
Inferring Semantically Related Words from Software Context

Jinqiu Yang and Lin Tan
University of Waterloo, Waterloo, ON, Canada

{j223yang, lintan}@uwaterloo.ca

Abstract—Code search is an integral part of software de-
velopment and program comprehension. The difficulty of code
search lies in the inability to guess the exact words used in the
code. Therefore, it is crucial for keyword-based code search
to expand queries with semantically related words, e.g., syn-
onyms and abbreviations, to increase the search effectiveness.
However, it is limited to rely on resources such as English
dictionaries and WordNet to obtain semantically related words
in software, because many words that are semantically related
in software are not semantically related in English. This paper
proposes a simple and general technique to automatically
infer semantically related words in software by leveraging
the context of words in comments and code. We achieve a
reasonable accuracy in seven large and popular code bases
written in C and Java. Our further evaluation against the state
of art shows that our technique can achieve a higher precision
and recall.

Keywords-Semantically related words; code search; program
comprehension

I. INTRODUCTION

Code search is an integral part of software development;
developers spend up to 19% of their development time
on code search [26]. It becomes more difficult for one
developer to understand and remember every piece of a
software project, as software becomes larger and more
complex, software is typically developed by hundreds of or
thousands of programmers across decades, and developers
frequently join and depart from the software development
process. In order to find relevant code segments, code search
is becoming a crucial part of software development and
program comprehension.

The search for relevant code segments is difficult, because
there is a small chance (10-15%) that developers guess
the exact words used in the code [16]. For example, if
developers want to find methods that disable interrupts in
the Linux kernel, a simple regular expression based search
“disable*interrupt”1 will miss the functions “disable_irq”
and “mask_irq”. Both functions disable interrupts. The
problem is the mismatches between the words interrupt and
irq and between the words disable and mask. Similarly, if
we search for “add*auction” in jBidWatcher, the method
“AuctionsManager.newAuctionEntry(String)” will not be
returned, although it is related to adding an auction entry.

1It is possible to perform a relaxed search to find method names that
contain either the word disable or the word interrupt, but such an approach
generally retrieves too many irrelevant matches to be useful.

Researchers proposed to expand search queries with se-
mantically related words (e.g., synonyms and abbreviations)
for more effective searches [38]. However, leveraging an
English dictionary [9] and WordNet [11] for obtaining
semantically related words is limited in the software domain,
because many words that are semantically related in software
are not semantically related in English. In the previous exam-
ple, the words disable and mask are not related words either
in an English dictionary [9] or WordNet [11]. Similarly,
interrupt and irq are not semantically related in the English
dictionary or WordNet. A recent study evaluated six well
known techniques for discovering semantically related words
in English and showed that these techniques are limited in
identifying semantically related words in software [40]. The
best technique needs to find over 3,000 pairs of words in
order to discover 30 out of the 60 semantically related word
pairs in the gold set.

If we can automatically discover semantically related
words from software, it would not only improve search
tasks, but also benefit other software engineering tasks.
For example, aComment [43] leverages semantically related
words to find comments that have similar meanings in order
to check these comments against source code to detect bugs.
Currently, aComment requires its users to manually specify
synonyms and paraphrases, which is challenging since it
requires the users to have domain knowledge about the target
software. In addition, the ad hoc process is likely to miss im-
portant synonyms and paraphrases. An automated approach
can potentially discover more synonyms and paraphrases and
reduce the manual effort required.

Therefore, we propose to automatically identify seman-
tically related words by leveraging the context of words
in comments and code. This includes relations such as
synonyms, antonyms, abbreviations, related words, etc., all
of which are useful for code search. We use semantically
related word pairs or the shorter rPairs to denote a pair
of semantically related words and phrases. Our intuition
is that if two words or phrases are used in the same
context in comment sentences or identifier names, then they
likely have syntactic and semantic relevance. For exam-
ple, by examining the two comment sentences from the
Linux kernel—“Disable all interrupt sources.” and
“Disable all irq sources.”, we can learn that the words
interrupt and irq are likely to be related because both
words appear in the same context. In this particular case,

978-1-4673-1761-0/12/$31.00 @ 2012 IEEE MSR 2012, Zurich, Switzerland

the two words have the same meaning. Similarly, from
two functions—“void mask_all_interrupts()” and “void
disable_all_interrupts(...)”—we can infer that the
word mask and the word disable form an rPair in this con-
text. In addition to learning nouns and verbs that have similar
meanings, we can learn adjectives with similar meanings.
For example, we can infer that the two adjectives disabled
and off have the same meaning from the two comments—
“Must be called with interrupts disabled.” and “It
MUST be called with interrupts off.”

Shepherd et al. [38], [39] extract verb-DO (Direct Object)
pairs from software which can be leveraged to identify
semantically related words. For example, if they discover
verb-DO pairs (add | element) and (find | element) in iReport,
they would suggest the word find to users to expand their
query “add element” in iReport [38], because (add, find)
are considered semantically related. This paper differs from
the previous work mainly in the following aspects. First, the
previous work replies on heuristics regarding the naming
convention and the structure of code identifiers and com-
ments. For example, they use different heuristics to extract
the DO from a method name, depending on whether a verb
exists in the method name, where the verb is, and what the
verb is. Such heuristics are manually designed by the authors
and may not generalize if the naming convention or structure
is not followed. Our technique requires no heuristics about
the naming convention or the structure of the code identifiers
and comments2, and can potentially be applied to a broader
spectrum of code bases.

Second, the previous work focuses on verb-noun (verb-
DO) relations; therefore may miss the opportunity to dis-
cover rPairs from other relations such as noun-noun re-
lations. For example, the two comments “Min of spare

threads” and “Min of spare daemons” contain no verbs, so
that the previous technique cannot discover the semantically
related word pairs (thread, daemon) from them, while our
technique can. In addition, the previous work is likely to
miss other types of rPairs such as adjective-adjective rPairs.

Third, the previous technique leverages Natural Language
Processing (NLP) techniques, such as part-of-speech (POS)
tagging and chunking, which are trained from general En-
glish text such as the Wall Street Journal, not from software.
When applied to the software domain, these techniques can
cause inaccuracies in rPair extraction. For example, it would
fail to identify the verb-DO pair from “newParameter()”, as
new is a noun in English. But in the software context, new is
commonly used as a verb to refer to creating memory for a
new object. This inaccuracy prevents the previous techniques
from discovering the rPair (new, add) that our technique can
discover, because our technique ignores the part of speech.
The detailed comparison is discussed in Section V.

2Except that we break method names into words based on camel case
and underscore, which is also used by the previous work

This paper makes the following contributions.
• We propose a context-based approach to automatically
infer semantically related words by leveraging the context
of words in comments and code. Our technique can
be used as a building block for many other software
engineering tasks including code search [20], [38] and
software bug detection [43].

• The proposed technique identifies semantically related
words with a reasonable accuracy in seven large and pop-
ular code bases written in C and Java—the Linux kernel,
Apache HTTPD Server, Apache Commons Collections,
iReport, jBidWatcher, javaHMO, and jajuk. We classify
the semantically related word pairs into five categories—
synonym, related, antonym, near antonym, and identifier.
The majority of the identified semantically related word
pairs cannot be found in WordNet [11] or an English
dictionary [9].

• Our further evaluation against the state of art [18], [38]
shows that our overall recall and precision in discovering
semantically related word pairs is higher. Since automati-
cally expanding queries with inappropriate synonyms may
produce worse results than not expanding [40], it may
be beneficial to leverage techniques similar to previous
work [20], [38] to allow developers to pick from a list
of semantically related words. Since our technique has
higher recall (finds more rPairs) with higher precision
(more of the pairs discovered are truly rPairs), it can
help developers find more relevant code segments and
comments, as well as find them more quickly because
developers will examine fewer incorrect rPairs.

Although our technique presents new opportunities to
discover more semantically related words and improves
the performance of discovering them, the absolute preci-
sion is relatively low due to the inherent difficulty of the
task. Therefore, we discuss techniques that can potentially
further improve the precision in Section IV-A.

II. DESIGN

Our goal is to automatically learn semantically related
words and phrases by leveraging the context of words and
phrases in comments and code. Examples in Table I help
illustrate how semantically related words and phrases can
be learned from comments and code. Column ‘Context
Type’ shows whether the context is from comments or
source code: comment-comment indicates that both contexts
are from comments; code-code means that both contexts
are from source code; and comment-code denotes that one
context is from comments, and the other context is from
source code. For example, both of the two jajuk com-
ments “None mounted file for this track.” and “None
accessible file for this track.” state that a file asso-
ciated with the track is missing. Since the words mounted
and accessible are surrounded by the same context, “None

Table I
LEARNING SEMANTICALLY RELATED WORD PAIRS FROM CONTEXT. THE COMMENT AND CODE EXAMPLES ARE REAL COMMENTS AND CODE

SEGMENTS FROM THE SEVEN CODE BASES USED IN OUR EVALUATION.

Context Semantically Related Word Pairs Context Type
Must be called with interrupts disabled. (disabled, off) Comment-Comment
It MUST be called with interrupts off.
Disable all interrupt sources. (interrupt, irq) Comment-Comment
Disable all irq sources.
Always called with interrupts disabled. (call, invoke) Comment-Comment
Always invoked with interrupts disabled.
None mounted file for this track. (mounted, accessible) Comment-Comment
None accessible file for this track.
Serializes this map to the given stream (serialize, deserialize) & (to, from) Comment-Comment
Deserializes this map from the given stream
Min of spare threads (thread,daemon) Comment-Comment
Min of spare daemons
Empty map with the specified maximum size (size,capacity) Comment-Comment
Empty map with the specified maximum capacity
Gets the value associated with the key (associate, map) Comment-Comment
Gets the value mapped with the key specified
get a node’s parent (parent, left child) Comment-Comment
get a node’s left child
An iovec to store the headers sent before the file (header, trailer) & (before, after) Comment-Comment
An iovec to store the trailers sent after the file
it was finally rewritten to a remote URL (remote URL, local path) Comment-Comment
it was finally rewritten to a local path
mask_all_interrupts() (mask, disable) Code-Code
disable_all_interrupts(...)
addParameter(...) (add, new) Code-Code
newParameter()
FileTypeFileFilter() (file, directory) Code-Code
DirectoryTypeFileFilter()
Initialize signal names (initialize, setup) Comment-Code
setup_signal_names(...)
Alloc a net device (alloc, add) Comment-Code
add_net_device(...)

... file for this track.”, we consider the word pair
(mounted, accessible) an rPair.
A. An Overview of the Analysis Process

Our analysis technique takes a code base and a stopword
list as input, and outputs semantically related word pairs. The
analysis process consists of four steps: (1) parsing comments
and code: given a code base, we first parse it to extract all the
comment sentences and method names, and convert each of
them into a sequence of words; (2) clustering comments and
code: we cluster the word sequences based on whether they
contain at least one common word to reduce the overhead of
pairwise comparison in the next step, which is a critical step
for our technique to scale up to large code bases such as the
Linux kernel; (3) extracting semantically related word pairs:
we calculate the similarity between a pair of word sequences
and extract the corresponding rPairs if the context is similar;
and (4) refining semantically related word pairs: we finally
refine the rPairs by using stemming to remove pairs with
the same roots, merging duplicate word pairs, normalizing
words, and generating transitive rPairs.
B. Parsing Comments and Code

We extract all comment blocks from source code files
and use a sentence segmentator to split them into comment

sentences. Each comment sentence is broken down into a
sequence of words by using space as the delimiter. For
example, the comment sentence “Called with interrupts

disabled” is represented as a sequence consisting of
four words (case insensitive): <called, with, interrupts,
disabled>. Similarly, we extract method names from source
code files, and split them into words based on camel case
or underscore. To minimize the dependency on naming
convention and code structure related heuristics, our analysis
ignores return types and parameters.

A sentence segmentator for English sentences does not
work well for code comments mainly because incorrect
punctuation is common in comments. Therefore, in addition
to regular sentence delimiters, i.e., “!”, “?”, and “;”, we
use “.” and spaces together as sentence delimiters instead
of using “.” alone, and consider an empty line and the end
of a comment as the end of a sentence [43].

In order to discover semantically related identifiers
and avoid duplicate analysis, we do not break identi-
fiers in comments into multiple words based on camel
case or underscore. For example, we can learn that the
apr_pool_clear and apr_pool_destroy are semantically
related methods in HTTPD from comments “If you do

not have apr_pool_clear in a wrapper” and “If you

do not have apr_pool_destroy in a wrapper”.

C. Clustering Comments and Code

It is expensive to conduct pairwise comparison for a
large number of sequences. For example, the Linux kernel
contains 519,168 unique comment sentences. Pairwise com-
parison requires us to compare on the order of 100 billion
(134,767,706,112) pairs of word sequences to check if we
can find rPairs from them. This is already the number after
we filter out sequences that are too short or too long as
described later in Section II-D. We ran the experiment on
an Intel Core 2 Duo 3.06 HZ machine, and the pairwise
comparison does not finish in one day.

To speed up the process, we want to reduce the number of
pairwise comparisons. Our intuition is that there is no need
to compare two sentences that do not share a single word.
Therefore, we group sequences into clusters, one cluster for
each word, where each cluster contains all the sequences
that contain the word. We do not build clusters for words in
the stopword list, which are words that appear frequently
in English and software such as ‘a’, ‘an’, ‘the’, ‘that’,
‘this’, etc. Sharing only these non-essential words do not
increase the similarity of the context for discovering rPairs.
We then conduct pairwise comparisons within each cluster.
Since each cluster contains much fewer number of word
sequences, this approach can significantly reduce the number
of pairwise comparisons. For example, this step speeds up
the analysis process for the Linux kernel by over 1000 times:
all the comments are divided into 123,404 clusters, and the
total number of pairwise comparisons has been reduced to
90,483,147, which translates to only one hour on the same
machine.

D. Extracting Semantically Related Word Pairs

The main step of the extraction process is to calculate the
similarity between two word sequences and extract the corre-
sponding word pairs if the similarity is higher than a given
threshold. Since sequences are not always lined up from
the first word, e.g., <must, be, called, with, interrupts,
disabled> and <it, must, be, called, with, interrupts,
off>, we apply the Longest Common Subsequence (LCS)
algorithm to find the longest overlapping subsequences (not
necessarily continuous) between two sequences.

We define the similarity measure as

SimilarityMeasure =
Number of Common Words in the Two Sequences
Total Number of Words in the Shorter Sequence

If the similarity measure of a pair of word sequences is
greater than or equal to the threshold (whose default value is
0.7 for the comment-comment context) and not 1 (meaning
that the two sequences are identical), we extract rPairs from
the differences between the two subsequences.

Our technique can find semantically related phrases, not
only semantically related words. For example, from the

sequences <get, a, nodes’s, parent > and <get, a,
nodes’s, left, child >, we find that the longest common
subsequence is <get, a, nodes’s >, and that phrases/words
(parent, left child) are semantically related, because the
SimilarityMeasure is 0.75, which is greater than the
default threshold. The rPair (remote URL, local path) is
another phrase discovery example (Table I).

In addition, we can find more than one rPair from two
sequences. For example, from the sequences <an, iovec, to,
store, the, headers, sent, before, the, file> and <an,
iovec, to, store, the, trailer, sent, after, the, file>,
we can infer two rPairs (header, trailer) and (before, after).

In addition to the threshold, three additional parameters
are used to control the rPair extraction process: shortest,
longest, and gap. Our technique only analyzes word se-
quences whose length is greater than or equal to shortest
and less than or equal to longest, where sequence length is
defined as the number of words in a sequence. Our technique
only performs pairwise comparisons between two sequences
whose length difference is gap or less.

E. Refining Semantically Related Word Pairs

We finally refine the detected rPairs. We remove rPairs
that contain words in the stopword list, e.g., (a, the); and
we use stemming to remove word pairs with the same
roots, e.g., (call, called). In addition, since the same rPairs
may be discovered from multiple pairs of sequences, we
merge the word pairs as one rPair. For example, we can
learn that (interrupt, irq) is an rPair from the two relevant
comments in Table I, as well as the two sequences <were,
called, from, interrupt, handlers> and <called, from,
irq, handlers>. We consider it as one rPair only, and
increase the support for this rPair, which can be leveraged
to rank the rPairs.

Lastly, we normalize words to their base forms. For exam-
ple, we normalize the rPair (called, invoked) to (call, invoke),
and normalize the rPair (threads, daemons) to (thread, dae-
mon). Stemming is inappropriate for this normalization step,
because a stemmer will revert words to their stems (e.g.,
invoked to invok), most of which are not words. We build
a reversely mapped dictionary that can return the base form
of a word, given the derived form (e.g., past participles and
plural nouns) of the word. We build the reversely mapped
dictionary from an English dictionary. We normalize an rPair
only if both words can be normalized. For example, the rPair
(disabled, off) is not normalized to (disable, off) because the
word off is already in its base form.

We introduce transitive rPairs. If (W1, W2) and (W1, W3)
are rPairs, (W2, W3) is a transitive rPair that requires one
transition. If (W2, W4) is also an rPair, then (W3, W4) is a
transitive rPair after two transitions. Considering transitive
rPairs increases recall but reduces precision; our evaluation
uses no transitive rPairs unless stated otherwise.

Table II
EVALUATED SOFTWARE. LOCOMMENT IS LINES OF COMMENTS. * VERSIONS OF IREPORT, JBIDWATCHER, JAVAHMO, JAJUK ARE THE SAME AS [38]

Software Short Name Version Source Description LOC LOComment Language
The Linux kernel Linux 3.3 [10] Operating System 9,823,623 2,135,655 C
Apache HTTPD Server HTTPD 2.2.21 [3] Web Server 231,526 70,229 C
Apache Commons Collections Collections 3.2.1 [2] Libraries and Utilities 55,398 40,994 Java
iReport iReport 1.2.2* [5] Report Generator 74,506 18,614 Java
jBidWatcher jBidWatcher 1.0pre6* [8] eBay Auction Monitor 23,052 5,596 Java
javaHMO javaHMO 2.4* [7] Media Server 25,988 7,784 Java
jajuk jajuk 1.2* [6] Music Player 30,679 13,545 Java

III. EVALUATION METHODS

We evaluate our technique on seven open source projects
(Table II). Because method names are typically much shorter
than comment sentences, we use different parameters for the
comment-comment, code-code, and comment-code compar-
isons. For comment-comment comparisons, the parameter
configuration is shortest=4, longest=10, gap=3, and thresh-
old=0.7; for code-code comparisons, the parameter config-
uration is shortest=2, longest=4, gap=0, and threshold=0.5;
and for comment-code comparisons, the parameter configu-
ration is shortest=2, longest=6, gap=1, and threshold=0.6.

We perform three sets of evaluation experiments.

A. Experiment: rPair Extraction Accuracy and Comparison
with WordNet and a Dictionary

We randomly sample 300 rPairs from all the rPairs
generated for each project—100 rPairs extracted from the
comment-comment context, 100 from the code-code context,
and 100 from the comment-code context. We then manually
read these rPairs and the corresponding word sequences to
verify if the rPairs are correct rPairs. If fewer than 100 rPairs
are extracted from one type of context in a code base, we
manually verify all of the rPairs learned from that context
in that code base. The accuracy is measured as the number
of correct rPairs in a sample over the total number of rPairs
in the sample. We further classify the correct rPairs into
five categories—synonym, related, antonym, near antonym,
or identifier, whose definition and examples are shown in
Section IV-A. To reduce subjectivity, two people verify these
results. In addition, we check how many rPairs cannot be
found in WordNet [11] or a dictionary [9].

B. Experiment: Search-Related Evaluation

Previous work [38] builds a code search tool that expands
search queries with alternative words learned from verb-
DO pairs. For example, when developers search for “add
textfield” in iReport, the tool will suggest words including
element, keyword, and token for developers to select from to
expand the initial query to queries such as add element, add
keyword, add token, etc. These words are objects (DOs) that
appear together with the verb add in iReport. To evaluate
the technique, they manually identify the methods related to
the concern “add textfield”, referred to as method gold set,

and check if such query expansions can improve the search
effectiveness.

Since our technique is only a building block for
search tools, we compare the precision and recall of our
rPair extraction results with the rPair extraction results
of the previous work [38], [39], on the rPair gold set
inferred from the same search tasks [1] used by the
previous work. For example, their method gold set for
the search task “add auction” in jBidWatcher includes
methods “AuctionsManager.newAuctionEntry(String)”
and “AuctionServer.registerAuction(AuctionEntry)”,
meaning that when developers search for “add auction”,
these two methods should be matched. A keyword-based
search for “add auction” in source code files will not find
these methods. To locate them, we need to expand the query
to “new auction” and “register auction”. Therefore, we add
two rPairs, (add, new) and (add, register), to our rPair gold
set for the query word add. Note that the rPairs are added
based on the method gold set. For example, the pair (add,
insert) is not in our rPair gold set, because according to
the method gold set, we do not need the word insert to
locate the methods related to “add auction” in jBidWatcher.
Since only eight of the nine search tasks from the previous
work [38] require query expansion, we generate the rPair
gold set for the eight search tasks.

For a fair comparison, we tune the previous technique to
achieve the best performance, i.e., the highest recall, since
it is harder to guess the words used in code, than to cross
off false positives. First, we compare against their latest
and improved version [18] (denoted by v-DO). Since the
improved version analyzes only code but not comments,
we can only compare our code-code analysis against their
approach. If we add our comment-comment and comment-
code analysis, our approach could find more rPairs as
discussed in Section IV-B and Section V. Second, we relax
one restriction of the v-DO technique to help it find rPairs
that it may miss otherwise. For example, for the query
“load movie”, the v-DO technique would suggest verbs that
appear together with movie, which do not include start,
because start does not appear together with movie. If the
user decides to expand the query with the suggested words,
the v-DO technique would suggest new words based on

Table III
RPAIR EXTRACTION RESULTS. DIC DENOTES MERRIAM-WEBSTER ENGLISH DICTIONARY AND THESAURUS [9]. THE MARGIN OF ERROR IS

CALCULATED WITH 95% CONFIDENCE LEVEL.

Software rPairs Sample Correct Accuracy Syno- Related Anto- Near Identifier #Not in Dic
Size rPairs nym nym- Antonym or WordNet

Comment-Comment
Linux 108,571 100 47 47.0±9.8% 1 20 1 2 23 36
HTTPD 1,428 100 47 47.0±9.5% 1 24 6 1 15 44
Collections 469 100 74 74.0±8.7% 0 58 4 3 9 72
iReport 878 100 84 84.0±9.2% 0 42 7 1 34 80
jBidWatcher 111 111 71 64.0% 0 47 8 12 4 63
javaHMO 144 100 56 56.0±5.4% 1 28 4 4 19 51
jajuk 203 100 69 69.0±7.0% 4 54 6 5 0 65
Code-Code
Linux 606,432 100 25 25.0±9.8% 1 21 1 2 0 25
HTTPD 1,727 100 25 25.0±9.5% 1 18 3 3 0 24
Collections 3,162 100 41 41.0±9.7% 2 34 3 2 0 37
iReport 1,849 100 47 47.0±9.5% 1 44 1 1 0 47
jBidWatcher 1,428 100 42 42.0±9.5% 1 36 1 4 0 42
javaHMO 685 100 35 35.0±9.1% 0 33 1 0 1 35
jajuk 746 100 48 48.0±9.1% 0 43 3 2 0 47
Comment-Code
Linux 10,633 100 25 25.0±9.8% 0 22 0 3 0 25
HTTPD 43 43 12 27.9% 1 11 0 0 0 12
Collections 5 5 0 0 0 0 0 0 0 0
iReport 4 4 4 100% 0 4 0 0 0 4
jBidWatcher 0 0 0 0 0 0 0 0 0 0
javaHMO 0 0 0 0 0 0 0 0 0 0
jajuk 6 6 4 66.7% 0 4 0 0 0 4

the new query. Therefore, whether start will eventually be
suggested is uncertain. We relax this restriction so that the
v-DO technique can find (load, start) as an rPair if load and
start appear together with some DO, not necessarily movie.

Based on the rPair gold set, we measure the recall as the
number of rPairs in the gold set that a technique can discover
over the total number of rPairs in the gold set. The precision
is the number of rPairs in the gold set that a technique can
discover over the total number of rPairs discovered by the
technique that contain the original query word in the gold
set (e.g., add and load in the previous examples).

C. Experiment: Sensitivity Evaluation

To understand how the threshold affects the performance
of the proposed technique, ideally we want to vary the
threshold, regenerate rPairs, and measure the precision and
recall on a random sample of the rPairs. However, as the
rPairs generated will be different with different thresh-
old values, this evaluation approach requires a significant
amount of effort on manually verifying the rPairs in the
random samples. Therefore, as an approximation, we use
the same random samples from the rPairs generated with
our default threshold values (referred to as default samples),
and measure the recall as the portion of the correct rPairs
in a default sample that can be identified by our technique
with a new threshold. The precision is the number of correct
rPairs in the default sample that our technique can discover
over the total number of rPairs in the default sample that
our technique can discover.

D. Threats to Validity and Limitations

The search gold set and rPair gold set (introduced in
Section III) may favor a certain technique. To minimize
this threat, we evaluate our technique on the same search
gold set used by Shepherd et al. [38] as we compare against
their technique. This is unlikely to favor our technique. In
addition, two authors confirm the rPair gold set to avoid
subjectivity.

If a code base contains no comments and the methods are
poorly named, our technique may be less effective. However,
given that modern software often contains a large amount
of comments [42] and meaningful identifiers, our technique
should be applicable to a large body of software. A large
amount of commented code may affect the performance;
in the future, we can exclude commented code from our
analysis to address this issue.

Our current implementation cannot tell if an rPair is
synonym, related, antonym, near antonym, or identifier.
Although all categories are useful for code search, it would
be beneficial to distinguish these categories. In the future, we
may leverage etymology to classify rPairs into the categories
automatically.

IV. EXPERIMENTAL RESULTS

A. rPair Extraction Results

Table III shows the overall rPair extraction results on the
seven evaluated code bases from the three types of con-
texts: comment-comment, code-code, and comment-code.

Table IV
SEARCH-RELATED RESULTS. CTX IS OUR CONTEXT-BASE TECHNIQUE, CTXT IS CTX WITH TRANSITIVE RPAIRS, AND V-DO DENOTES THE

PREVIOUS WORK [18].

Search Task Software rPairs in Gold Set #rPairs Precision Recall
CTX v-DO CTXT CTX v-DO CTXT

“Add Textfield” iReport add->new,drop 2 3.7% 0 0.3% 50.0% 0 50.0%
TextField->ReportPanel 1 0 0 0 0 0 0

“Compile Report” iReport report->directory 1 0 0 0.3% 0 0 100%
“Gather Music javaHMO gather->find 1 0 0 1.1% 0 0 100%
Files” file->directory 1 3.3% 0.4% 0.6% 100% 100% 100%

“Load Movie javaHMO listing->container 1 0 0 0 0 0 0
Listings” load->start 1 20.0% 5.3% 1.1% 100% 100% 100%

“Add Auction” jBidWatcher add->register,do,new 3 5.5% 2.3% 1.0% 100% 66.7% 100%
auction->entry 1 1.8% 0.3% 0.4% 100% 100% 100%

“Save Auction” jBidWatcher save->preserve,backup,do 3 0 1.6% 0.3% 0 33.3% 33.3%
“Set Snipe Price” jBidWatcher price->currency 1 0 0 0/0 0 0 0/0

“Play Song” jajuk song->playlist,file 2 0 0 0/0 0 0 0/0
play->launch 1 0 0 0/0 0 0 0/0

We show the margin of error with 95% confidence level
except for comment-comment of jBidWatcher and comment-
code of HTTPD, iReport, and jajuk, of which we verify
all extracted rPairs. We can see that the accuracy of the
comment-comment context is the highest (47.0–84.0%),
which is expected because comment sentences are gen-
erally longer than method names, which provides longer
context for learning correct rPairs. In contrast, we learn
fewer rPairs from the comment-code context, due to the
disparity between comments and method names. However,
the comment-code context does help us learn meaningful
correct rPairs such as (initialize, setup) and (alloc, add),
whose contexts are shown in Table I.

Column ‘Not in Dic or WordNet’ shows the number
of rPairs that cannot be found in either WordNet [11]
or an English dictionary and thesaurus [9]. These words
and phrases are semantically related in software, but are
not semantically related in English. This is very valuable
because it is almost impossible for developers to guess all the
semantically related words used in a given piece of software.
Our results show that 713 out of the 756 correct rPairs in
the seven projects cannot be found in either WordNet [11]
or an English dictionary [9].

The breakdown of the correct rPairs into five categories
is also shown in the table. Synonym denotes words that have
the same meanings in software (including abbreviations),
e.g., (call, invoke) and (interrupt, irq). Related denotes
words that are semantically related but not the same, e.g.,
(size, capacity) and (file, directory). Antonym denotes words
that have opposite meanings, e.g., (serialize, deserialize)
and (before, after). Near Antonym denotes words that have
almost opposite meanings, e.g., (header, trailer). The full
contexts of these rPair examples are shown in Table I.
Identifier denotes words that are semantically related code
identifiers, such as method names, variable names, etc. All
five types of rPairs are useful for code search and other
software engineering tasks.

False Positives. Despite the challenging nature of the task,
our technique has a reasonable accuracy. However, there
is much space to further improve the accuracy. One main
cause of false positives is that the shared context contains
many common English words. For example, we mistakenly
consider (match, literal) semantically related, from com-
ments “we have a match”, and “we have a literal”. An-
other reason is that our design favors recall over precision;
the threshold and the support (the number of contexts from
which the rPairs can be learned) are set low, and the gap
allowed is high. Despite the false positives, our techniques
is valuable, because it is much easier for developers to cross
off false positives than to guess the possible semantically
related words used in software.

To reduce false positives, we plan to rank rPairs according
to the importance of the words in the shared context (e.g.,
tf-idf scores), the similarity measure, the support, etc. In
addition, we can leverage NLP techniques to generate the
semantic paths [31] to infer rPairs more precisely. At the
cost of a lower recall, users can increase the threshold and
the support and decrease the gap to improve the precision.

B. Search-Related Results

Table IV shows the search-related results. Column ‘rPairs
in gold set’ shows all the rPairs in our rPair gold set,
which can help expand the search queries to find the relevant
methods. For example, for the search task “add auction” in
jBidWatcher, we need to expand the query word add with
new, register, and do to locate the relevant methods.

Column ‘CTX’ is our context-base technique, column
‘CTXT ’ is CTX with transitive rPairs, and v-DO denotes
the previous work [18], [38]. As stated in Section III, we
tune the v-DO technique to reach its best performance.
Without the tuning, the v-DO technique would potentially
miss three additional rPairs, (load, start), (add, do), and (file,
directory).

Overall, our context-based approach (CTX) outperforms
the v-DO approach. For three search tasks, both techniques
have a zero recall. For four out of the five remaining tasks,
our context-based approach has higher recall and precision
or same recall with higher precision. For example, our tech-
nique can find the rPair (add, new) in iReport, but the v-DO
approach will miss it because NLP tools trained from general
English text will not consider new a verb as discussed in
Introduction. One caveat is that using these semantically
related words to expand queries may locate more irrelevant
method names. However, recent techniques [20], [22] may
be leveraged to restrict the search context and scope to
address this issue.

For the rPairs that both techniques can find, our technique
(CTX) has a higher precision (by a factor of 2.4–8.3). This
is because we use similarity measures to filter out irrelevant
pairs, and we do not consider return types or parameters to
minimize the dependency on naming convention and code
structure related heuristics. Although these design choices
may make our technique discover fewer rPairs, they did not
cause our technique to miss any rPairs in the search-related
rPair gold set that the v-DO technique can find.

Although our technique (CTX) has a higher precision
than the v-DO technique, the precision of both techniques
is relatively low, because (1) this is an inherently challenging
task, and (2) we only count the particular rPairs in our
gold set as true positives, and consider other correct rPairs
discovered by the techniques as false positives, which can
be useful for other search queries nonetheless. We can use
the techniques discussed in Section IV-A to improve the
precision.

The only case that the v-DO approach has a higher recall
than our approach is for the rPair (save, do). The v-DO
approach breaks the method name DoSave into two verbs,
and generate two verb-DOs by combing the method name
with the parameter name. Our technique does not attempt
to break one method name into two sequences, therefore
misses this rPair. However, our technique with transitive
pairs (CTXT) can find this rPair.

In addition, Table IV shows that by considering transi-
tive rPairs with at most two transitions allowed (CTXT),
we can find three additional rPairs in the gold set with
lower precisions, including two rPairs that neither the v-
DO technique nor our technique without transitive rPairs
(CTX) can find—(gather, find) and (report, directory). If
we analyze comments as well, then an additional rPair
(listing, container) will be identified.

C. Sensitivity Results

To understand how a higher threshold affects the pre-
cision and recall on the comment-comment analysis, we
first experiment with thresholds 0.8, and 0.9. We found that
threshold 0.8 significantly reduces the number of identified
rPairs (recalls are lower than 0.5 for all seven projects)

with much higher precision (7.3–56.3% improvement) for all
projects except for HTTPD (a small improvement of 0.6%),
and threshold 0.9 finds zero rPairs in our default samples
for iReport, HTTPD, and the Linux kernel, and one rPair for
the rest 4 projects. Since we favor recall, we then evaluate
a lower threshold 0.75, which, however, still gives us low
recalls (less than 0.5 for all projects) with precisions lower
than those with threshold 0.8. Since the number of words
in a sentence is integers, thresholds between 0.7 and 0.75
are either equivalent to 0.7 or 0.75; therefore, there is no
need to evaluate them. In summary, threshold 0.7 finds more
rPairs with reasonable precisions; therefore, it was chosen as
our default value. If higher precision is preferred and lower
recall is acceptable, 0.8 is a good choice. We did not conduct
the same experiment for the comment-code and code-code
context because method names are generally short, e.g., two
words; therefore, threshold tuning is not meaningful.

V. RELATED WORK

A. Extracting Semantically Related Word Pairs

The closely related work [38], [39] infers semantically
related words in software, and leverages them to build a
search tool that outperforms two existing approaches [34].
We have already discussed the main differences between
the previous work and our context-based approach in In-
troduction, so we only summarize them here and provide
more examples. First, the previous work replies on manually
created heuristics, which may not generalize to other types
of software and software written in different programming
languages (e.g., non-object-oriented software such as the
Linux kernel and HTTPD). Our technique requires no such
heuristics and is effective in extracting rPairs from both
object-oriented software and non-object-oriented software.
Second, the previous work focuses on verb-noun (verb-DO)
relations.

Third, the previous techniques leverage NLP techniques,
whose models are trained from general English text, not
from software. When applied to the software domain, these
models can make mistakes. What is worse, comments and
code identifiers are generally incomplete and grammatically
incorrect, which may worsen the analysis inaccuracy prob-
lem. For example, two sentences with the same structure are
analyzed differently because interrupts is a English word,
while irqs is not. OpenNLP [4] (the same tool used by the
previous work [38], [39]) tags the comment sentence from
the Linux kernel “called with interrupts disabled”
as called<V erb> with<Determiner> interrupts<Noun>

disabled<V erb>, and then chunks it as called<V erbPhrase>

[with [interrupts]<NounPhrase>]<PrepositionalPhrase>

disabled<Unknown>. Since the chunker cannot tag the
last word disabled with the proper Chunk/Phrase-level tag,
words called and interrupt will be considered as a verb-
DO incorrectly if called is considered active voice, or

no verb-DO will be found if called is considered pas-
sive voice (from the previous paper [39], it is unclear
whether the heuristics treat called as active or passive voice;
therefore, we discuss both for completeness). However, a
slightly different comment from the Linux kernel “called
with irqs disabled” will be tagged as called<V erb>

with<Determiner> irqs<Adjective> disabled<Adjective>,
and be chunked as called<V erbPhrase> [with [irqs
disabled]<NounPhrase>]<PrepositionalPhrase>. The verb-
DO will be (called | irqs disabled), or no verb-DO is
inferred. From these verb-DOs, previous work may consider
interrupts and irqs disabled semantically related words by
mistake, or it infers no semantically related words. Our
technique can correctly identify interrupts and irqs as an
rPair. This example shows that our technique is robust
despite incomplete and grammatically incorrect comments.
In addition, NLP analysis adds time complexity.

Since our technique ignores the part of speech, our
technique has higher recall than the previous techniques.
In addition, since we use similarity measures and consider
the full context instead of just the verbs and DOs, our
technique can be more precise. For example, from two com-
ments “initialize the product price” and “initialize
the user name”, we would not consider the phrases product
price and user name rPairs, since the similarity is only
50%, while the previous technique obtains two verb-DOs
that share the verb initialize, and considers the two phrases
semantically related.

The authors improved the original v-DO technique by
leveraging phrasal concept and more advanced heuris-
tics [18], [22]. The latest implementation uses specialized
techniques to address the OpenNLP-related issues. However,
the improved technique does not analyze comments, missing
the opportunity to detect more rPairs. On the other hand,
their approach analyzes return types and parameters, which
may find more rPairs. In addition, the restrictions regarding
verb-verb match may help filter out false positives. However,
our evaluation in Section IV-B shows that our technique has
better overall precision and recall in discovering rPairs than
their latest implementation [18].

Techniques and resources that discover semantically re-
lated words in English [9], [11], [14], [25], [30], [31], [35],
[46] are limited in discovering semantically related words
in software [40]. Other work splits multi-word identifiers
and discovers abbreviations in software [19], [27], [28].
Our technique finds general semantically related word pairs
including abbreviations, which is complementary to the
previous work. In addition, while the previous work uses
statistical analysis, heuristics, and English dictionaries, we
leverage the context of words in comments and identifiers.

B. Code Search

Keyword-based code search techniques have been devel-
oped [18], [20], [22], [34], [38], [33]. Since our technique

infers semantically related words from software, it can
be leveraged by these search tools to expand queries to
further improve the search effectiveness. In addition, since
our technique provides not only semantically related words
but also the context, our technique could be leveraged
by contextual-based search techniques [20] to improve the
code search accuracy. Alternatives to keyword-based search
include structural search [23], [24], [37], [47]. A recent
study [21] investigates how to effectively combine global
and local code search techniques.

C. Analysis of Natural-Language Text for Software

Previous work analyzes natural-language artifacts such as
bug reports [13], [17], [29], [32], [36], [41], [44], [45],
comments [42], API documentation [48], and identifier
names [12], [15] for purposes such as detecting duplicate
bug reports, identifying the appropriate developers to fix
bugs, improving structure-field names, etc. This paper an-
alyzes comments and code to discover semantically related
word pairs. Different from some of these studies [12], [15],
[42] that use NLP techniques such as POS tagging, chunk-
ing, and semantic role labelling, this paper chooses not to
use NLP techniques for simplicity, efficiency, and generality.
On the other hand, it is conceivable to use NLP techniques
to generate NLP-related context to infer semantically related
words, which remains as our future work.

VI. CONCLUSIONS AND FUTURE WORK

We design and evaluate a general technique to automat-
ically discover semantically related words in software by
leveraging the context of words in comments and code.
The proposed technique identifies semantically related words
with a reasonable accuracy in seven large and popular
code bases written in C and Java. Our further evaluation
against the state of art shows that our overall precision
and recall in discovering semantically related word pairs
is higher. The semantically related words and the relevant
context can be used by code search techniques to improve
program comprehension and programmer productivity; they
can also benefit other software engineering tasks such as bug
detection for better software reliability.

In the future, we plan to use our technique to build com-
prehensive and accurate databases of semantically related
words in software. Furthermore, we plan to explore the
following techniques to reduce false positives: (1) rank the
rPairs based on the similarity measure, the support, the gap,
the importance of the words in the shared context, etc.; and
(2) use NLP techniques such as POS tagging, chunking,
and semantic role labelling to generate NLP-related context
to infer semantically related words. In addition, we can
analyze user manuals and other software documents to learn
semantically related words.

ACKNOWLEDGEMENTS

We thank Emily Hill for providing us the verb-DO pairs
from their latest SWUM implementation and Chen Liu for
help with verifying the word pairs. We thank the anonymous
reviewers for their feedback. The work is partially supported
by the National Science and Engineering Research Council
of Canada and a Google gift grant.

REFERENCES

[1] Action-oriented concerns. http://www.eecis.udel.edu/
∼gibson/context/action oriented concerns.txt.

[2] Apache Commons Collections. http://commons.apache.org/
collections/.

[3] Apache HTTPD Server. http://httpd.apache.org.
[4] Apache OpenNLP. http://incubator.apache.org/opennlp/.
[5] iReport. http://jasperforge.org/projects/ireport.
[6] jajuk. http://www.jajuk.info/index.php/Main Page.
[7] javaHMO. http://www.javahmo.sourceforge.net/.
[8] jBidWatcher. http://www.jbidwatcher.com/.
[9] Merriam-Webster English Dictionary and Thesaurus. http:

//www.merriam-webster.com/.
[10] The Linux Kernel. http://www.kernel.org.
[11] WordNet. Princeton University. http://wordnet.princeton.edu.
[12] S. L. Abebe and P. Tonella. Natural language parsing of

program element names for concept extraction. ICPC, 2010.
[13] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this

bug? In ICSE, 2006.
[14] S. Banerjee and T. Pedersen. Extended gloss overlaps as a

measure of semantic relatedness. In IJCAI, 2003.
[15] D. Binkley, M. Hearn, and D. Lawrie. Improving identifier

informativeness using part of speech information. MSR, 2011.
[16] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T.

Dumais. The vocabulary problem in human-system commu-
nication. Commun. ACM, 30, 1987.

[17] M. Gegick, P. Rotella, and T. Xie. Identifying security bug
reports via text mining: An industrial case study. In MSR’10.

[18] E. Hill. Integrating natural language and program structure
information to improve software search and exploration. PhD
thesis, 2010.

[19] E. Hill, Z. P. Fry, H. Boyd, G. Sridhara, Y. Novikova, L. Pol-
lock, and K. Vijay-Shanker. AMAP: Automatically mining
abbreviation expansions in programs to enhance software
maintenance tools. MSR, 2008.

[20] E. Hill, L. Pollock, and K. Vijay-Shanker. Automatically
capturing source code context of NL-queries for software
maintenance and reuse. ICSE, 2009.

[21] E. Hill, L. Pollock, and K. Vijay-Shanker. Investigating
how to effectively combine static concern location techniques.
SUITE, 2011.

[22] E. Hill, L. L. Pollock, and K. Vijay-Shanker. Improving
source code search with natural language phrasal represen-
tations of method signatures. In ASE, 2011.

[23] R. Holmes and G. C. Murphy. Using structural context to
recommend source code examples. ICSE, 2005.

[24] D. Janzen and K. De Volder. Navigating and querying code
without getting lost. AOSD, 2003.

[25] J. J. Jiang and D. W. Conrath. Semantic similarity based on
corpus statistics and lexical taxonomy. CoRR, 1997.

[26] A. J. Ko, H. Aung, and B. A. Myers. Eliciting design
requirements for maintenance-oriented IDEs: a detailed study
of corrective and perfective maintenance tasks. In ICSE, 2005.

[27] D. Lawrie and D. Binkley. Expanding identifiers to normalize
source code vocabulary. In ICSM, 2011.

[28] D. J. Lawrie, D. Binkley, and C. Morrell. Normalizing source
code vocabulary. In WCRE, 2010.

[29] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai.
Have things changed now? – An empirical study of bug
characteristics in modern open source software. In ASID,
2006.

[30] D. Lin. An information-theoretic definition of similarity.
ICML, 1998.

[31] D. Lin and P. Pantel. Discovery of inference rules for
question-answering. Nat. Lang. Eng., 7, 2001.

[32] D. Matter, A. Kuhn, and O. Nierstrasz. Assigning bug reports
using a vocabulary-based expertise model of developers. In
MSR, 2009.

[33] D. Poshyvanyk, A. Marcus, and Y. Dong. Jiriss - an eclipse
plug-in for source code exploration. In ICPC, 2006.

[34] D. Poshyvanyk, M. Petrenko, A. Marcus, X. Xie, and D. Liu.
Source code exploration with google. In ICSM, 2006.

[35] P. Resnik. Using information content to evaluate semantic
similarity in a taxonomy. In IJCAI, 1995.

[36] P. Runeson, M. Alexandersson, and O. Nyholm. Detection
of duplicate defect reports using natural language processing.
In ICSE, 2007.

[37] Z. M. Saul, V. Filkov, P. Devanbu, and C. Bird. Recommend-
ing random walks. ESEC-FSE, 2007.

[38] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-
Shanker. Using natural language program analysis to locate
and understand action-oriented concerns. In AOSD, 2007.

[39] D. Shepherd, L. Pollock, and K. Vijay-Shanker. Towards sup-
porting on-demand virtual remodularization using program
graphs. AOSD, 2006.

[40] G. Sridhara, E. Hill, L. Pollock, and K. Vijay-Shanker.
Identifying word relations in software: A comparative study
of semantic similarity tools. ICPC, 2008.

[41] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo. A
discriminative model approach for accurate duplicate bug
report retrieval. In ICSE, 2010.

[42] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. iComment: Bugs
or bad comments? */. In SOSP, 2007.

[43] L. Tan, Y. Zhou, and Y. Padioleau. aComment: Mining
annotations from comments and code to detect interrupt-
related concurrency bugs. In ICSE, 2011.

[44] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An approach
to detecting duplicate bug reports using natural language and
execution information. In ICSE, 2008.

[45] J. woo Park, M. woong Lee, J. Kim, S. won Hwang, and
S. Kim. CosTriage: A Cost-Aware Triage Algorithm for Bug
Reporting Systems. In AAAI, 2011.

[46] Z. Wu and M. Palmer. Verbs semantics and lexical selection.
ACL, 1994.

[47] A. M. Zaremski and J. M. Wing. Signature matching: a
tool for using software libraries. ACM Trans. Softw. Eng.
Methodol., 4, 1995.

[48] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource
specifications from natural language API documentation. In
ASE, 2009.

