than 2,000, while the similarity measure is always between 0 and 1. If we
simply use the product of the similarity measure and the support as the ranking function, the
ranking function will be overpowered by the support. Therefore, we use a more balanced
way of combining the NewSimilarityMeasure and the Support, by taking the logarithm of the
support. Furthermore, we normalize the RankingFunction value with the logistic function.
We choose not to normalize the support score to [0, 1); instead, we normalize the Rank-
ingFunction values to be consistent across the projects. We make this decision based on the
observation that support should have a significant contribution in determining the correct-
ness of rPairs, but a normalized support (e.g., using a logistic function) has limited such
contribution. For example, the normalized_support of support=5 has a limited difference
from the normalized_support of support > 5, which makes the support contribute little to

the ranking.
Our ranking function is:

. . _ J logyqse Support X AVGsimitarity 1f Support > base
Ranking Function = { AV Simitarity if Support < base
where

S t L .

E _ulppm NewSimilarityMeasure
=

AV Gsimilarity = .

Support

10 Jingiu Yang, Lin Tan

And the logistic function is:

eRank:ingFunction
normalized_RankingFunction =

14+ eRankingFunction '

While it is possible to use advanced ranking functions to further improve the accuracy,
our simple ranking algorithm improves the rPair extraction accuracy (Section [6.4).

4 Studying Cross-Project rPairs

Some rPairs can be extracted from more than one project, which we call cross-project rPairs.
For example, one rPair (dev, device) which appears in Linux, NetBSD and OpenBSD is one
cross-project rPair among the three operating system projects. The rPair (dev, device) is in-
ferred from the Linux kernel comments “disable cir logical dev’ and “disable cir
logical device”, from the NetBSD comments “graphics dev is open” and “graphics
device is open exclusive use” and from the OpenBSD comments “scsi dev clear
operation” and “scsi device clear operation”.

Cross-project rPairs have many benefits. First, cross-project results can benefit other
software from the same type of software which have not been analyzed yet. Second, cross-
project rPairs are expected to have a higher accuracy; therefore whether an rPair is a cross-
project rPair may be used to improve the ranking results.

In addition, we rank the cross-project rPairs. Specifically, we combine the average of
the similarity measures and the sum of the supports from all projects the same way as in the
ranking function in Section 3.2} We briefly describe how we conduct cross-project study in
Section [5.5]and detailed cross-project rPair results with ranking are shown in Section[6.3]

5 Experimental Methods

We evaluate our technique on nine open source projects (Table 2). Because method names
are typically much shorter than comment sentences, we use different parameters for the
comment-comment, code-code, and comment-code comparisons. For comment-comment
comparisons, the parameter configuration is shortest=4, longest=10, gap=3, and thresh-
0ld=0.7; for code-code comparisons, the parameter configuration is shortest=2, longest=4,
gap=0, and threshold=0.5; and for comment-code comparisons, the parameter configuration
is shortest=2, longest=6, gap=1, and threshold=0.6.

We perform five sets of evaluation experiments.

5.1 Experiment: rPair Extraction Accuracy and Comparison with WordNet and a
Dictionary

We randomly sample 300 rPairs from all the rPairs generated for each project—100 rPairs
extracted from the comment-comment context, 100 from the code-code context, and 100
from the comment-code context. We then manually read these rPairs and the correspond-
ing word sequences to verify if the rPairs are correct rPairs. If fewer than 100 rPairs are
extracted from one type of context in a code base, we manually verify all of the rPairs
learned from that context in that code base. The accuracy is measured as the number of

SWordNet: Inferring Semantically Related Words from Software Context 11

Table 2 Evaluated Software. LOComment is lines of comments. *The versions of iReport, jBidWatcher,
javaHMO, jajuk are the same as (Shepherd et all[2007). The dates when NetBSD and OpenBSD were checked
out from the version control systems are shown instead of the version numbers.

Software Source Description LOC LO- | Lang-
& Version C -uage
(The Linux Kernel Organization, Inc.!2012} The Linux kernel

Linux 33 Operating System 9,823,623 2,135,655 C
(The OpenBSD Foundation][2012] OpenBSD

OpenBSD Feb2012 Operating System 2,029,168 487,623 C
(The NetBSD Foundation][2012] NetBSD

NetBSD Nov2008 Operating System 3,003,072 959,409 C
(The Apache Foundation][2012b] Apache HTTPD Server

HTTPD 2.2.21 ‘Web Server 231,526 70,229 C
(The Apache Foundation|[2012a Apache Commons

Collections

Collections 3.2.1 Libraries and Utilities 55,398 40,994 Java
(iReport[2012} iReport

iReport 1.2.2% Report Generator 74,506 18,614 Java
(JBidwatcher][2011] JjBidWatcher

jBidWatcher 1.0pre6* eBay Auction Monitor 23,052 5,596 Java
(JavaHMO/[2009) JjavaHMO

javaHMO 2.4% Media Server 25,988 7,784 Java
(Jajukl[2012) Jajuk

jajuk 1.2% Music Player 30,679 13,545 Java

correct rPairs in a sample over the total number of rPairs in the sample. We further clas-
sify the correct rPairs into five categories—synonym, related, antonym, near antonym, or
identifier, whose definition and examples are shown in Section [6.1} To reduce subjectivity,
two people verify these results. In addition, we check how many rPairs cannot be found in
WordNet (Princeton University, [2012), an English dictionary (Merriam-Webster, 2012) or a
computer specific dictionary (Computer Dictionary Online} 2013).

5.2 Experiment: Search-Related Evaluation

Previous work (Shepherd et all 2007) builds a code search tool that expands search queries
with alternative words learned from verb-DO pairs. For example, when developers search for
“add textfield” in iReport, the tool will suggest words including element, keyword, and token
for developers to select from to expand the initial query to queries such as add element, add
keyword, add token, etc. These words are objects (DOs) that appear together with the verb
add in iReport. To evaluate the technique, they manually identify the methods related to the
concern “add textfield”, referred to as function gold set, and check if such query expansions
can improve the search effectiveness.

We perform two sets of search-related evaluation experiments. Firstly, we mimic the
search process exhaustively by replacing the words in the search queries with rPairs mined
by our approach, and compare our search results with those from the latest and improved ver-
sion of verb-DO work (Hill, 2010) (denoted by SWUM). For example, for search task “add
textfield”, we first mimic the search process by searching with two queries “*add*textfiled*”
and “*textfield*add*”, because it is typical for users to reorder the verb and the noun to re-
trieve more search results. Second, we replace the words in the search queries, e.g., “add”
and “textfield”, with alternative words. To locate as many search results as possible, two
words in the search query can be replaced together to form a new search query, for example,
“*new*reportpanel*” is one valid search query if ‘new’ is alternative to ‘add’ and ‘report-
panel’ is alternative to ‘textfield’. For the search tasks with more than two words, such as
“Gather Music Files”, we construct initial search queries by “*verb*second noun*”, such as

12 Jingiu Yang, Lin Tan

“*gather*file*”, to locate more matches, because the query “*gather*music*file*” returns
nothing in the project . We conducted the search using Eclipses’ default search focusing on
method declarations and constructors.

Secondly, since our technique is a building block for search tools, we compare the pre-
cision and recall of our rPair extraction results with the rPair extraction results of the previ-
ous work (Hill, 2010j [Shepherd et all 2006, 2007), on the rPair gold set inferred from the
same search tasks (Shepherd, 2007) used by the previous work. For example, their function
gold set for the search task “add auction” in jBidWatcher includes the following two meth-
ods “AuctionsManager.newAuctionEntry (String)” and “AuctionServer.register—
Auction (AuctionEntry)”, which means that when developers search for “add auction”,
these two methods should be matched. A keyword-based search for “add auction” in source
code files will not find these methods. To locate them, we need to expand the query to “new
auction” and “register auction”. Therefore, we add two rPairs, (add, new) and (add, regis-
ter), to our rPair gold set for the query word add. Note that the rPairs are added based on
the function gold set. For example, the pair (add, insert) is not in our rPair gold set, because
according to the function gold set, we do not need the word insert to locate the methods
related to “add auction” in jBidWatcher. Since only eight of the nine search tasks from the
previous work (Shepherd et all [2007) require query expansion, we generate the rPair gold
set for the eight search tasks.

For a fair comparison, we tune the previous technique to achieve the best performance,
i.e., the highest recall, since it is harder to guess the words used in code, than to cross off false
positives. First, we compare against their latest and improved version SWUM (Hill, 2010).
Since the improved version analyzes only code but not comments, we can only compare our
code-code analysis against their approach. If we add our comment-comment and comment-
code analysis, our approach could find more rPairs as discussed in Section[6.2]and Section[7}
Second, we relax one restriction of the SWUM technique to help it find rPairs that it may
miss otherwise. For example, for the query “load movie”, the SWUM technique would sug-
gest verbs that appear together with movie, which do not include start, because start does
not appear together with movie. If the user decides to expand the query with the suggested
words, the SWUM technique would suggest new words based on the new query. Therefore,
whether start will eventually be suggested is uncertain. We relax this restriction so that the
SWUM technique can find (load, start) as an rPair if load and start appear together with
some DO, not necessarily movie.

In the first search-related experiment, based on the function gold set, we measure the
recall as the number of methods in the gold set that a technique can discover over the total
number of methods in the gold set. The precision is the number of methods in the gold set
that a technique can discover over the total number of methods discovered by the technique
with the expanded search queries including the original ones, such as “*add*textfield*” and
“*textfield*add*” in the previous example. Similarity, in the second search-related experi-
ment, based on the rPair gold set, we measure the recall as the number of rPairs in the gold
set that a technique can discover over the total number of rPairs in the gold set. The precision
is the number of rPairs in the gold set that a technique can discover over the total number of
rPairs discovered by the technique that contain the original query word in the gold set (e.g.,
add and load in the previous examples).

SWordNet: Inferring Semantically Related Words from Software Context 13

5.3 Experiment: Sensitivity Evaluation

To understand how the threshold affects the performance of the proposed technique, ideally
we want to vary the threshold, regenerate rPairs, and measure the precision and recall on
a random sample of the rPairs. However, as the rPairs generated will be different with dif-
ferent threshold values, this evaluation approach requires a significant amount of effort on
manually verifying the rPairs in the random samples. Therefore, as an approximation, we
use the same random samples from the rPairs generated with our default threshold values
(referred to as default samples), and measure the recall as the portion of the correct rPairs in
a default sample that can be identified by our technique with a new threshold. The precision
is the number of correct rPairs in the default sample that our technique can discover over the
total number of rPairs in the default sample that our technique can discover.

5.4 Experiment: Ranking Evaluation

To evaluate whether the ranking function helps achieve a higher accuracy, we apply the
ranking algorithm on the combined set of rPairs extracted from all three types of contexts
from the nine projects. We manually check the rPair accuracy of three ranking slots, i.e., top
10, top 30 and top 50, and compare the accuracy of these ranking slots with the accuracy
from our basic extraction without ranking.

For each project, we apply the ranking algorithm on the rPair from the combined set
of all the rPairs from the three categories of contexts (comment-comment, etc.). We choose
base=10 (both in the ranking function and idf{t, D)). The accuracy results, which are verified
by two people individually, are shown in Section[6.4]

5.5 Experiment: Cross-Project rPairs Study

Studying the overlapping rPairs across projects has many benefits, as discussed in Section[4]
While our technique can be used to find overlapping rPairs among any projects, two projects
of different types may not share any rPairs, e.g., jajuk and the Linux kernel share no rPairs.
These two projects do not have similar functionality: jajuk is a media player while the Linux
kernel is an operating system. Therefore, we focus on studying the overlapping rPairs among
projects of the same type.

We experiment with two sets of projects of similar functionality. One set is two media
players, i.e., jajuk and javaHMO, and the other set is three operating system projects, which
are Linux, NetBSD and OpenBSD. For each set of projects, we conduct the cross-project
study on the combined set of rPairs extracted from all three types of contexts and use the
ranking algorithm described in Section to rank the cross-project rPairs. In the future,
we can apply our technique on other types of software, e.g., web browser projects such as
Chrome, Firefox, etc.

5.6 Threats to Validity and Limitations
The search gold set and rPair gold set (introduced in Section [5) may favor a certain tech-

nique. To minimize this threat, we evaluate our technique on the same search gold set used
by Shepherd et al. (Shepherd et all 2007) as we compare against their technique. This is

14 Jingiu Yang, Lin Tan

unlikely to favor our technique. In addition, two authors confirm the rPair gold set to reduce
subjectivity.

If a code base contains no comments and the methods are poorly named, our technique
may be less effective. However, given that modern software often contains a large amount of
comments (Tan et al, [2007) and meaningful identifiers, our technique should be applicable
to a large body of software. A large amount of commented code may affect the performance.
First, it can add extra comments to the analysis, which are actually code. Second, analyzing
code statements as sentences may produce rPairs with lower accuracy because it is com-
mon for code statements to have many words in common. In the future, we can exclude
commented code from our analysis to address this issue.

Our current implementation cannot tell if an rPair is synonym, related, antonym, near
antonym, or identifier. Although all categories are useful for code search, it would be ben-
eficial to distinguish these categories. In the future, we may leverage etymology to classify
rPairs into the categories automatically.

6 Experimental Results
6.1 rPair Extraction Results

Table Bl shows the overall rPair extraction results on the nine evaluated code bases from the
three types of contexts: comment-comment, code-code, and comment-code. We show the
margin of error with 95% confidence level except for comment-comment of jBidWatcher
and comment-code of HTTPD, iReport, and jajuk, of which we verify all extracted rPairs.
We have two people manually verify the correctness of the rPairs, discuss the disagreements
to reach consensus and report the disagreements statistics accordingly. In total, the two peo-
ple have disagreements on 83 out of the 2269 verified rPairs. We calculate the Cohen’s
kappa value, which is a well-known statistical measure of inter-rater agreements, based on
6 categories of rPairs (Synonym, Related, Antonym, Near Antonym, Identifier, Incorrect).
The Cohen’s kappa value is 0.8668, which indicates “almost perfect agreement” according
to (Landis and Koch, [1977).

We can see that the accuracy of the comment-comment context is the highest (30.0-
84.0%) among the three contexts with an average of 56.9% (not shown in the Table), which
is expected because comment sentences are generally longer than method names, which pro-
vides longer context for learning correct rPairs. In contrast, we learn fewer rPairs from the
comment-code context, due to the disparity between comments and method names. How-
ever, the comment-code context does help us learn meaningful correct rPairs such as (ini-
tialize, setup) and (alloc, add), whose contexts are shown in Table

Column ‘Not in Dic or WordNet’ shows the number of rPairs that cannot be found in ei-
ther WordNet (Princeton University} |2012), an English dictionary and thesaurus (Merriam-
Webster, |2012) or an computer science specific dictionary (Computer Dictionary Online,
2013). These words and phrases are semantically related in software, but are not semanti-
cally related in English. This is very valuable because it is almost impossible for developers
to guess all the semantically related words used in a given piece of software. Our results
show that 711 out of the 756 (94.0%) correct rPairs in the nine projects cannot be found
in either WordNet (Princeton University, [2012), an English dictionary (Merriam-Webster,
2012) or a computer specific dictionary (Computer Dictionary Online} 2013).

The breakdown of the correct rPairs into five categories is shown in Table [] Synonym
denotes words that have the same meanings in software (including abbreviations), e.g., (call,

SWordNet: Inferring Semantically Related Words from Software Context 15

Table 3 rPair Extraction Results. Dic denotes Merriam-Webster English Dictionary and Thesaurus Merriam-
'Webster| (2012) and the computer specific dictionary (Computer Dictionary Online} |2013). The margin of
error is calculated with 95% confidence level, which is to express the random sampling error in the extrac-
tion accuracy. The average accuracy of comment-comment is 56.9%, 33.3% for code-code and 16.5% for
comment-code.

Software rPairs Sample Correct Accuracy #Not in Dic
Size rPairs or WordNet
Comment-Comment
Linux 108,571 100 47 47.01+9.8% 36
HTTPD 1,428 100 47 47.0+9.5% 44
Collections 469 100 74 74.0+8.7% 72
iReport 878 100 84 84.04+9.2% 80
jBidWatcher 111 111 71 64.0% 63
javaHMO 144 100 56 56.045.4% 50
jajuk 203 100 69 69.0+7.0% 64
NetBSD 36,485 100 30 30.04+9.8% 30
OpenBSD 27,362 100 40 40.0+9.8 % 40
Code-Code
Linux 606,432 100 25 25.049.8% 25
HTTPD 1,727 100 25 25.04+9.5% 24
Collections 3,162 100 41 41.0+9.7% 37
iReport 1,849 100 47 47.0+9.5% 47
jBidWatcher 1,428 100 42 42.01+9.5% 42
javaHMO 685 100 35 35.049.1% 35
jajuk 746 100 48 48.0+9.1% 47
NetBSD 354,680 100 20 20.049.8% 20
OpenBSD 223,323 100 17 17.04£9.8% 17
Comment-Code
Linux 10,633 100 25 25.04+9.8% 25
HTTPD 43 43 12 27.9% 12
Collections 5 5 0 0 0
iReport 4 4 4 100% 4
jBidWatcher 0 0 0 0 0
javaHMO 0 0 0 0 0
jajuk 6 6 4 66.7% 4
NetBSD 1,169 100 7 7.0+£9.38% 7
OpenBSD 703 100 7 7.0+£9.08% 7

invoke) and (interrupt, irq). Related denotes words that are semantically related but not the
same, e.g., (size, capacity) and (file, directory). Antonym denotes words that have opposite
meanings, e.g., (serialize, deserialize) and (before, after). Near Antonym denotes words that
have almost opposite meanings, e.g., (header, trailer). The full contexts of these rPair ex-
amples are shown in Table |1} Identifier denotes words that are semantically related code
identifiers, such as method names, variable names, etc. For example, makeFullMap() and
makeEmptyMap() are a pair of identifier rPairs, which are two function names from Col-
lections. All five types of rPairs are useful for code search and other software engineering
tasks.

False Positives. Despite the challenging nature of the task, our technique has reasonable
accuracy. However, there is much space to further improve the accuracy. One main cause of
false positives is that the shared context contains many common English words. For exam-
ple, we mistakenly consider (match, literal) semantically related, from comments “we have
a match”, and “we have a literal”. Another reason is that our design favors recall over
precision; the threshold and the support (the number of contexts from which the rPairs can
be learned) are set low, and the gap (the length difference between two sequences compared)

16 Jingiu Yang, Lin Tan

Table 4 rPairs Extraction Results. This table shows the percentage of correct rPairs distributed among five
categories for nine projects. Majority of the correct rPairs (42.5-100%) belong to the ‘Related’ category.

Software Syno- Related Anto- Near Identifier
nym nym- Antonym
Comment-Comment
Linux 2.1% 42.6% 2.1% 4.2% 49.0%
HTTPD 2.1% 51.0% 12.8% 2.1% 32.0%
Collections 0 78.4% 5.4% 4.1% 12.1%
iReport 0 50.0% 8.3% 1.2% 40.5%
jBidWatcher 0 66.2% 11.3% 16.9% 5.6%
javaHMO 1.8% 50.0% 7.1% 7.1% 34.0%
jajuk 5.8% 72.3% 8.7% 7.2% 0
NetBSD 0 63.3% 6.7% 0 30.0%
OpenBSD 2.5% 42.5% 2.5% 2.5% 50.0%
Code-Code
Linux 4.0% 84.0% 4.0% 8.0% 0
HTTPD 4.0% 72.0% 12.0% 12.0% 0
Collections 4.9% 82.9% 7.3% 4.9% 0
iReport 2.1% 93.6% 2.1% 2.1% 0
jBidWatcher 2.4% 85.7% 2.4% 9.5% 0
javaHMO 0 94.2% 2.9% 0 2.9%
jajuk 0 89.6% 6.3% 4.1% 0
NetBSD 0 100% 0 0 0
OpenBSD 0 100% 0 0 0
Comment-Code
Linux 0 88.0% 0 12.0% 0
HTTPD 8.3% 91.7% 0 0 0
Collections 0 0 0 0 0
iReport 0 100% 0 0 0
jBidWatcher 0 0 0 0 0
javaHMO 0 0 0 0 0
jajuk 0 100% 0 0 0
NetBSD 0 85.7% 0 14.3% 0
OpenBSD 0 85.7% 0 14.3% 0

allowed is high. Despite the false positives, our techniques is valuable, because it is much
easier for developers to cross off false positives than to guess the possible semantically re-
lated words used in software.

To reduce false positives, we rank rPairs according to the importance of the words in the
shared context (e.g., idf scores) and the support; the results are in Section [6.4] In addition,
we could leverage NLP techniques to generate the semantic paths (Lin and Pantel, 2001) to
infer rPairs more precisely. At the cost of lower recall, users can increase the threshold and
decrease the gap to improve the precision.

6.2 Search-Related Results

Table [5] shows the search-related results on the methods gold set. Column ‘Initial Search
Query’ shows the initial search queries established based on the search task. We conduct
the search experiments by expanding the initial search queries by replacing the words in the
queries with the words mined by two techniques. For example, for the search task “add auc-
tion” in jBidWatcher, we perform two initial search queries—*“*add*auction*” and “*auc-
tion*add*” to mimic typical search queries from developers. We expand the query word add
with its semantically related words, new, register, and do, to locate the relevant methods.

SWordNet: Inferring Semantically Related Words from Software Context 17

Column ‘Precision’ shows the percentage of the functions the two techniques find correctly
and Column ‘Recall’ shows the percentage of the functions in the gold set which the two
techniques can find. Column ‘C'T'X” is our context-based technique, column ‘CT X7’ is
C'T X with transitive rPairs, and SWUM denotes the previous work (Hill, [2010; Shepherd
et al, |2007).

Table [shows the search-related results on the rPairs gold set. Column ‘rPairs in gold
set’ shows all the rPairs in our rPair gold set, which can help expand the search queries to
find the relevant methods.

As stated in Section [5] we tune the SWUM technique to reach its best performance.
Without the tuning, the SWUM technique would potentially miss three additional rPairs,
(load, start), (add, do), and (file, directory). Thus SWUM will miss some functions in the
function gold set, such as FileGatherer.gatherDirectory(File, String, FileFilter, Z) for the
search task “gather music files”.

Overall, our context-based approach (C7T'X) outperforms the SWUM approach on the
two sets of search-related experiments. In the search-related experiment on function gold
set, for three search tasks, both techniques have zero recall. For three out of the five remain-
ing tasks, our context-based approach has higher recall and precision or same recall with
higher precision. Furthermore, our technique with transitive pairs (at most two transitions
allowed C'T'Xr) can achieve higher recall for all the remaining five tasks and higher pre-
cision for four out of the five tasks than SWUM. SWUM has higher precision and higher
recall than our technique on the search task “compile report” because our technique fails
to discover ‘translated compile directory’ is related to ‘report’. Thus SWUM can locate
one more function MainFrame.getTranslatedCompileDirectory(). One caveat is that users
may not use the full rPairs to expand the search queries, however we mimic the scenario
maximally by leveraging the entire results.

In the search-related experiment on rPairs gold set, for three search tasks, both tech-
niques have a zero recall. For four out of the five remaining tasks, our context-based ap-
proach has higher recall and precision or same recall with higher precision. For example,
our technique can find the rPair (add, new) in iReport, but the previous approach will miss
it because NLP tools trained from general English text will not consider new a verb as dis-
cussed in Introduction. One caveat is that using these semantically related words to expand
queries may locate more irrelevant method names. However, recent techniques (Hill et al,
2009, 201 1a) may be leveraged to restrict the search context and scope to address this issue.

For the rPairs that both techniques can find, our technique (C'T"X) has a higher precision
(by a factor of 2.4-8.3). This is because we use similarity measures to filter out irrelevant
pairs, and we do not consider return types or parameters to minimize the dependency on
naming convention and code structure related heuristics. Although these design choices may
make our technique discover fewer rPairs, they did not cause our technique to miss any rPairs
in the search-related rPair gold set that the SWUM technique can find.

Although our technique (C'T'X) has a higher precision than the SWUM technique, the
precision of both techniques is relatively low, because (1) this is an inherently challenging
task, and (2) we only count the particular rPairs in our gold set as true positives, and consider
other correct rPairs discovered by the techniques as false positives, which can be useful for
other search queries nonetheless. We can use the techniques discussed in Section to
improve the precision.

The only case that the SWUM approach has a higher recall than our approach is for
the rPair (save, do). The SWUM approach breaks the method name poSave into two verbs,
and generate two verb-DOs by combing the method name with the parameter name. Our

18 Jingiu Yang, Lin Tan

Table 5 Search-Related results based on function gold set. We search by “*verb*noun*”, “*noun*verb*”
and combinations of alternative words for ‘verb’ and ‘noun’. C'T'X is our context-based technique, CT X
is CTX with transitive rPairs, and SWUM denotes the previous work by [Hill| (2010). The function gold set
is from Shepherd| (2007).

Search Task Initial ‘ Precision i Recall ‘
Search Query | CTX [SWOM | CTXr [| CTX | SWUM | CTXr |
iReport
« o *add*textfield* 14.3% 0 5.3% 40.0% 0 60%
Add Textfield *extfield*add*
B . N *compile*report 4% 15.8% 0.17% 25% 37.5% 87.5%
Compile Report *report*compile*
JjavaHMO
ES Hfile*]
“Gather Music Files” *g'il:ﬁ;ratﬁz* 28.6% 0.23% 0.5% 50% 50% 75%
* *11st1 *
“Load Movie Listing” *iii?n ;2225* 0 0 0 0 0 0
JjBidWatcher
B ., *add*auction* 3.7% 0.82% 0.94% 100% 100% 100%
Add Auction *auction*add*
. I *save*auction™ 1.61% 0.52% 0.66% 33.3% 66.7% 77.8%
Save Auction *auction*save*
“Set Snipe Price” *;T_;Cgi;?t* 0 0 0/0 0 0 0/0
Jajuk
#nlay* £
. N play*song 0 0 0/0 0 0 0/0
Play Song *song*play* ‘ ‘ ‘

technique does not attempt to break one method name into two sequences, therefore misses
this rPair. However, our technique with transitive pairs (C'I" X) can find this rPair.

In addition, Table [6] shows that by considering transitive rPairs with at most two tran-
sitions allowed (CT'Xr), we can find three additional rPairs in the gold set with lower
precisions, including two rPairs that neither the SWUM technique nor our technique with-
out transitive rPairs (CT X) can find—(gather, find) and (report, directory). If we analyze
comments as well, then an additional rPair (listing, container) will be identified.

6.3 Sensitivity Results

To understand how a higher threshold affects the precision and recall on the comment-
comment analysis, we first experiment with thresholds 0.8, and 0.9. We found that threshold
0.8 significantly reduces the number of identified rPairs (recalls are lower than 0.5 for all
nine projects) with much higher precision (7.3-56.3% improvement) for all projects except
for HTTPD (a small improvement of 0.6%), and threshold 0.9 finds zero rPairs in our de-
fault samples for iReport, HTTPD, and the Linux kernel, and one rPair for the rest 4 projects.
Since we favor recall, we then evaluate a lower threshold 0.75, which, however, still gives
us low recalls (less than 0.5 for all projects) with precisions lower than those with threshold
0.8. Since the number of words in a sentence is integers, thresholds between 0.7 and 0.75
are either equivalent to 0.7 or 0.75; therefore, there is no need to evaluate them. In summary,
threshold 0.7 finds more rPairs with reasonable precisions; therefore, it was chosen as our
default value. If higher precision is preferred and lower recall is acceptable, 0.8 is a good
choice. We did not conduct the same experiment for the comment-code and code-code con-
text because method names are generally short, e.g., two words, which means that only a

SWordNet: Inferring Semantically Related Words from Software Context 19

Table 6 Search-Related results on rPairs gold set. C'T'X is our context-base technique, CT X7 is CTX
with transitive rPairs, and SWUM denotes the previous work by Hill| (2010).

Search Task rPairs in Gold Set \ Precision [Recall \
| CTX [SWUM | CTXr || CTX [SWUM | CTX7 |
iReport
add->new, drop 3.7% 0 0.3% 50.0% 0 50.0%
“Add Textfield” TextField 0 0 0 0 0 0
—->ReportPanel
“Compile Report” | report->directory 0 0 0.3% 0 0 100%
JjavaHMO
“Gather Music gather->find 0 0 1.1% 0 0 100%
Files” file 3.3% 0.4% 0.6% 100% 100% 100%
—->directory
“Load Movie listing 0 0 0 0 0 0
Listings” ->container
load->start 20.0% 5.3% 1.1% 100% 100% 100%
JjBidWatcher
“Add Auction” addf>do, new, 5.5% 2.3% 1.0% 100% 66.7% 100%
register
auction->entry 1.8% 0.3% 0.4% 100% 100% 100%
“Save Auction” save->preserve 0 1.6% 0.3% 0 33.3% 33.3%
backup, do
“Set Snipe Price” | price->currency 0 0 0/0 0 0 0/0
Jajuk
B N song->file, 0 0 0/0 0 0 0/0
Play Song playlist
play—->launch 0 0 0/0 0 0 0/0

Table 7 The accuracy of rPair extraction with ranking. Top 10 can achieve the highest accuracy of 60-100%,
top 30 achieve the accuracy of 66.7-83.3% and top50 has the accuracy of 60-80%.

Software Total Ranking Slots Comment-Comment
Top 10 [Top 30 | Top 50
HTTPD 3,053 60.0% | 66.7% | 66.0% 47.0%
Collections 3,535 | 100.0% | 83.3% | 70.0% 74.0%
Linux 196,272 90.0% | 66.7% | 67.0% 47.0%
iReport 7,474 90.0% | 83.3% | 80.0% 84.0%
jBidWatcher 1,537 80.0% | 63.3% | 68.0% 64.0%
javaHMO 822 70.0% | 733% | 62.0% 56.0%
jajuk 915 70.0% | 73.3% | 78.0% 69.0%
NetBSD 391,000 100% | 73.3% | 60.0% 30.0%
OpenBSD 250,897 100% | 83.3% | 60.0% 40.0%

small set of discrete similarity measure values are possible: 0 (no shared word between the
two method names), 0.5 (one shared word), and 1 (two shared words). Threfore, 0.5 is the
only reasonable threshold to set, indicating that threshold tuning is not meaningful.

6.4 Ranking Results

This section shows the accuracy of the ranked rPairs on the nine evaluated code bases.
Table[7]shows the total number of rPairs for each software using the parameter configuration
described in Section[5.4]and the accuracy in the three ranking slots—top 10, top 30 and top
50. The accuracy is defined as the portion of correct rPairs in the results. Table[7]also shows

20 Jingiu Yang, Lin Tan

Table 8 Cross-project rPair Results.

Software | Type Total | Top N | Accuracy | Examples
jajuk Media Player 8 8 87.5% | (load, clear)
javaHMO (item, file)
Linux Operating System | 8,667 50 68% | (dev, device)
(reg, register)
NetBSD (receive, transmit)
(destination, source)
OpenBSD (free, allocate)

the rPair extraction accuracy from the comment-comment context on the nine code bases
(copied from Table [3) for comparison. Note that the ranking results are performed on all
three types of contexts combined, while the basic extraction results from the comment-
comment context is the highest among the three types of contexts without ranking.

The top 10 rPairs have a much higher accuracy of 60.0-100% for all nine code bases
(compared to the 30.0-84.0% from comment-comment without ranking, which has the high-
est accuracy among the three types of contexts). The top 30 rPairs achieve a higher accuracy
of 63.3-83.3% for all nine projects except iReport and jBidWatcher. Even for iReport and
jBidWatcher, the accuracy is marginally lower (84.0% to 83.3% for iReport and 64.0% to
63.3% for jBidWatcher). Lastly, the accuracy of the top 50 rPairs is also improved to 62.0-
80.0% for all evaluated projects except Collections (from 74.0% to 70.0%) and iReport
(from 84.0% to 80.0%).

Our results show that ranking can significantly improve the rPair extraction accuracy,
and the accuracy improvement is bigger for large projects (i.e., the operating system code
bases—Linux, NetBSD and OpenBSD). This is probably because the support for larger
projects is significantly bigger, which can help highlight correct rPairs extracted from many
contexts in comments and code. For example, support of rPairs from Linux can be as high
as hundreds (i.e., support of rPair (read, write) is 507), which results in a higher accuracy
improvement. Support of rPairs in small projects is much smaller. For example, the support
of most rPairs in jajuk is less than 10. In this case, the support does not contribute much to
the ranking function (since the base is 10 in our experiment setting). Therefore, for small
projects i.e., jajuk, jBidWatcher and javaHMO, the rPairs are ranked based on the similarity
measure. Since support plays an important role in determining the correctness of the rPairs, a
hybrid ranking function which combines the support and the similarity measure is expected
to have better ranking results. This explains why our ranking function has better performance
on large projects.

6.5 Cross-Project rPair Results

Table [§] shows the cross-project rPair results from two sets of software. One set contains
two media players—jajuk and javaHMO. The other set is three operating systems—Linux,
NetBSD and OpenBSD. We show the total number of overlapping rPairs across projects of
the same set (Column “Total”), the top number of rPairs that we manually verify (Column
“Top N”), and the rPair accuracy from our manual verification. The last column shows some
cross-project rPair examples.

We identify 8 cross-project rPairs from the two media players, and 8,667 cross-project
rPairs from the three operating system projects. For the media players, the extraction accu-
racy is 87.5%, which is higher than the project-specific rPair extraction accuracy for both

SWordNet: Inferring Semantically Related Words from Software Context 21

jajuk and javaHMO rPairs with ranking (the highest accuracy from the three ranking slots
is 78% for jajuk and 73.3% for javaHMO). For the operating system projects, the top 50
cross-project rPairs have a higher accuracy (68.0%) than that of the project-specific rank-
ing results (the accuracy of the top 50 rPairs is 67.0% for Linux, 60.0% for NetBSD and
60.0% for OpenBSD). The results show that cross-project rPairs have a higher accuracy
than project-specific rPairs; therefore, it is promising to improve the ranking performance
by adding “cross-project” as a factor in the ranking algorithm.

We find that most of the correct rPairs in the cross-project results are general for that
type of software. For example, the cross-project rPair (dev, device) found in all three oper-
ating system code bases is general for operating systems (i.e., dev is highly likely to mean
device in operating system code), since operating systems need to manage devices. This
rPair is more general than other project-specific rPairs, e.g., the rPair (use_hcd_c_probe,
use_hcd_sa_probe) from Linux, which are the names of two related functions in Linux.

Cross-project rPairs may be leveraged (for code search, etc.) by projects of the same
type that are not analyzed. For example, we may be confident that dev is the abbreviated
form of device in operating systems that we have not analyzed, e.g., OpenSolaris and Win-
dows. Therefore, we believe our cross-project rPairs can benefit other media players and
operating system projects, for example, the cross-project rPair (dev, device) can supplement
other operating system projects in which this rPair is not discovered from the comments and
code of those projects.

7 Related Work
7.1 Extracting Semantically Related Word Pairs

The closely related work (Shepherd et al, 2006, |2007) infers semantically related words
in software, and leverages them to build a search tool that outperforms two existing ap-
proaches (Poshyvanyk et al, 2006b). We have already discussed the main differences be-
tween the previous work and our context-based approach in Section[I] so we only summa-
rize them here and provide more examples. The previous work relies on manually created
heuristics, which may not generalize to other types of software and software written in dif-
ferent programming languages (e.g., non-object-oriented software such as the Linux kernel
and HTTPD). Our technique requires no such heuristics and is effective in extracting rPairs
from both object-oriented software and non-object-oriented software.

Second, the previous techniques leverage NLP techniques, whose models are trained
from general English text, not from software. When applied to the software domain, these
models can make mistakes. What is worse, comments and code identifiers are generally
incomplete and grammatically incorrect, which may worsen the analysis inaccuracy prob-
lem. For example, two sentences with the same structure are analyzed differently because
interrupts is a English word, while irgs is not. OpenNLP (The Apache Software Founda-
tion, [2010) (the same tool used by the previous work (Shepherd et al, 2006, [2007)) tags the
comment sentence from the Linux kernel “called with interrupts disabled” as

called<verp> With< Determiner> INLETTUPES < Noun> disabled<verp>,
and then chunks it as

called<v erb Phrase> [With [interrupts] < Noun Phrase> | < Prepositional Phrase>
disabled < nknown>-

22 Jingiu Yang, Lin Tan

Since the chunker cannot tag the last word disabled with the proper Chunk/Phrase-level
tag, the words called and interrupt will be considered as a verb-DO incorrectly if called is
considered active voice, or no verb-DO will be found if called is considered passive voice
(from the previous paper (Shepherd et al| [2006), it is unclear whether the heuristics treat
called as active or passive voice; therefore, we discuss both for completeness). However, a
slightly different comment from the Linux kernel “called with irgs disabled” will be
tagged as
called<verb> With< Determiner> TqS< Adjective> disabled< adjective> >
and be chunked as
called <y erbPhrase> [With [irgs disabled] < NounPhrase> | < Prepositional Phrase> -

The verb-DO will be (called | irgs disabled), or no verb-DO is inferred. From these verb-
DOs, previous work may consider interrupts and irgs disabled semantically related words
by mistake, or it infers no semantically related words. Our technique can correctly identify
interrupts and irgs as an rPair. This example shows that our technique is robust despite
incomplete and grammatically incorrect comments. In addition, NLP analysis adds time
complexity, especially POS tagging and chunking.

Since our technique ignores the part of speech, our technique has higher recall than the
previous techniques. In addition, since we use similarity measures and consider the full con-
text instead of just the verbs and DOs, our technique can be more precise. For example, from
two comments “initialize the product price” and “initialize the user name”,
we would not consider the phrases product price and user name rPairs, since the similarity is
only 50%, while the previous technique obtains two verb-DOs that share the verb initialize,
and considers the two phrases semantically related.

The authors improved the original verb-DO technique by leveraging phrasal concepts,
linguistic relationships between words and more advanced heuristics (Hill, 2010} [Hill et all
2011a). The latest implementation uses specialized techniques to address the OpenNLP-
related issues. However, the improved technique does not analyze comments, missing the
opportunity to detect more rPairs. In addition, different from their technique which lever-
ages phrasal concepts, we use the full sentence context. On the other hand, their approach
analyzes return types and parameters, which may find more rPairs. In addition, the restric-
tions regarding verb-verb match may help filter out false positives. However, our evaluation
in Section[6.2]shows that our technique has better overall precision and recall in discovering
rPairs than their latest implementation (Hill, 2010).

Techniques and resources that discover semantically related words in English (Banerjee
and Pedersen| [2003} Jiang and Conrathl |{1997} [Lin} |1998] |Lin and Pantel, 2001; Merriam-
Webster, |2012; [Princeton University, 2012} Resnik, [1995; Wu and Palmer, |1994) are lim-
ited in discovering semantically related words in software (Sridhara et al,2008)). Other work
splits multi-word identifiers and discovers abbreviations in software (Hill et al, 2008}; [Lawrie
and Binkley| 2011} [Lawrie et all 2010). Some other work focuses on discovering the mean-
ing of word phrases of method names (Host and Ostvold, 2007, 2009). Our technique finds
general semantically related word pairs including abbreviations, which is complementary to
the previous work. In addition, while the previous work uses statistical analysis, heuristics,
and English dictionaries, we leverage the context of words in comments and identifiers.

7.2 Code Search

Keyword-based code search techniques have been developed (Hill, [2010; Hill et al, 2009,
2011a}, [Poshyvanyk et al, 2006alb; [Shepherd et al, [2007)). Since our technique infers se-

SWordNet: Inferring Semantically Related Words from Software Context 23

mantically related words from software, it can be leveraged by these search tools to expand
queries to further improve the search effectiveness. In addition, since our technique provides
not only semantically related words but also the context, our technique could be leveraged
by contextual-based search techniques (Hill et al, 2009) to improve the code search accu-
racy. Alternatives to keyword-based search include structural search (Holmes and Murphy,
2005} Janzen and De Volder}, |2003; |Saul et al, 2007; |[Zaremski and Wing}, |1995). A recent
study (Hill et all 2011b) investigates how to effectively combine global and local code search
techniques.

7.3 Analysis of Natural-Language Text for Software

Previous work analyzes natural-language artifacts such as bug reports (Anvik et all 2006
Gegick et al, 2010; |L1 et all |2006; Matter et al, | 2009; [Panichella et al,|2012} |Park et al, |2011;
Runeson et al, 2007; Sun et al, |2010; Wang et al, [2008)), comments (Tan et al, 2007, 2011)),
API documentation (Pandita et al, 2012} Zhong et al| 2009), , identifier names (Abebe and
Tonellal [2010; Binkley et al, 2011) and mailing lists (Panichella et al| |2012) for purposes
such as detecting duplicate bug reports, identifying the appropriate developers to fix bugs,
improving structure-field names, mining source code descriptions, etc. Recently, by leverag-
ing the fact that programming language is likely to be repetitive and predictable, researchers
(Hindle et all 2012) work on applying statistical language models to code to help software
tasks, including code completion, concern location and software mining, etc. This paper an-
alyzes comments and code to discover semantically related word pairs. Different from some
of these studies (Abebe and Tonella} 2010; Binkley et al, 201 1; Hindle et al, 2012} Tan et al,
2007) that use NLP techniques such as POS tagging, chunking, semantic role labelling, and
n-gram models, this paper chooses not to use these advanced NLP techniques for simplic-
ity, efficiency, and generality. On the other hand, it is conceivable to use NLP techniques to
generate NLP-related context to infer semantically related words, which remains our future
work.

8 Conclusions and Future Work

We design and evaluate a general technique to automatically discover semantically related
words in software by leveraging the context of words in comments and code. The proposed
technique identifies semantically related words with a reasonable accuracy in nine large and
popular code bases written in C and Java. Our further evaluation against the state of art
shows that our overall precision and recall in discovering semantically related word pairs is
higher. The semantically related words and the relevant context can be used by code search
techniques to improve program comprehension and programmer productivity; they can also
benefit other software engineering tasks such as bug detection for better software reliability.

In addition, we propose a ranking algorithm and evaluate it on the nine projects. Our
evaluation shows that the ranking algorithm can improve the accuracy of the rPair extrac-
tion. The cross-project rPairs study shows that we can discover general overlapping rPairs
across multiple projects of similar functionality and cross-project rPairs are more likely to
be accurate than project-specific rPairs.

In the future, we plan to use our technique to build comprehensive and accurate databases
of semantically related words in software. In addition, we can analyze user manuals and

24 Jingiu Yang, Lin Tan

other software documents to learn semantically related words. Furthermore, we may lever-
age etymology to classify rPairs into different categories, e.g., synonym and antonyms, au-
tomatically.

Availability

We build SWordNet, a collection of semantically related word pairs in software. SWordNet
contains rPairs inferred from the software context, which are available at
http://asset.uwaterloo.ca/SWordNet.

Acknowledgments

We thank Emily Hill for providing us with the verb-DO pairs from their latest SWUM im-
plementation and Chen Liu for help with verifying the word pairs. We thank the anonymous
reviewers for their feedback. The work is partially supported by the National Science and
Engineering Research Council of Canada and a Google gift grant.

References

Abebe SL, Tonella P (2010) Natural language parsing of program element names for concept
extraction. In: Proceedings of the 2010 IEEE 18th International Conference on Program
Comprehension, IEEE Computer Society, Washington, DC, USA, ICPC ’10, pp 156159,
DOI10.1109/1CPC.2010.29, URLhttp://dx.doi.org/10.1109/ICPC.2010.
29

Anvik J, Hiew L, Murphy GC (2006) Who should fix this bug? In: Proceedings of the 28th
international conference on Software engineering, ACM, New York, NY, USA, ICSE
’06, pp 361-370, DOT 10.1145/1134285.1134336, URL http://doi.acm.org/10.
1145/1134285.1134336

Banerjee S, Pedersen T (2003) Extended gloss overlaps as a measure of semantic related-
ness. In: Proceedings of the 18th international joint conference on Artificial intelligence,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, IICAI’03, pp 805-810,
URL http://dl.acm.org/citation.cfm?i1d=1630659.1630775

Binkley D, Hearn M, Lawrie D (2011) Improving identifier informativeness using part of
speech information. In: Proceedings of the 8th Working Conference on Mining Software
Repositories, ACM, New York, NY, USA, MSR ’11, pp 203-206, DOI 10.1145/1985441.
1985471, URL http://doi.acm.org/10.1145/1985441.1985471

Computer Dictionary Online (2013) Computer Science Specific Dictionary. URL http:
//www.computer—dictionary—-online.org

Furnas GW, Landauer TK, Gomez LM, Dumais ST (1987) The vocabulary problem in
human-system communication. Commun ACM 30(11):964-971, DOI 10.1145/32206.
32212, URL http://doi.acm.orqg/10.1145/32206.32212

Gegick M, Rotella P, Xie T (2010) Identifying security bug reports via text mining:
An industrial case study. In: Whitehead J, Zimmermann T (eds) MSR, IEEE, pp
11-20, URL http://dblp.uni-trier.de/db/conf/msr/msr2010.html#
GegickRX10

http://dx.doi.org/10.1109/ICPC.2010.29
http://dx.doi.org/10.1109/ICPC.2010.29
http://doi.acm.org/10.1145/1134285.1134336
http://doi.acm.org/10.1145/1134285.1134336
http://dl.acm.org/citation.cfm?id=1630659.1630775
http://doi.acm.org/10.1145/1985441.1985471
http://www.computer-dictionary-online.org
http://www.computer-dictionary-online.org
http://doi.acm.org/10.1145/32206.32212
http://dblp.uni-trier.de/db/conf/msr/msr2010.html#GegickRX10
http://dblp.uni-trier.de/db/conf/msr/msr2010.html#GegickRX10

SWordNet: Inferring Semantically Related Words from Software Context 25

Hill E (2010) Integrating natural language and program structure information to improve
software search and exploration. PhD thesis, Newark, DE, USA, aAI3423409

Hill E, Fry ZP, Boyd H, Sridhara G, Novikova Y, Pollock L, Vijay-Shanker K (2008) Amap:
automatically mining abbreviation expansions in programs to enhance software mainte-
nance tools. In: Proceedings of the 2008 international working conference on Mining
software repositories, ACM, New York, NY, USA, MSR ’08, pp 79-88, DOI 10.1145/
1370750.1370771, URL http://doi.acm.org/10.1145/1370750.1370771

Hill E, Pollock L, Vijay-Shanker K (2009) Automatically capturing source code context
of nl-queries for software maintenance and reuse. In: Proceedings of the 31st Interna-
tional Conference on Software Engineering, IEEE Computer Society, Washington, DC,
USA, ICSE ’09, pp 232-242, DOI 10.1109/ICSE.2009.5070524, URL http://dx.
doi.org/10.1109/ICSE.2009.5070524

Hill E, Pollock L, Vijay-Shanker K (2011a) Improving source code search with natural lan-
guage phrasal representations of method signatures. In: Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software Engineering, IEEE Com-
puter Society, Washington, DC, USA, ASE 11, pp 524-527, DOI 10.1109/ASE.2011.
6100115, URL|http://dx.doi.org/10.1109/ASE.2011.6100115

Hill E, Pollock L, Vijay-Shanker K (2011b) Investigating how to effectively combine
static concern location techniques. In: Proceedings of the 3rd International Workshop
on Search-Driven Development: Users, Infrastructure, Tools, and Evaluation, ACM, New
York, NY, USA, SUITE ’11, pp 37-40, DOI 10.1145/1985429.1985439, URL http:
//doi.acm.org/10.1145/1985429.1985439

Hindle A, Barr ET, Su Z, Gabel M, Devanbu P (2012) On the naturalness of software.
In: Proceedings of the 2012 International Conference on Software Engineering, IEEE
Press, Piscataway, NJ, USA, ICSE 2012, pp 837-847, URL http://dl.acm.org/
citation.cfm?id=2337223.2337322

Holmes R, Murphy GC (2005) Using structural context to recommend source code ex-
amples. In: Proceedings of the 27th international conference on Software engineering,
ACM, New York, NY, USA, ICSE ’05, pp 117-125, DOI 10.1145/1062455.1062491,
URLhttp://doi.acm.org/10.1145/1062455.1062491

Host EW, Ostvold BM (2007) The programmer’s lexicon, volume i: The verbs. In: Proceed-
ings of the Seventh IEEE International Working Conference on Source Code Analysis and
Manipulation, IEEE Computer Society, Washington, DC, USA, SCAM °07, pp 193-202

Host EW, Ostvold BM (2009) Software language engineering. Springer-Verlag,
Berlin, Heidelberg, pp 322-341, URL http://dx.doi.org/10.1007/
978-3-642-00434-6_20

iReport (2012) iReport. http://jasperforge.org/projects/ireport, ac-
cessed: 2006-04

Jajuk (2012) jajuk. http://www. jajuk.info/index.php/Main_Page, accessed:
2006-06

Janzen D, De Volder K (2003) Navigating and querying code without getting lost. In: Pro-
ceedings of the 2nd international conference on Aspect-oriented software development,
ACM, New York, NY, USA, AOSD 03, pp 178-187, DOI 10.1145/643603.643622, URL
http://doi.acm.org/10.1145/643603.643622

JavaHMO (2009) javaHMO. http://www.javahmo.sourceforge.net/, ac-
cessed: 2005-02

http://doi.acm.org/10.1145/1370750.1370771
http://dx.doi.org/10.1109/ICSE.2009.5070524
http://dx.doi.org/10.1109/ICSE.2009.5070524
http://dx.doi.org/10.1109/ASE.2011.6100115
http://doi.acm.org/10.1145/1985429.1985439
http://doi.acm.org/10.1145/1985429.1985439
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://doi.acm.org/10.1145/1062455.1062491
http://dx.doi.org/10.1007/978-3-642-00434-6_20
http://dx.doi.org/10.1007/978-3-642-00434-6_20
http://jasperforge.org/projects/ireport
http://www.jajuk.info/index.php/Main_Page
http://doi.acm.org/10.1145/643603.643622
http://www.javahmo.sourceforge.net/

26 Jingiu Yang, Lin Tan

JBidwatcher (2011) jBidWatcher. http://www. jbidwatcher. com/} accessed: 2006-
04

Jiang J, Conrath D (1997) Semantic similarity based on corpus statistics and lexi-
cal taxonomy. In: Proc. of the Int’l. Conf. on Research in Computational Linguis-
tics, pp 19-33, URL http://www.cse.iitb.ac.in/~cs626-449/Papers/
WordSimilarity/4.pdf

Ko AJ, Aung H, Myers BA (2005) Eliciting design requirements for maintenance-oriented
ides: a detailed study of corrective and perfective maintenance tasks. In: Proceedings
of the 27th international conference on Software engineering, ACM, New York, NY,
USA, ICSE 05, pp 126-135, DOI 10.1145/1062455.1062492, URL http://doi.
acm.org/10.1145/1062455.1062492

Landis JR, Koch GG (1977) The measurement of observer agreement for categori-
cal data. Biometrics 33(1):pp. 159-174, URL |http://www. jstor.org/stable/
2529310

Lawrie D, Binkley D (2011) Expanding identifiers to normalize source code vocabulary.
In: Proceedings of the 2011 27th IEEE International Conference on Software Main-
tenance, IEEE Computer Society, Washington, DC, USA, ICSM ’11, pp 113-122,
DOI 10.1109/ICSM.2011.6080778, URL http://dx.doi.org/10.1109/ICSM.
2011.6080778

Lawrie D, Binkley D, Morrell C (2010) Normalizing source code vocabulary. In: Proceed-
ings of the 2010 17th Working Conference on Reverse Engineering, IEEE Computer So-
ciety, Washington, DC, USA, WCRE 10, pp 3-12, DOI 10.1109/WCRE.2010.10, URL
http://dx.doi.org/10.1109/WCRE.2010.10

Li Z, Tan L, Wang X, Lu S, Zhou Y, Zhai C (2006) Have things changed now?: an empir-
ical study of bug characteristics in modern open source software. In: Proceedings of the
1st workshop on Architectural and system support for improving software dependability,
ACM, New York, NY, USA, ASID 06, pp 25-33, DOI 10.1145/1181309.1181314, URL
http://doi.acm.org/10.1145/1181309.1181314

Lin D (1998) An information-theoretic definition of similarity. In: Proceedings of the Fif-
teenth International Conference on Machine Learning, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, ICML °98, pp 296-304, URL http://dl.acm.org/
citation.cfm?1d=645527.657297

Lin D, Pantel P (2001) Discovery of inference rules for question-answering. Nat Lang Eng
7(4):343-360, DOI 10.1017/S1351324901002765, URL http://dx.doi.org/10.
1017/51351324901002765

Matter D, Kuhn A, Nierstrasz O (2009) Assigning bug reports using a vocabulary-based
expertise model of developers. In: Proceedings of the 2009 6th IEEE International Work-
ing Conference on Mining Software Repositories, IEEE Computer Society, Washing-
ton, DC, USA, MSR ’09, pp 131-140, DOI 10.1109/MSR.2009.5069491, URL http:
//dx.doi.org/10.1109/MSR.2009.5069491

Merriam-Webster (2012) Merriam-Webster English Dictionary and Thesaurus. URL http:
//www.merriam—-webster.com, accessed: 2012-08

Pandita R, Xiao X, Zhong H, Xie T, Oney S, Paradkar A (2012) Inferring method specifi-
cations from natural language api descriptions. In: Proceedings of the 2012 International
Conference on Software Engineering, ICSE 2012, pp 815-825

Panichella S, Aponte J, Penta MD, Marcus A, Canfora G (2012) Mining source code de-
scriptions from developer communications. In: ICPC, pp 63-72

http://www.jbidwatcher.com/
http://www.cse.iitb.ac.in/~cs626-449/Papers/WordSimilarity/4.pdf
http://www.cse.iitb.ac.in/~cs626-449/Papers/WordSimilarity/4.pdf
http://doi.acm.org/10.1145/1062455.1062492
http://doi.acm.org/10.1145/1062455.1062492
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
http://dx.doi.org/10.1109/ICSM.2011.6080778
http://dx.doi.org/10.1109/ICSM.2011.6080778
http://dx.doi.org/10.1109/WCRE.2010.10
http://doi.acm.org/10.1145/1181309.1181314
http://dl.acm.org/citation.cfm?id=645527.657297
http://dl.acm.org/citation.cfm?id=645527.657297
http://dx.doi.org/10.1017/S1351324901002765
http://dx.doi.org/10.1017/S1351324901002765
http://dx.doi.org/10.1109/MSR.2009.5069491
http://dx.doi.org/10.1109/MSR.2009.5069491
http://www.merriam-webster.com
http://www.merriam-webster.com

SWordNet: Inferring Semantically Related Words from Software Context 27

Park JW, Lee MW, Kim J, won Hwang S, Kim S (2011) Costriage: A cost-aware triage
algorithm for bug reporting systems. In: Burgard W, Roth D (eds) AAAI, AAAI Press
Poshyvanyk D, Marcus A, Dong Y (2006a) Jiriss - an eclipse plug-in for source code explo-
ration. In: Proceedings of the 14th IEEE International Conference on Program Compre-
hension, IEEE Computer Society, Washington, DC, USA, ICPC ’06, pp 252-255, DOI
10.1109/1CPC.2006.32, URL http://dx.doi.org/10.1109/ICPC.2006.32

Poshyvanyk D, Petrenko M, Marcus A, Xie X, Liu D (2006b) Source code exploration with
google. In: Proceedings of the 22nd IEEE International Conference on Software Main-
tenance, [IEEE Computer Society, Washington, DC, USA, ICSM ’06, pp 334-338, DOI
10.1109/ICSM.2006.60, URL http://dx.doi.orqg/10.1109/ICSM.2006.60

Princeton University (2012) WordNet. URL http://wordnet.princeton.edu, ac-
cessed: 2012-08

Resnik P (1995) Using information content to evaluate semantic similarity in a taxonomy. In:
Proceedings of the 14th international joint conference on Artificial intelligence - Volume
1, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, IJCAI’95, pp 448-453,
URLhhttp://dl.acm.org/citation.cfm?id=1625855.1625914

Runeson P, Alexandersson M, Nyholm O (2007) Detection of duplicate defect reports us-
ing natural language processing. In: Proceedings of the 29th international conference
on Software Engineering, IEEE Computer Society, Washington, DC, USA, ICSE 07,
pp 499-510, DOI 10.1109/ICSE.2007.32, URL http://dx.doi.org/10.1109/
ICSE.2007.32

Saul ZM, Filkov V, Devanbu P, Bird C (2007) Recommending random walks. In: Pro-
ceedings of the the 6th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software engineering, ACM,
New York, NY, USA, ESEC-FSE °07, pp 15-24, DOI 10.1145/1287624.1287629, URL
http://doi.acm.org/10.1145/1287624.1287629

Shepherd D (2007) Action-oriented concerns. http://www.eecis.udel.edu/
~gibson/context/action_oriented_concerns.txt} accessed: 2012-02

Shepherd D, Pollock L, Vijay-Shanker K (2006) Towards supporting on-demand virtual
remodularization using program graphs. In: Proceedings of the 5th international confer-
ence on Aspect-oriented software development, ACM, New York, NY, USA, AOSD 06,
pp 3-14, DOI 10.1145/1119655.1119660, URL http://doi.acm.org/10.1145/
1119655.1119660

Shepherd D, Fry ZP, Hill E, Pollock L, Vijay-Shanker K (2007) Using natural language
program analysis to locate and understand action-oriented concerns. In: Proceedings of
the 6th international conference on Aspect-oriented software development, ACM, New
York, NY, USA, AOSD ’07, pp 212-224, DOI 10.1145/1218563.1218587, URL http:
//doi.acm.org/10.1145/1218563.1218587

Sridhara G, Hill E, Pollock L, Vijay-Shanker K (2008) Identifying word relations in soft-
ware: A comparative study of semantic similarity tools. In: Proceedings of the 2008 The
16th IEEE International Conference on Program Comprehension, IEEE Computer Soci-
ety, Washington, DC, USA, ICPC ’08, pp 123-132, DOI 10.1109/ICPC.2008.18, URL
http://dx.doi.org/10.1109/ICPC.2008.18

Sun C, Lo D, Wang X, Jiang J, Khoo SC (2010) A discriminative model approach for accu-
rate duplicate bug report retrieval. In: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ACM, New York, NY, USA, ICSE
’10, pp 45-54, DOI 10.1145/1806799.1806811, URL http://doi.acm.org/10.

http://dx.doi.org/10.1109/ICPC.2006.32
http://dx.doi.org/10.1109/ICSM.2006.60
http://wordnet.princeton.edu
http://dl.acm.org/citation.cfm?id=1625855.1625914
http://dx.doi.org/10.1109/ICSE.2007.32
http://dx.doi.org/10.1109/ICSE.2007.32
http://doi.acm.org/10.1145/1287624.1287629
http://www.eecis.udel.edu/~gibson/context/action_oriented_concerns.txt
http://www.eecis.udel.edu/~gibson/context/action_oriented_concerns.txt
http://doi.acm.org/10.1145/1119655.1119660
http://doi.acm.org/10.1145/1119655.1119660
http://doi.acm.org/10.1145/1218563.1218587
http://doi.acm.org/10.1145/1218563.1218587
http://dx.doi.org/10.1109/ICPC.2008.18
http://doi.acm.org/10.1145/1806799.1806811

28 Jinqiu Yang, Lin Tan

1145/1806799.1806811

Tan L, Yuan D, Krishna G, Zhou Y (2007) /* iComment: Bugs or bad comments?*/. In:
Proceedings of twenty-first ACM SIGOPS symposium on Operating systems principles,
ACM, New York, NY, USA, SOSP ’07, pp 145-158, DOI 10.1145/1294261.1294276,
URLhttp://doi.acm.org/10.1145/1294261.1294276

Tan L, Zhou Y, Padioleau Y (2011) acomment: mining annotations from comments and
code to detect interrupt related concurrency bugs. In: Proceedings of the 33rd Interna-
tional Conference on Software Engineering, ACM, New York, NY, USA, ICSE 11, pp
11-20, DOI 10.1145/1985793.1985796, URL http://doi.acm.org/10.1145/
1985793.1985796

The Apache Foundation (2012a) Apache Commons Collections. URL http://
commons .apache.org/collections/} accessed: 2013-03

The Apache Foundation (2012b) Apache HTTPD Server. http://httpd.apache.
org, accessed: 2011-09

The Apache Software Foundation (2010) Apache OpenNLP. URL http://opennlp.
apache.org

The Linux Kernel Organization, Inc (2012) The Linux Kernel, URL http://www.
kernel.orgqg, accessed: 2012-03

The NetBSD Foundation (2012) NetBSD. URL http://www.netbsd.org, accessed:
2008-11

The OpenBSD Foundation (2012) OpenBSD. URL http://www.openbsd.org, ac-
cessed: 2012-02

Wang X, Zhang L, Xie T, Anvik J, Sun J (2008) An approach to detecting duplicate bug
reports using natural language and execution information. In: Proceedings of the 30th
international conference on Software engineering, ACM, New York, NY, USA, ICSE
’08, pp 461470, DOI 10.1145/1368088.1368151, URL http://doi.acm.org/10.
1145/1368088.1368151

Wu Z, Palmer M (1994) Verbs semantics and lexical selection. In: Proceedings of the 32nd
annual meeting on Association for Computational Linguistics, Association for Computa-
tional Linguistics, Stroudsburg, PA, USA, ACL ’94, pp 133-138, DOI 10.3115/981732.
981751, URL|http://dx.doi.org/10.3115/981732.981751

Zaremski AM, Wing JM (1995) Signature matching: a tool for using software libraries.
ACM Trans Softw Eng Methodol 4(2):146-170, DOI 10.1145/210134.210179, URL
http://doi.acm.org/10.1145/210134.210179

Zhong H, Zhang L, Xie T, Mei H (2009) Inferring resource specifications from natu-
ral language api documentation. In: Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, IEEE Computer Society, Washington,
DC, USA, ASE 09, pp 307-318, DOI 10.1109/ASE.2009.94, URL http://dx.doi.
org/10.1109/ASE.2009.94

http://doi.acm.org/10.1145/1806799.1806811
http://doi.acm.org/10.1145/1806799.1806811
http://doi.acm.org/10.1145/1294261.1294276
http://doi.acm.org/10.1145/1985793.1985796
http://doi.acm.org/10.1145/1985793.1985796
http://commons.apache.org/collections/
http://commons.apache.org/collections/
http://httpd.apache.org
http://httpd.apache.org
http://opennlp.apache.org
http://opennlp.apache.org
http://www.kernel.org
http://www.kernel.org
http://www.netbsd.org
http://www.openbsd.org
http://doi.acm.org/10.1145/1368088.1368151
http://doi.acm.org/10.1145/1368088.1368151
http://dx.doi.org/10.3115/981732.981751
http://doi.acm.org/10.1145/210134.210179
http://dx.doi.org/10.1109/ASE.2009.94
http://dx.doi.org/10.1109/ASE.2009.94

	Introduction
	Basic rPair Extraction
	Improved Version of rPair Extraction
	Studying Cross-Project rPairs
	Experimental Methods
	Experimental Results
	Related Work
	Conclusions and Future Work

