
ReSym: Harnessing LLMs to Recover Variable and Data Structure
Symbols from Stripped Binaries

Danning Xie
Purdue University

West Lafayette, IN, USA
xie342@purdue.edu

Zhuo Zhang
Purdue University

West Lafayette, IN, USA
zhan3299@purdue.edu

Nan Jiang
Purdue University

West Lafayette, IN, USA
jiang719@purdue.edu

Xiangzhe Xu
Purdue University

West Lafayette, IN, USA
xu1415@purdue.edu

Lin Tan
Purdue University

West Lafayette, IN, USA
lintan@purdue.edu

Xiangyu Zhang
Purdue University

West Lafayette, IN, USA
xyzhang@cs.purdue.edu

ABSTRACT
Decompilation aims to recover a binary executable to the source
code form and hence has a wide range of applications in cyber
security, such as malware analysis and legacy code hardening. A
prominent challenge is to recover variable symbols, including both
primitive and complex types such as user-defined data structures,
along with their symbol information such as names and types.
Existing efforts focus on solving parts of the problem, e.g., recov-
ering only types (without names) or only local variables (without
user-defined structures). In this paper, we propose ReSym, a novel
hybrid technique that combines Large Language Models (LLMs)
and program analysis to recover both names and types for local vari-
ables and user-defined data structures. Our method encompasses
fine-tuning two LLMs to handle local variables and structures, re-
spectively. To overcome the inherent token limitations in current
LLMs, we devise a novel Prolog-based algorithm to aggregate and
cross-check results from multiple LLM queries, suppressing un-
certainty and hallucinations. Our experiments show that ReSym
is effective in recovering variable information and user-defined
data structures, substantially outperforming the state-of-the-art
methods.

CCS CONCEPTS
• Computing methodologies→Machine learning; • Security
and privacy→ Software reverse engineering.

KEYWORDS
Reverse Engineering, Large Language Models, Program Analysis

ACM Reference Format:
Danning Xie, Zhuo Zhang, Nan Jiang, Xiangzhe Xu, Lin Tan, and Xiangyu
Zhang. 2024. ReSym: Harnessing LLMs to Recover Variable and Data Struc-
ture Symbols from Stripped Binaries. In Proceedings of the 2024 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’24), October
14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3658644.3670340

This work is licensed under a Creative Commons Attribution-
NonCommercial International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3670340

1 INTRODUCTION
Decompilation aims to recover the source code form of a binary
executable, especially stripped binaries. This entails recovering vari-
ables, including both primitive and complex variables such as data
structures and arrays, which are in the form of register and memory
accesses after compilation. Additionally, symbol information for
these variables, which is completely discarded in stripped binaries,
must also be restored. Decompilation plays a pivotal role in many
security applications, such as malware analysis [22, 24, 85] and
vulnerability detection [30, 55, 71].

Existing decompilers such as IDA [32] and Ghidra [47] are able
to recover the source code control structure with good precision,
and in some cases, a subset of local variables. However, they usually
cannot recover meaningful names for variables and simply name
them as v1, v2, etc. The recovered types are often incorrect, and
custom data structures are out of their scope too. There has been
significant research [11, 38, 39, 49, 50, 88] focused on recovering
the missing information, e.g., variable names and types, from de-
compiled code to enhance its readability. While these efforts have
demonstrated substantial progress, they have limitations. For exam-
ple, OSPREY [88] utilizes probabilistic inference based on program
properties such as memory access patterns and data-flow to recover
variables and data structures. However, it falls short of recovering
high-level, human-readable symbol information, such as names and
type names. DIRTY [11] employs machine learning methods to re-
cover variable names and types, but it has limitations in recovering
user-defined data structures. Recovering descriptive and insightful
variable names, types, and user-defined data structures is crucial
for comprehending the code, yet it remains a challenging and un-
fulfilled task due to its inherent complexities. More discussion of
related work is in Section 6.1.

Large Language Models (LLMs) have exhibited inspiring capa-
bilities in understanding code, rivaling human experts. Extensive
research has demonstrated the superior performance of LLMs over
traditional methods in tasks that require code understanding, such
as unit test generation [9, 17, 35], program repair [34, 80], and code
completion [40, 70]. Considering LLMs’ powerful ability to compre-
hend and generate code, applying them to symbol recovery appears
promising. In particular, similar to DIRTY, we aim to build on exist-
ing decompilers’ outputs and recover variables and symbols from
decompiled code by those tools, instead of recovering directly from

https://doi.org/10.1145/3658644.3670340
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3658644.3670340

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Danning Xie et al.

stripped binaries. However, our exploration revealed challenges in
effectively utilizing LLMs for this task.

First, directly prompting a pre-trained LLM for general-purpose
to produce symbols from decompiled code hardly works due to the
unique patterns in the decompiled code and the inherent uncer-
tainty in symbol recovery, meaning that the source code snippets
with various symbols and high-level structures may be compiled
into highly similar binary code patterns. Second, the accurate recov-
ery of variable names and types requires a comprehensive, global
view of the program, but the intrinsic token limitations of LLMs,
e.g., 4,096 tokens, make providing the full context for thorough
analysis impossible.

Inspired by the reverse engineering processes employed by hu-
man engineers [46, 73], we introduce ReSym, a novel automatic
reverse engineering technique that mimics the manual approach
by combining fine-tuned LLMs, which provide initial results, with
a lightweight Prolog-based reasoning system [14], designed to ag-
gregate results from various sources. To adapt pre-trained LLMs
for the particular symbol recovery task, we divide the problem into
two manageable sub-problems: 1) recovering local variables, and 2)
recovering (custom) structures and their accesses. This resembles
how human engineers divide the problem. We fine-tune two LLMs
for the sub-problems, respectively. To create the training dataset,
we first compile source files with debug symbols and make a copy
of these symbols before stripping them from the compiled bina-
ries. Next, we decompile these fully stripped binaries to obtain the
decompiled code. The decompiled code is often quite low-level,
in which a source variable or structure can be broken down into
multiple decompiled variables. We design novel algorithms that
can accurately project a variable or expression in the decompiled
code to a source variable or structure field. During inference, the
individual functions of a program are passed to the two fine-tuned
LLMs to generate symbols for local variables and structures, re-
spectively. To suppress the inherent uncertainty and hallucinations
in LLMs, these per-function results are rigorously aggregated and
cross-checked by a Prolog-based reasoning algorithm.

Our contributions are as follows:

• We divide the difficult symbol recovery problem into two
manageable sub-problems with different natures and fine-
tune two LLMs to address them with superior performance.
• We develop novel algorithms that generate precisely labeled
training datasets for model fine-tuning. It features the abil-
ity to handle complex variables, e.g., arrays and structures,
which are usually decomposed to singleton variables or com-
plex expressions in the decompiled code, and it is difficult to
associate them with their original symbols.
• We develop a rigorous Prolog-based reasoning algorithm
to aggregate and cross-check local results, together with a
similarity-biased voting system to resolve prediction con-
flicts, enabling comprehensive data structure recovery.
• We build a large-scale public dataset of C/C++ code with
7,416 projects, 113,696 binaries, and their decompiled ver-
sions. All the variables, structures, and field accesses in the
decompiled code have the corresponding symbols annotated.
The dataset can facilitate future research in binary name and
type recovery.

unsigned int64 sub_404056
 (int64 a1, int16 a2){
 unsigned int16 v3;
 unsigned int v4;
 void *dest;
 if (*(int *)(a1 + 28) == 1){
 dest = *(void **)(a1 + 8);
 v4 = v3 * a2;
 sub_406BB9(v4);
 }
}

void ixp_pstrings
 (IxpMsg *msg, ushort num){
 ushort len;
 uint size;
 uchar *s;
 if(msg->mode == 1){
 s = msg->pos;
 size = len * num;
 emalloc(size);
 }
} Decompiled CodeSource Code

1
2
3
4
5
6
7
8
9
10
11

1
2
3
4
5
6
7
8
9
10
11

Figure 1: A function’s source code and decompiled code

• We develop a prototype ReSym (harnessing LLMs to REcover
variable and data structure SYMbols from stripped binaries).
Our evaluation on a real-world dataset demonstratesReSym’s
proficiency in recovering variable names and types, achiev-
ing overall accuracies of 56.4% and 64.6%, respectively. It can
successfully reconstruct the complete layout of user-defined
data structures with a precision of 72.9%. Notably, ReSym
is adept at identifying inlined structures or arrays that the
decompiler has fragmented into multiple variables with an
F1 of 85.9%. Experiments show that ReSym outperforms the
state-of-the-art in name and type recovery (by 1.5–16.5%)
and structure recovery. Additionally, ReSym’s application
to a real-world malware case shows its ability to address
security challenges.

Availability. Our dataset and artifacts are available to facilitate
future research and reproducibility [1].

2 MOTIVATION
Fig. 1 depicts a function from a real-world project, with its source
and decompiled code. The code is simplified for illustrative purposes.
The function takes two parameters: a pointer msg to a user-defined
structure IxpMsg and an unsigned short num. Lines 6 to 8 access
two fields, mode and pos, of msg, and update two local variables,
size and s. While the decompiled code offers more clarity than the
binary representations, it still lacks critical information, such as
variable types and names, rendering it difficult to understand. For
example, most variables have non-descriptive names compared to
the source code, such as a1 and v4, and some have incorrect types,
such as uchar *s being erroneously typed as void *. Additionally,
due to the absence of information about user-defined structures,
the decompiled code reduces field accesses to low-level memory
operations. Consider the expression (int *)(a1+28) (highlighted
in blue), which accesses bytes 28 to 31 of the structure referenced
by a1, corresponding to msg->mode in the source code. This makes
the decompiled code challenging and potentially misleading to
interpret.

Therefore, our goal is to recover variable names and types from
binary executables, improving the readability of decompiled code.
Specifically, this involves not only identifying the types and names
of the involved variables (e.g., uchar *s) but also recovering the
structure declaration of the involved user-defined non-standard
structures (e.g., IxpMsg) and their field accesses (e.g., msg->mode).

2.1 Limitations of Existing Techniques
Given the significance of recovering variable names and types from
binary executables, over the past decade, numerous techniques have
been developed for this purpose [11, 38, 39, 49, 50, 88]. Despite these

ReSym: Harnessing LLMs to Recover Variable and Data Structure Symbols from Stripped Binaries CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

struct struct0{
 int8* s_0,
 int8* s_1,
 int8* s_2,
 int64 s_3,
 int64 s_4
};

struct IxpMsg {
 char* data;
 char* pos;
 char* end;
 _ixpuint size;
 _ixpuint mode;
};

struct Buffer {
 uint8_t* buffer;
 uint8_t* pos;
 uint8_t* streamPos;
 uint32_t bufferSize;
 uint32_t type;
};

struct sha256_ctx {
 uint32_t H[8];
 uint32_t total[2];
 uint32_t buflen;
 char buffer[128];
};

struct stream {
 char* in; // 0-8
 unsigned int64 out; // 8-16
 alloc_func zallow; // 16-24
 free_func zfree; // 24-32
 voidpf opaque; // 32-40
 int64 type; // 40-48
}

struct struct0{
 int64 s_1,
 int64 s_2,
 int64 s_3,
 int64 s_4,
 int64 s_5,
 int64 s_6,
}

struct stat {
 __dev_t st_dev;
 __ino_t st_ino;
 __nlink_t st_nlink;
 __mode_t st_mode;
 __uid_t st_uid;
 __gid_t st_gid;
 int __pad0;
 __dev_t st_rdev;
 __off_t st_size;
 __blksize_t st_blksize;
 __blkcnt_t st_blocks;
 timespec st_atim;
 timespec st_mtim;
 timespec st_ctim;
 __syscall_slong_t[3]
__glibc_reserved;
 }

struct z_streamp {
 Bytef* total_in; // 0-8
 uLong total_out; // 8-16
 alloc_func zallow; // 16-24
 free_func zfree; // 24-32
 voidpf opaque; // 32-40
 int64 data_type; // 40-48
}

struct git_zstream_0 {
 z_stream z;
 unsigned __int64 avail_in;
 unsigned __int64 avail_out;
 unsigned __int64 total_in;
 unsigned __int64 total_out;
 unsigned __int8 * next_in;
 unsigned __int8 * next_out;
 }

struct endpoint_t {
 sa_family_t sin_family;
 in_port_t sin_port;
 in_addr sin_addr;
 unsigned __int8[8] sin_zero;
}

Ground Truth RESYMOSPREYDIRTY

struct mbedtls_md_info_t {
 mbedtls_md_type_t* type;
 unsigned char size;
 unsigned char block_size;
}

struct mbedtls_md_info_t {
 mbedtls_md_type_t* type;
 uint8 nsides;
 unsigned char block_size;
}

Figure 2: Comparison of user-defined data structure recovery

efforts, there is still plenty of room to improve due to the intrinsic
difficulty of the task. Fig.2 compares the performance of two state-
of-the-art methods, DIRTY [11] and OSPREY [88], specifically in re-
constructing the structure declaration of IxpMsg from the earlier ex-
ample. DIRTY [11] utilizes a transformer-based multi-classification
model to predict variable names and types. However, its effective-
ness is limited to the types included in its training dataset. Con-
sequently, DIRTY struggles with user-defined structures not seen
during training, e.g., struct IxpMsg, leading to inaccurate results
and incorrect layout predictions. It is worth noting that it is imprac-
tical for DIRTY to encompass all possible user-defined structures
in its training set, particularly for specialized security tasks like
malware analysis. On the other hand, OSPREY [88] successfully
reconstructs the structure layout and accurately determines field
sizes and pointers. However, it cannot recover high-level, human-
readable symbol information (e.g., names and type names), making
its results difficult to interpret. Additionally, OSPREY relies on a
heavy-weight data-flow analysis [89], posing scalability challenges
with complex binaries.

2.2 Opportunities and Challenges
With the emergence of LLMs and their demonstrated powerful
ability to comprehend and generate code, applying them to de-
compiled code recovery appears promising. However, our initial
efforts at using LLMs for this sophisticated task have shown lim-
ited success. Merely prompting LLMs to enhance the readability
of decompiled code results in poor performance. Fig. 3 shows the
output of GPT-4 [53] when asked to make the decompiled code
more readable, i.e., with zero-shot learning. While it updates some
types (e.g., changing (int *)(a1 + 28) to (unsigned int *)(a1

+ 28)), it leaves most variables unchanged, resulting in minimal
improvement. GPT-4 also fails to provide useful information about
the fields of user-defined structures, such as IxpMsg. This highlights
the first challenge in using LLMs for recovering variable names
and types from decompiled code: understanding decompiled code is
an inherently complex task that typically requires a human analyst
years of skill training and adherence to well-designed methodolo-
gies [46, 73]. Therefore, expecting a general-purpose LLM to directly
produce readable decompiled code is impractical.

Additionally,We fine-tuned an LLMwith 3 billion parameters [40]
in an End-to-End (E2E) style, where the input is the decompiled
code, and the output is the corresponding source code (Section 5.3.1).
The goal was to enhance the model’s proficiency in interpreting
decompiled code. As shown in Fig. 3, it shows some progress, like
accurately renaming len. However, it still falls short in providing
comprehensive information, and sometimes even presents erro-
neous information, e.g., interpreting the field access msg->mode as
s->last. A further concern is the semantic divergence observed
between the source code and the outputs of the fine-tuned model
and GPT-4, e.g., the data-flow alterations (marked in red in Fig.3).

unsigned long long sub_404056
 (long long a1, unsigned short a2){
 unsigned int16 v3;
 unsigned int v4;
 void *dest;
 if(*(unsigned int *)(a1 + 28) == 1){
 dest = *(void **)(a1 + 28);
 // should be `8`
 v4 = v3 * a2;
 sub_406BB9(v4);
 }
}

unsigned int64 sub_404056
 (int64 a1, int16 a2){
 unsigned int16 v3;
 unsigned int v4;
 void *dest;
 if (*(int *)(a1 + 28) == 1){
 dest = *(void **)(a1 + 8);
 v4 = v3 * a2;
 sub_406BB9(v4);
 }
}

void ixp_pstrings
 (IxpMsg *msg, ushort num){
 uint size;
 ushort len;
 uchar *s;
 if(msg->mode == 1){
 s = msg->pos;
 size = len * num;
 emalloc(size);
 }
}

void process
 (state *s, unsigned short n){
 unsigned short len;
 int size;
 char *tmp;
 if (s->last == 1) {
 tmp = s->tmp;
 size = len * n;
 min(len); // should be `size`
 }
}

void function
(long a1, unsigned short a2) {
 if (a2 > 16) {
 *(int64 *)(a1 + 8)
 = *(int64 *)(a1 + 16) + 1;
 }}

Decompiled Code Source Code

GPT-4 Output Fine-tuned E2E Model Output

void ixp_pqids
 (IxpMsg *msg, ushort num){
 if(num > 16) {
 msg->pos = msg->end+1;
 }
}

int64 sub_404362
 (int64 a1, _WORD a2){
 if (a2 > 16){
 *(int64 *)(a1 + 8)
 = *(int64 *)(a1 + 16) + 1LL;
 }
}

void handle
 (test_case *tcase, int tcase_nr){
 if (tcase_nr > 16) {
 tcase->state = tcase->state + 1;
 }
}

1
2
3
4
5
6
7
8
9
10
11

1
2
3
4
5
6
7
8
9
10
11

1
2
3
4
5
6
7
8
9
10
11
12

1
2
3
4
5
6
7
8
9
10
11
12

Figure 3: GPT-4 and direct fine-tuning are limited.

This shows the difficulty of preserving the semantics, highlighting
the challenges in the task . Consulting a human expert revealed
that such an accurate field access recovery is challenging even for
professionals without access to the entire code context. This leads
to the second challenge: accurate variable name and type recovery
requires cross-referencing multiple functions, yet LLMs face input
token limitations, making it difficult to process entire programs. Fur-
thermore, the token limit of LLMs (e.g., 4,096) is often exceeded by
even just two decompiled functions, exacerbating the challenge.

2.3 Our Technique
While automatic reverse engineering remains a challenging task,
manual approaches have yielded significant successes [7, 26]. Con-
sequently, we are motivated to employ LLMs to replicate the
reverse engineering process used by human experts, especially
considering the recent advancements in LLMs’ ability to compre-
hend code snippets as well as humans. Drawing from recent obser-
vational studies on reverse engineers’ methodologies [46, 73], and
an interview with an experienced reverse engineer with eight years
of experience in the field, we have gleaned several key insights.

One key insight highlighted by the study is that the decompiled
code, while somewhat similar to source code, exhibits distinct distribu-
tions. These differences often challenge even experienced develop-
ers, who may struggle to understand the decompiled code despite
years of development experience. For example, Fig. 1 demonstrates
that the decompiled code includes numerous low-level operations,
complicating comprehension. Similarly, this complexity poses a
significant challenge to a general-purpose LLM or even a special-
ized code model for understanding decompiled code. To address
this, we choose to fine-tune LLMs to familiarize them with the
unique patterns of decompiled code, effectively transferring their
comprehensive knowledge of source code to decompiled code. This
process mimics teaching reverse engineering to a senior developer
in practice.

However, as demonstrated earlier, fine-tuning an LLM for di-
rect application in reverse engineering has limited success. The
second insight that enhances our fine-tuned LLMs’ understanding
of decompiled code is: while reverse engineering is challenging, hu-
man experts often simplify the task by breaking it down into smaller,
manageable sub-tasks. In recovering variable names and types, for
instance, experts typically divide the task into two sub-tasks: 1)
identifying local variable types and names, and 2) reconstructing
user-defined structures. Although similar to some extent, these
tasks require distinct knowledge bases and skill sets. The former
focuses on interactions among different local variables, while the
latter concentrates on the similarities and differences among the
fields within the same structures. We adopt a similar approach by

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Danning Xie et al.

void ixp_pqids (...){
 msg->pos
 msg->end
}

int64 sub_404362 (...){
 *(int64 *)(a1 + 8)
 (int64 *)(a1 + 16)
}Source Code Decompiled Code

I

unsigned int64 sub_404056
 (int64 a1, int16 a2){
 unsigned int16 v3;
 unsigned int v4;
 void *dest;
 if (*(int *)(a1 + 28) == 1){
 dest = *(void **)(a1 + 8);
 v4 = v3 * a2;
 sub_406BB9(v4);
 }
}

void ixp_pstrings
 (IxpMsg *msg, ushort num){
 uint size;
 ushort len;
 uchar *s;
 if(msg->mode == 1){
 s = msg->pos;
 size = len * num;
 emalloc(size);
 }
}

struct Buffer {
 uint8_t* buffer;
 uint8_t* pos;
 uint8_t* streamPos;
 uint32_t bufferSize;
 uint32_t type;

};

✔

❌

❌

// 0-7
// 8-15
// 16-23
// 24-27
// 28-31

unsigned int64 sub_404056
 (Buffer *context, uint16 len){
 uint16 chunk_len;
 uint32 total_len;
 char *temp_str;
 if (context->type == 1) {
 temp_str = context->pos;
 total_len = chunk_len * len;
 sub_406BB9(total_len);
 }
}

(int *)(a1 + 28): context, Buffer* -> type, uint32
(void **)(a1 + 8): context, Buffer* -> pos, uint8*

 Field Access Expression Information

A

Source Code Decompiled Code

What are the original name and data type of variables:
a1, a2, v3, v4, dest?

Recover Variable information

...

a1: context, Buffer*
a2: len, uint16
v3: chunk_len, uint16
v4: total_len, uint32
dest: temp_str, char*

 Variable Information

RESYM Recovered Code

B G

H

Recovered Data Structure

?

C
E

F

What are the variable name and type for the following field accesses:
 (int *)(a1 + 28), (void **)(a1 + 8)?

Recover Field Access ExpressionsD

?

VarDecoder

FieldDecoder

1
2
3
4
5
6
7
8
9
10
11

1
2
3
4
5
6
7
8
9
10
11

1
2
3
4
5
6
7
8
9
10
11

bufferSize
mySize
mySize
buffer

J Decision-making

Figure 4: Motivating Example illustrating ReSym’s hybrid approach synergizing insights from LLMs and program analysis to
transform decompiled code B into G . ReSym effectively recovers variable names and types (highlighted in green), field access
expressions (blue and yellow), and the complete layout of user-defined data structure struct Buffer (H).

designing tasks with finer granularity, specifically prompting the
LLMs for these two tasks instead of regenerating an entire func-
tion. By dividing the problem into these tasks and fine-tuning two
distinct LLMs, we enable each LLM to focus on its specific, simpler
task, thereby avoiding the confusion and difficulties that arise from
task amalgamation.

While our fine-tuned LLMs show enhanced comprehension of
decompiled code, they still face the constraints of token limitations.
Our third insight regarding the manual reverse engineering process
is: as human experts can only focus on one piece of code at a time, they
often gather insights from various code snippets and later cross-check
them. Typically, analysts connect code snippets by reasoning and
analyzing data-flow. This suggests a workflow where LLMs first
gain insights from individual code snippets and then cross-check
these results with a reasoning component, where the predictions
of both LLMs are aggregated. Therefore, LLMs are not obligated to
process the entire program in one shot but can be promptedmultiple
times with different code segments, effectively circumventing the
issue of input token limitations.

Driven by the aforementioned insights, we design and implement
ReSym, an automatic reverse engineering technique that mimics
the manual process by integrating fine-tuned LLMs (for raw results)
with a lightweight Prolog-based reasoning system (to validate and
aggregate results from diverse sources). Figure 4 demonstrates how
ReSym works, using the function ixp_pstrings as an example with
its source code (A), decompiled code (B), and the code recon-
structed by ReSym (G). To gain raw results of good quality, ReSym
performs two primary tasks: 1) recovering the names and types of
local variables, and 2) extracting field access information, illustrated
in C and D , respectively. Leveraging the raw results from the
LLMs (E and F), ReSym effectively reconstructs the original code
in G , where we mark all the modifications in green. This process
includes recovering variable names and types (e.g., from int64 a1

to Buffer *context) and field access expressions (e.g., from (int

*)(a1 + 28) to context->type, highlighted in blue). Additionally,
by cross-referencing the results from the LLMs with the reasoning
component, ReSym accurately reconstructs the complete structure
of struct Buffer (H). It achieves this detailed recovery by ag-
gregating field access information from multiple functions (e.g.,
functions B , I , and others) via posterior reasoning (Section 3.4).
During posterior reasoning, ReSym might encounter conflicting
predictions from different functions, such as field name predic-
tions (e.g., bufferSize vs. mySize in J). To resolve these, ReSym
employs a similarity-biased voting system (Section 3.4.3), choosing
bufferSize in this case.

3 APPROACH
3.1 Overview
Recognizing the unique nature of decompiled code and the insights
from the reverse engineering process, ReSym carefully reduces
the symbol recovery problem into two sub-tasks for the LLMs: 1)
identifying names and types for local variables, and 2) extracting
field access information. ReSym fine-tunes two models: VarDecoder
and FieldDecoder, for these two respective tasks.

Fig. 5 presents the overview of ReSym, which consists of three
phases. The first phase, Training Data Preprocessing (Section 3.2),
prepares the data for fine-tuning VarDecoder and FieldDecoder. It
is followed by the Fine-Tuning phase (Section 3.3), where the two
models are fine-tuned separately. Finally, in the Recovery phase
(Section 3.4), ReSym applies the fine-tuned models to the code
decompiled from fully stripped binary files. The results from both
models are then aggregated via Posterior Reasoning to get the final
recovered code. Next, we discuss each step in detail.

3.2 Phase 1: Training Data Preprocessing
To fine-tune a model for recovering variable information and field
access expressions, accurate alignment for each variable in the

ReSym: Harnessing LLMs to Recover Variable and Data Structure Symbols from Stripped Binaries CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Unstripped Bin Debug Symbols
Data

preprocess
Data

Labels

Fine-
tune

Var. Info.

Field Access
Info.

Posterior
Reasoning Recovered

Code

Phase 1: Training Data Preprocessing

Fully
Stripped Bin

Decompiled
Code

Fully
Stripped Bin

1

FieldDecoder

FieldDecoder

Phase 2: Fine-tuning

VarDecoder

Decompiled
Code

Align

Strip2

Decompile

4

5

6

3

3

Extract

Aligned
Symbols

VarDecoder

Phase 3: Recovery
7

Figure 5: Overview of ReSym

decompiled code with its counterpart in the source code is essential
for obtaining the ground truth. To enable the model to provide
information on both singleton variables in decompiled code (e.g.,
int v1 and char *s) and field access expressions (e.g., (int *)(a1+28)),
we need to assign labels for these two types of data. In this phase
(Fig. 5), we first extract the debug symbols from unstripped binary
files (step 1). We then remove all debug symbols from them (step
2) and decompile them to generate the decompiled program (step
3). Finally, we align these debug symbols with the variables in the
decompiled program (step 4), providing accurately labeled singleton
variables for training VarDecoder and field access expressions for
FieldDecoder.

3.2.1 Deriving Ground-truth Symbols for Decompiled Singleton Vari-
ables. In the decompiled code, local variables commonly appear as
singleton variables. To correctly label a singleton variable in the
decompiled code, it is essential to identify its corresponding vari-
able in the source code. While a singleton variable in decompiled
code usually matches directly with a local variable in the source
code, this is not always the case. Sometimes, a singleton variable in
decompiled code may represent an element of an array or a field
within a structure. Fig.6 provides an example where v2 in the decom-
piled code corresponds to align in the source code. However, the
decompiler misinterprets a single 16-byte variable, dt, as a cluster
of variables containing two 8-byte variables, v3 and v4. A cluster is
a group of singleton variables in the decompiled code corresponding
to an array or a structure in the source code. Each of these variables
represents a field of struct CType. Such misinterpretations signif-
icantly diminish code understanding, especially for user-defined
structures. Recovering these clusters can be highly beneficial in en-
hancing code readability, yet this has been overlooked and remains
unaddressed in previous research [11]. To handle it, the challenge
lies in educating the model to identify these clusters through the
careful design of variable labels for fine-tuning. In addition, we need
to automatically detect these variables to generate their respective
labels.

To accurately label singleton variables and identify clusters, we
utilize the DWARF debug symbols, which contain rich information
about variable names and types. As in Fig.5, debug symbols from
binary files are used solely for training data construction and are
excluded (stripped) during inference (Phase 3). Fig. 6 shows an ex-
ample of the debug symbols containing detailed information about

size_t olen

mbedtls_md_info_t
md_info

int64 v2

unsigned int v3

-0x10

-0x18

...
rbp -0x00

Source Code Decompiled Code Ground Truth

mbedtls_context* , ctx

size_t , olen

mbedtls_md_info_t , md_info

- , -
...

-0x20

int v4

...

mbedtls_context *ctx int64 a1

-0x10

-0x18

rbp -0x00

-0x20

-0x14

int64 sub_419683
 (int64 a1)
{
 int v2; // [rbp-20h]
 int64 v3; // [rbp-18h]
 int64 v4; // [rbp-10h]
}

v2
v3

-0x10
v4

-0x18

-0x20
-0x24

align

dt

rbp -0x10

-0x20
-0x24

func_type, CType*

Label

Source Decompiled Code

a1

cluster head

Debug Symbols

►Arguments • fun_type

►Variables

dt, struct CType

-, -

align, int

name, type

int64 sub_419683
 (CType* func_type)
{
 int align;
 CType dt; // cluster begin
 - -; // cluster cont.
}

cluster cont.

void gfunc_return
 (CType *func_type)
{
 int align;
 CType dt;
}

►Arguments

►Variables

Figure 6: Data alignment and labeling for VarDecoder

arguments, variables, and their respective locations in memory. We
then introduce our proposed Algorithm 1 for aligning and labeling
the singleton variables and explain the process step by step.

Algorithm. In Algorithm 1, the function GetVarLabel (lines 3–17)
takes the decompiled program (𝑃𝑟𝑜𝑔) and the DWARF debugging
symbols (𝐷𝐵𝐺) and produces𝑉𝐿𝑎𝑏𝑒𝑙𝑠 , containing labels (name and
type) for singleton variables (in the decompiled code). Here, 𝑃𝑟𝑜𝑔
represents the decompiled program derived from the fully-stripped
binary, which encompasses arguments 𝐴𝑟𝑔𝑠 , variables 𝑉𝑎𝑟𝑠 , and
statements 𝑆𝑡𝑚𝑡𝑠 . Meanwhile, the debug symbols 𝐷𝐵𝐺 extracted
from the corresponding unstripped binary file contain 𝐴𝑆𝑦𝑚 and
𝑉𝑆𝑦𝑚. 𝐴𝑆𝑦𝑚 maps arguments to their symbols, while 𝑉𝑆𝑦𝑚 maps
variables to theirs. This symbol information contains the name, type,
and memory location of each argument or variable as it appears in
the source code (not the decompiled version).

Algorithm 1 Variable Labeling Algorithm
1: 𝑃𝑟𝑜𝑔: Decompiled Program (𝐴𝑟𝑔𝑠 ,𝑉𝑎𝑟𝑠 , 𝑆𝑡𝑚𝑡𝑠)
2: 𝐷𝐵𝐺 : DWARF Debug Symbols (𝐴𝑆𝑦𝑚,𝑉𝑆𝑦𝑚)
3: function GetVarLabel(𝑃𝑟𝑜𝑔, 𝐷𝐵𝐺)→𝑉𝐿𝑎𝑏𝑒𝑙

4: 𝑉𝐿𝑎𝑏𝑒𝑙 ← {}
5: 𝑠𝑜𝑟𝑡𝑒𝑑𝐴𝑟𝑔𝑠 ← Sort(𝐷𝐵𝐺.𝐴𝑆𝑦𝑚)
6: for 𝑖 ← 0 to Length(𝑃𝑟𝑜𝑔.𝐴𝑟𝑔𝑠) − 1 do
7: 𝑎 ← 𝑃𝑟𝑜𝑔.𝐴𝑟𝑔𝑠 [𝑖]
8: 𝑎′ ← 𝑠𝑜𝑟𝑡𝑒𝑑𝐴𝑟𝑔𝑠 [𝑖]
9: 𝑉𝐿𝑎𝑏𝑒𝑙 [𝑎] ← (𝑎′ .name, 𝑎′ .type)
10: for 𝑣 ∈ 𝑃𝑟𝑜𝑔.𝑉𝑎𝑟𝑠 do
11: 𝑣′ ← AlignVar(𝑣, 𝐷𝐵𝐺)
12: if 𝑣′ ≠ Null then
13: if 𝑣.start == 𝑣′ .start then
14: 𝑉𝐿𝑎𝑏𝑒𝑙 [𝑣] ← (𝑣′ .name, 𝑣′ .type)
15: else
16: 𝑉𝐿𝑎𝑏𝑒𝑙 [𝑣] ← (“ − ”, “ − ”)
17: return𝑉𝐿𝑎𝑏𝑒𝑙

18: function AlignVar(𝑣, 𝐷𝐵𝐺)
19: for 𝑣′ ∈ 𝐷𝐵𝐺.𝑉𝑆𝑦𝑚 do
20: if 𝑣.start ≥ 𝑣′ .start and 𝑣.end ≤ 𝑣′ .end then
21: return 𝑣′

22: return Null

In Lines 5–9, the algorithm aligns the arguments in 𝑃𝑟𝑜𝑔 (the
decompiled code) sequentially with those in the debug symbols.
Note that the mapping is always one-to-one, following the compiler
conventions. For variables (Lines 10–16), each variable 𝑣 in 𝑃𝑟𝑜𝑔 is

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Danning Xie et al.

aligned with its counterpart 𝑣 ′ from the debug symbols via Align-
Var (Lines 18–22). AlignVar iterates over 𝑣 ′ in the debug symbols
and returns 𝑣 ′ if the address range (from start to end) of 𝑣 is within
that of 𝑣 ′. If no match is found, it returns Null. The rationale is
that the decompiler may break a complex variable into multiple
singleton variables. As such, the address range of a decompiled
singleton variable must be a sub-range of the original complex vari-
able. Consider Fig. 6 as an example. There is a direct match from v2

to align, as their address ranges match. Both v3 and v4 lie within
the address range of dt (from rbp -0x10 to -0x20), forming a cluster
where the two variables, v3 and v4, correspond to a single source
code variable, dt. Thus, v3 and v4 are both aligned with dt, with v3

identified as the cluster head, and v4 as a subsequent variable in the
cluster.

Returning to the GetVarLabel function at line 11, if the aligned
variable for 𝑣 is Null, the variable is omitted. This exclusion, as also
applied by existing works [11, 88], typically applies to variables
introduced by compilers that do not have any meaningful corre-
spondence in the original source anyway. Otherwise, if the starting
address of 𝑣 matches that of its aligned variable, suggesting a direct
match or that it is a cluster head, we label 𝑣 with the name and type
of its aligned counterpart. For subsequent variables in a cluster, we
assign a dash (“-”) as their label.

We choose to use a dash instead of specific field names for vari-
ables in a cluster for several reasons. First, the number of variables
in a cluster is not always the same as the number of fields in a
structure. For example, the decompiler may interpret two fields as
a single stack variable in the decompiled code, complicating the
assignment of meaningful labels to each subsequent variable in the
cluster. Second, clusters can represent structures or arrays. With
arrays, there are no specific ground truth names for each element.
Therefore, we decide to use dashes as labels for these subsequent
variables in a cluster and leave the recovery of field information
to later stages (e.g., with FieldDecoder and phase 3). During the
inference stage, to distinguish whether a cluster is an array or a
structure, we use the type predicted by VarDecoder for the cluster
head: a primitive type indicates the cluster as an array, while a
structure type suggests a structure.

3.2.2 Deriving Ground-truth Symbols for Decompiled Field Access
Expressions. FieldDecoder focuses on recovering field access ex-
pressions in the decompiled code. Fig. 7 demonstrates the data
alignment and labeling procedure for the expression (int *)(a1 +

28), which accesses the 28th – 31st bytes of the data structure a1

(base pointer) points to. Our procedure for aligning and labeling
field access expressions is formally defined in Algorithm 2.

Algorithm. Algorithm 2 takes the decompiled program (𝑃𝑟𝑜𝑔) and
the debugging symbols (𝐷𝐵𝐺) and outputs 𝐹𝐿𝑎𝑏𝑒𝑙𝑠 , containing
labels for the field access expressions. For a given decompiled pro-
gram 𝑃𝑟𝑜𝑔, we first use GetDerefExpression to identify all deref-
erence expressions (line 3), each characterized by a base pointer
𝑣 , an offset 𝑜 𝑓 𝑓 , and a size 𝑠𝑧. In Fig. 7, they correspond to a1, 28,
and 4, which is the size of int type. For each expression, we align
𝑣 with its source code counterpart using AlignVar (defined in
Algorithm 1 lines 18–22). In Fig. 7, the aligned variable for 𝑎1 is
msg. Expressions are excluded if the base pointer alignment fails
(𝑣 ′ == Null), or if 𝑣 does not directly correspond to a singleton

int sub_1FBC40(int64 a1, ...)
{
 if (sub_1FB423((int64 *)a1))
 return 0LL;
 v6 = *(int64 *)(a1 + 16);
 ...
 if (!*(int64 *)(a1 + 32))
 return 1LL;
 ...
}

struct z_streamp {
 Bytef* total_in; // 0-8
 uLong total_out; // 8-16
 alloc_func zallow; // 16-24
 free_func zfree; // 24-32
 voidpf opaque; // 32-40
 int64 data_type; // 40-48
}

Ground Truth Decompiled Code Label

zstreamp, stream -> Bytef* total_in

zstreamp, stream -> alloc_func zallow

zstreamp, stream -> voidpf opaque

struct mbedtls_md_info_t {
 mbedtls_md_type_t* type; // 0-4
 unsigned char size; // 4-5
 unsigned char block_size; // 5-6
}

int64 sub_416E82(int64 a1, int64 a2, int a3)
{
 switch (*(_DWORD *)(a1))
 case 3: ...
 ...
 case 8:
 if (a3!=0)
 a2 = calloc(2uLL, *(unsigned int8*)(a1 + 5))
}

mbedtls_md_info_t, md_info ->
unsigned char, block_size

mbedtls_md_info_t, md_info ->
mbedtls_md_type_t, type

struct IxpMsg {
 char* data;
 char* pos;
 char* end;
 _ixpuint size;
 _ixpuint mode;
};

unsigned int64 sub_404056
 (int64 a1, _WORD a2){
 ...
 if (*(int *)(a1 + 28) == 1){
 ...
 }
}

// 0-7
// 8-15
// 16-23
// 24-27
// 28-31

Debug Symbols
►Arguments • msg, IxpMsg*

• …

msg, IxpMsg* -> mode, _ixpuint

2

3

4 5

1

Decompiled Code

Label
base name base type field name field type

Figure 7: Data alignment and labeling for FieldDecoder

variable (𝑣 .start ≠ 𝑣 ′ .start∨𝑣 .end ≠ 𝑣 ′ .end). This exclusion process
is primarily to filter out variables introduced by the compiler.

Algorithm 2 Feild Access Expression Labeling Algorithm
1: function GetDerefLabel(𝑃𝑟𝑜𝑔, 𝐷𝐵𝐺)→ 𝐹𝐿𝑎𝑏𝑒𝑙𝑠

2: 𝐹𝐿𝑎𝑏𝑒𝑙𝑠𝑠 ← {}
3: 𝐷𝑒𝑟𝑒 𝑓 𝐸𝑥𝑝 ← GetDerefExpression(𝑃𝑟𝑜𝑔)
4: for all (𝑣, 𝑜 𝑓 𝑓 , 𝑠𝑧) ∈ 𝐷𝑒𝑟𝑒 𝑓 𝐸𝑥𝑝 do
5: 𝑣′ ← AlignVar(𝑣, 𝐷𝐵𝐺)
6: if 𝑣′ == Null ∨ 𝑣.start ≠ 𝑣′ .start ∨ 𝑣.end ≠ 𝑣′ .end then
7: continue
8: 𝑝𝑜𝑖𝑛𝑡𝑒𝑑𝑇 𝑦𝑝𝑒 ← GetPointedType(𝑣′, 𝐷𝐵𝐺)
9: if 𝑝𝑜𝑖𝑛𝑡𝑒𝑑𝑇 𝑦𝑝𝑒.isStruct() then
10: 𝑓 ← FindField(𝑝𝑜𝑖𝑛𝑡𝑒𝑑𝑇 𝑦𝑝𝑒, 𝑜 𝑓 𝑓 , 𝑠𝑧)
11: if 𝑓 ≠ Null then
12: 𝐹𝐿𝑎𝑏𝑒𝑙𝑠 [𝑣] ← (𝑣′ .name, 𝑣′ .type, 𝑓 .name, 𝑓 .type)
13: else
14: 𝐹𝐿𝑎𝑏𝑒𝑙𝑠 [𝑣] ← (𝑣′ .name, 𝑣′ .type, “ − ”, “ − ”)
15: return 𝐹𝐿𝑎𝑏𝑒𝑙𝑠

Next, we determine the type pointed to by 𝑣 ′ (line 8), such as
IxpMsg for msg in Fig. 7. If this type is a structure, we use FindField
to identify the accessed field, for example, mode, and assign labels
including base name, base type, field name, and field type (line 12).
The base name and type (msg and IxpMsg*) and the field name and
type (mode and _ixpuint) are derived from the base pointer and
accessed field, respectively. In (rare) cases where FindField fails to
locate a corresponding field and returns Null, it suggests possible
aggressive compiler optimization. We hence skip those cases. In
line 13, when the 𝑝𝑜𝑖𝑛𝑡𝑒𝑑𝑇𝑦𝑝𝑒 is primitive, indicating a primitive
type dereference or access to array elements, we assign a dash (“-”)
as the field name and type. As such, during inference, the model’s
predictions will help distinguish these from structure field accesses.

3.3 Phase 2: Fine-tuning
Upon completing data preparation, we fine-tune two LLMs for
specific tasks: VarDecoder for recovering variable names and types,
and FieldDecoder for extracting field access expression information.

3.3.1 VarDecoder. The recovery of stack variables is formulated
as follows: given a decompiled function 𝑑 and a list of its variables
𝑉𝑑 = {𝑣1, . . . , 𝑣𝑚}, we construct the input instruction 𝐼 as “What
are the original name and data type of variables: 𝑣1,
. . . , 𝑣𝑚? < 𝑑 >”, which is a natural language question followed
by the decompiled code (< 𝑑 >). For each variable 𝑣𝑖 asked in the
instruction, the model is expected to generate the original name
𝑛𝑖 and type 𝑡𝑖 , with each in a line for easier postprocessing. The

ReSym: Harnessing LLMs to Recover Variable and Data Structure Symbols from Stripped Binaries CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

output is formulated as

𝑌1 =

©«
𝑣1 𝑛1 𝑡1
𝑣2 𝑛2 𝑡2
.
.
.

.

.

.

.

.

.

𝑣𝑚 𝑛𝑚 𝑡𝑚

ª®®®¬
The objective of the fine-tuning process is to adjust the pre-

trained LLMs’ weights 𝜃 to minimize the loss 𝐿, which is the nega-
tive log-likelihood associated with generating the expected output
from the given input instruction:
𝐿 = − log P(𝑌1 |𝐼 , 𝜃)

= − log
[

P(𝑣1 |𝐼 , 𝜃) + P(𝑛1 |𝐼 , 𝑣1, 𝜃) + P(𝑡1 |𝐼 , 𝑣1, 𝑛1, 𝜃)
]

︸ ︷︷ ︸
Loss of recovering the first variable

− log
𝑚∑︁
𝑖=2

[
P
(
𝑣𝑖

���𝐼 , {𝑣𝑗 , 𝑛 𝑗 , 𝑡 𝑗 }𝑖−1
𝑗=1,︸ ︷︷ ︸

Conditioned on
previous recovery

𝜃

)

+ P
(
𝑛𝑖

���𝐼 , {𝑣𝑗 , 𝑛 𝑗 , 𝑡 𝑗 }𝑖−1
𝑗=1, 𝑣𝑖 , 𝜃

)
+ P

(
𝑡𝑖

���𝐼 , {𝑣𝑗 , 𝑛 𝑗 , 𝑡 𝑗 }𝑖−1
𝑗=1, 𝑣𝑖 , 𝑛𝑖 , 𝜃

)]

Loss of recovering
following variables

Note that for the same variable, the probability of the variable
type recovery is conditioned on that of its name recovery, and
recovery of the following variables is conditioned on the recovery
of previous variables.

3.3.2 FieldDecoder. The formulation for recovering field access
expressions is similar. Given a decompiled function 𝑑 and a list of
field access expressions E = {𝑒1, . . . , 𝑒𝑘 }. The input instruction 𝐼 is
“What are the variable name and type for the following
field accesses: 𝑒1, . . . , 𝑒𝑘? < 𝑑 >”. For each field access expres-
sion 𝑒𝑖 , the model is designed to output the base name 𝑛𝑏𝑖 , base
type 𝑡𝑏𝑖 , field name 𝑛𝑓𝑖 , and field type 𝑡 𝑓𝑖 . The output is

𝑌2 =

©«
𝑒1 𝑛𝑏1 𝑡𝑏1 → 𝑛𝑓1 𝑡 𝑓1
𝑒2 𝑛𝑏2 𝑡𝑏2 → 𝑛𝑓2 𝑡 𝑓2
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

𝑒𝑘 𝑛𝑏𝑘 𝑡𝑏𝑘 → 𝑛𝑓𝑘 𝑡 𝑓𝑘

ª®®®¬
The fine-tuning is to minimize the negative log-likelihood of the

generation of 𝑛𝑏𝑖 , 𝑡𝑏𝑖 , 𝑛𝑓𝑖 , and 𝑡 𝑓𝑖 , which is similar to the loss of
fine-tuning VarDecoder.

3.4 Phase 3: Recovery
In this phase (Fig.5), we focus on recovery using fully stripped
binaries, with the debug symbols removed. The initial step involves
extracting decompiled code from these fully stripped binaries. Fol-
lowing this, we apply the fine-tuned VarDecoder and FieldDecoder
to the decompiled code, following the prompt format detailed in Sec-
tion 3.3. Note that FieldDecoder is employed only if there are field
access expressions in the code. The final stage, posterior reason-
ing, processes the raw results obtained from individual functions
and aggregates the outputs of the LLMs from multiple functions to
recover information that requires a global view.

It is important to note that type information, particularly regard-
ing user-defined structures, can often be incomplete or misleading
when derived from a single code snippet. This problem commonly

Table 1: Fact predicates used by ReSym

Name Description

In
iti
al
Fa
ct
s

Var(F, V, Ty, Nm)
In function F, variable V is of type Ty and named Nm according
to VarDecoder.

FieldAcc(F, V, Off, Sz, Ty, Nm)
In function F, variable V has a field access at offset Off and size
Sz, with the field’s type and name predicted as Ty and Nm,
respectively, by FieldDecoder.

Callsite(F1 , F2 , C, V, Id)
At callsite C, caller function F1 invokes callee function F2 ,
passing variable V from F1 as the Id-th argument.

Arg(F, V, Id) The Id-th argument of function F is variable V.

DataFlow(F, V1 , V2) In function F, there is a data flow between variables V1 and V2 .

D
er
iv
ed

Fa
ct
s

TypeAgnosticArg(F, Id)
The Id-th argument of function F is type-agonstic, i.e., variables
are typically type-casted before being passed as the argument.

TypeGrouping(F, V, Tg) Variable V in function F is grouped into a type group Tg.

TypeInfo(Tg, Ty, Nm)
A variable in type group Tg is predicted to be of type Ty with
the name Nm.

FieldInfo(Tg, Off, Sz, Ty, Nm)
A variable in type group Tg accesses a field at offset Off and
size Sz, with the field’s type and name predicted as Ty and
Nm, respectively.

occurs if the function under examination does not access all fields
of the subject structure. Inspired by existing efforts [60], we have
devised a Prolog-based inference system [14] that mimics the rea-
soning process of human experts. This approach enables efficient
cross-referencing of all variables related to a specific type. The
process employs a similarity-biased voting system to determine the
type, relying on initial predictions for all variables linked to the
type in question, called facts. In the following, we will present the
fact predicates (Section 3.4.1) and reasoning rules (Section 3.4.2) em-
ployed by ReSym, and discuss the similarity-biased voting system
(Section 3.4.3).

3.4.1 Fact Predicates. Table 1 presents the fact predicates utilized
by ReSym, with the predicates and their descriptions in the two
columns. The facts fall into two categories, initial facts and derived
facts.

Initial facts denote facts directly derived from the predictions of
VarDecoder and FieldDecoder, and the decompiled code’s syntax.
There are four types of initial facts in total. Specifically, Var and
FieldAcc encode the results from VarDecoder and FieldDecoder,
respectively. For instance, in Fig.4, E contains Var(sub_404056, a2,
uint16, len), and F includes FieldAcc(sub_404056, a1, 28, 4, uint32,
type), where 4 is the field access size, i.e., size of “int”. The facts
Callsite andArg illustrate syntax features in a decompiled function,
where Callsite details callsite information, and Arg describes the
function signature. For example, in code B of Fig.4, we find Call-
site(sub_404056, sub_406BB9, LINE-9, v4, 1) and Arg(sub_404056,
a1, 1).

In contrast, there are five derived facts representing the rea-
soning results (both intermediate and final) during the analysis
process. The fact DataFlow represents the results of the data-flow
analysis. To minimize runtime overhead, we utilized a lightweight
version of Andersen’s algorithm [4] on decompiled code, avoiding
the heavy data-flow analysis upon binary executables [89]. Al-
though DataFlow cannot be directly acquired and requires analysis
efforts, encoding data-flow analysis in Prolog is a well-established
practice [77]. For simplicity, we omit the detailed inference rules
and present it solely as a fact. The fact TypeAgnosticArg describes
certain function arguments as type-agnostic, commonly seen in

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Danning Xie et al.

TRUE

TypeGrouping(F, V, TgF.V) (1)

DataFlow(F, V1 , V2),
TypeGrouping(F, V1 , Tg)

TypeGrouping(F, V2 , Tg) (2)

Callsite(F1 , F2 , C, V1 , Id),
Arg(F2 , V2 , Id),

¬TypeAgnosticArg(F2 , Id),
TypeGrouping(F1 , V1 , Tg)

TypeGrouping(F2 , V2 , Tg) (3)

Callsite(F1 , F2 , C, V1 , Id),
Arg(F2 , V2 , Id),

¬TypeAgnosticArg(F2 , Id),
TypeGrouping(F2 , V2 , Tg)

TypeGrouping(F1 , V1 , Tg) (4)

TypeGrouping(F, V, Tg),
Var(F, V, Ty, Nm)

TypeInfo(Tg, Ty, Nm) (5)

TypeGrouping(F, V, Tg),
FieldAcc(F, V, Off, Sz, Ty, Nm)

FieldInfo(Tg, Off, Sz, Ty, Nm) (6)

TypeGrouping(F1 , V1 , Tg1), Callsite(F1 , F3 , C1 , V1 , Id), FieldInfo(Tg1 , Off1 , Sz1 , -, -),
TypeGrouping(F2 , V2 , Tg2), Callsite(F2 , F3 , C2 , V2 , Id), FieldInfo(Tg2 , Off2 , Sz2 , -, -),

FieldOverlap∗(Off1 , Sz1 , Off2 , Sz2)

TypeAgnosticArg(F3 , Id) (7)

∗: Off1 + Sz1 > Off2 , assuming Off1 ≤ Off2 without losing generality

Figure 8: Reasoning rules used by ReSym

low-level memory functions (e.g., memset) or container APIs (e.g.,
HashMap::insert). For example, the first parameter of memset is type-
agnostic, as it can point to any data type, e.g., memset((void *)&fd,

0, 32) and memset((void *)str, 0, 128). Identifying type-agnostic
arguments is crucial for posterior reasoning, as type information
should not propagate through them. For instance, in the earlier
memset example, we cannot conclude that &fd and str are of the
same type. Also note that detecting type-agnostic arguments is
more challenging at the binary level than in source code, due to
the absence of explicit type casting in the source code. The fact
TypeGrouping indicates that a variable V in function F belongs to
a type group Tg, a group of variables believed to be of the same type.
For example, at the callsite in Fig. 4 B line 9, we have TypeGroup-
ing(sub_404056, v4, Tg), where Tg is the type group that the first
argument of the callee function sub_406BB9 belongs to. TypeGroup-
ing is particularly useful for representing the type assignment of
variables. TypeInfo and FieldInfo provide aggregated information
for each type group. Specifically, if any variable in the type group
Tg is predicted to have a type Ty and a name Nm, we record it
using TypeInfo, and similarly for FieldInfo. These two derived facts,
TypeInfo and FieldInfo, are then input into the similarity-biased
voting system to aid ReSym in determining variable names and
types.

3.4.2 Reasoning Rules. Fig. 8 presents the reasoning rules used by
ReSym. These rules are expressed in the following format:

P1, P2, P3, . . . , P𝑛
C

where P𝑖 denotes the 𝑖-th premise of the rule and C represents
the conclusion. When all the premises are present in the current
fact base, ReSym adds the conclusion to the fact base as well. Rule
(1) states that each variable is initially assigned to a type group
containing only itself. Rule (2) covers intra-procedural type infer-
ence, specifying that if there is data flow between two variables, V1
and V2, then V2 should belong to V1’s type group, and vice versa.
Rules (3) and (4) describe inter-procedural type inference. Rule (3)
states that if function F1 calls function F2, passing variable V1 as
F2’s Id-th argument, and if V2, the Id-th argument of F2, is not a
type-casting argument, then V2 should belong to V1’s type group.
Similarly, Rule (4) states that under the same condition, V1 should

belong to V2’s type group. Note that, if Id-th argument of F2 is a
type-agnostic argument, e.g., the first argument of memset, these
two rules do not apply. Rules (5) and (6) address the process of
aggregation, stating that any prediction made by VarDecoder and
FieldDecoder about a variable will apply to every type group that
the variable belongs to. Rule (7) outlines the process of identifying
a type-agnostic argument. Specifically, if two variables, V1 in F1
and V2 in F2, belong to groups Tg1 and Tg2 respectively and are
passed as the Id-th argument of F3, any overlapping field accesses
of Tg1 and Tg2 will categorize the Id-th argument of F3 as a type-
agnostic argument. Overlapping field accesses refer to two distinct
field accesses sharing the same memory, e.g., access at offset 0 with
size 8 and access at offset 4 with size 4. Rule (7) is based on the
premise that field access offsets and sizes (identified by IDA) are
typically reliable and rarely erroneous, suggesting that overlapping
field access likely indicates a type collision, thereby making the
argument under consideration type-agnostic. It is important to note
that FieldOverlap is an auxiliary Prolog method for detecting such
overlaps, rather than a fact predicate.

Hypothetical Reasoning. It is observed that Rule (3) and Rule
(7) form a logical loop, where Rule (3) requires the facts of Ty-
peAgnosticArg to detect TypeGrouping, while Rule (7) depends on
TypeGrouping to identify TypeAgnosticArg. This often leads to a
deadlock when recursion occurs in the code. To resolve this, we
employ a trial-and-error method, akin to the strategies used by hu-
man analysts during reverse engineering type inference. Typically,
analysts initially presume an argument is not type-agnostic and pro-
ceed with their reasoning, revising this assumption if conflicts arise.
The Prolog system inherently supports such backtracking [61]. Our
approach mirrors this methodology: initially considering an unvis-
ited TypeAgnosticArg as false if the engine fails to generate new
facts, and then continuing with the reasoning process. In the event
of a conflict, we use Prolog to address the root cause of the problem
(i.e., an incorrect assumption). This process is repeated until all
potential TypeAgnosticArg facts in the code base are verified.

3.4.3 Similarity-biased Voting System. The primary goal of poste-
rior reasoning is to conclude the type using the type predictions of
LLMs across various functions. This is especially crucial in recon-
structing user-defined structures, as inferring the complete struc-
ture from a single function is often impractical due to fields in these
structures usually being accessed across multiple functions. We
define the problem as follows, given a type group Tg and a specific
offset Off (if applicable), our goal is to determine the fields’ size S̄z,
type T̄y, and name N̄m using aggregated results { (Sz, Ty, Nm) |
FieldInfo(Tg, Off, Sz, Ty, Nm) }. Conflicts may arise among predic-
tions from different functions. For instance, in Fig. 4 H , the fourth
field, used in four different functions, receives varied name predic-
tions like bufferSize, mySize, and buffer, as shown in J . A simple
majority vote, while effective for field sizes, may not be optimal
for field types and names. In the aforementioned example, mySize
might be erroneously selected because this method overlooks in-
sights from similar predictions, such as buffer for bufferSize. To
address this, we implement a novel, similarity-biased voting system.
We use a similarity metric,𝑇𝑆𝑖𝑚𝑛 , to assess the resemblance of one
name 𝑛 to other predictions, 𝑁 \ 𝑛, and select the one with the
highest score. We adhere to three primary naming conventions,

ReSym: Harnessing LLMs to Recover Variable and Data Structure Symbols from Stripped Binaries CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

camelCase, PascalCase, and snake_case, breaking down each name
𝑛 into tokens𝑊𝑛 = 𝑤1,𝑤2, For instance, bufferSize becomes
buffer, size. We furturer define 𝑇𝑆𝑖𝑚𝑛 as:

𝑇𝑆𝑖𝑚𝑛 =
∑︁

𝑛′∈𝑁 \{𝑛}

2 × |𝑊𝑛 ∩𝑊𝑛′ |
|𝑊𝑛 | + |𝑊𝑛′ |

This metric represents the ratio of overlapping tokens to the to-
tal number of tokens. For instance, 𝑇𝑆𝑖𝑚bufferSize is 5

3 , whereas
for mySize and buffer are 3

2 and 2
3 , respectively. Consequently,

bufferSize is chosen as the candidate that best reflects consen-
sus. Intuitively, our method ensures that names sharing common
components or meanings with other predicted values receive higher
scores. This approach considers not just the frequency, but also the
commonality and information embedded in each predicted value,
making it more robust than a simple majority vote.

It is worth noting that a more complex similarity metric could
involve using a standalone deep learning model to generate high-
dimensional embeddings for each prediction and calculate similarity
accordingly. However, we find this unnecessary in practice. Also,
note that we apply the same methodology for determining type
names based on TypeInfo.

3.5 Practical Challenges
We additionally addressed several practical challenges as follows:

Filtering Inaccurate Type-Size Predictions. In rare instances,
VarDecoder and FieldDecoder may incorrectly predict types that are
inconsistent regarding variable sizes. For example, VarDecoder may
predict a pointer type (of 8 bytes) for a 2-byte variable. We refine
the encoding of Var and FieldAcc to exclude such inconsistent
predictions when determining the final type or name with the
similarity-biased voting system (Section 3.4.3).

Additional Reasoning Rules. Beyond the rules outlined in Fig.8,
we incorporated standard type inference rules into ReSym. For
instance, de-referencing a pointer assigns the pointed type to the
outcome variable. These standard rules, while not depicted in Fig.8,
have been implemented in ReSym.

Field Overlap Due to Compiler Optimization. Rule (7) in Fig.8
suggests that overlapping field accesses typically indicate a type-
agnostic argument. However, in rare cases, these overlaps might
result from compiler optimizations [88], rather than the presence
of a type-agnostic argument. To reduce this interpretative noise,
we established a threshold for Rule (7), requiring ReSym to detect
a minimum of three instances of overlapping field accesses before
considering the subject argument as a type-agnostic argument.

Synonym Replacement before Similarity-biased Voting. De-
velopers often use synonyms for the same purpose. For example, buf
and buffer are used interchangeably. We include a set of common
synonyms, replacing synonym tokens before computing similarity
metrics. The complete list can be found in our artifacts [1].

4 EXPERIMENTAL SETUP
4.1 Dataset
To train the models and evaluate ReSym on real-world projects, we
follow the method of previous work [11] and build a new dataset

by compiling 7,416 popular C and C++ projects into 113,696 bi-
nary files from GitHub using GHCC [33]. Particularly, all projects
were created in 2012 – 2022 with more than 20 stars. C++ projects
constitute 6.5% of our dataset, consistent with the distribution in
DIRT(6% [11]). We only include executable binary programs in our
dataset, precluding intermediate relocatable binary files since the
semantics of a relocatable file rely on their symbol table [76], which
may be stripped away.

Among some projects, we observed significant overlap in func-
tions and data structures, which may affect the diversity of the
dataset and yield misleading results. We sanitize the dataset by
retaining binaries with at least 80% unique functions, resulting in
16,217 binary files. The binary files have an average size of 116.2
KB and a maximum of 8.9 MB. Function similarity was determined
through exact string matching of the decompiled functions with
necessary normalization, following existing practices [11, 38]. In the
decompiled code, local variables are annotated according to their
declaration order and hence are normalized by nature. Additionally,
we normalized function names and global variables.

The decompiled code is obtained from fully stripped binary files
using the decompiler IDA Pro [32]. Our analysis revealed that, on
average, 71.1% of data structures within a project appear in more
than one binary file. Therefore, we choose to split the dataset by
project to minimize function and structure overlaps between train-
ing and testing sets. The dataset was divided into training and
test sets, denoted as 𝐷 = {𝐷Train, 𝐷Test}, with a ratio of 0.95. This
splitting method guarantees that functions from the same project
are exclusively assigned to either 𝐷Train or 𝐷Test. Field access ex-
pressions were identified using Clang [42]. Note that we do not
consider predicting symbols for compiler-generated variables. For
VarDecoder, functions without variables needing renaming or re-
typing were removed. Due to resource constraints and the rarity of
clusters (Section 3.2.1) presence (only 5.9% of functions have it), we
included the functions with clusters twice and sampled only 50%
of the functions without clusters in 𝐷Train for fine-tuning VarDe-
coder. This resulted in 269,735 functions with 1,176,417 variables for
training, among which 20,411 functions (before resampling) have
clusters, and 26,945 functions with 108,132 variables for testing.
For FieldDecoder, functions without field access expressions were
excluded, yielding 159,577 functions with 528,956 expressions for
training, and 9,121 functions with 33,793 expressions for testing.

Functions in Training vs. Functions not in Training. Following
previous work [11], we consider two subsets of functions within the
testing set: functions that are present in the training set (“Functions
in Training”) and those that are not (“Functions not in Training”).
The former typically includes library functions commonly reused
by different developers, which the models could have encountered
during training. While the inclusion of such functions in the testing
set is practical for a realistic assessment, we separately evaluate
the performance on these two subsets to show ReSym’s ability to
memorize seen data and generalizability on unseen data. We use
string matching to determine the same (decompiled) functions as
the previous works [11, 38] with normalization steps as discussed
earlier in this section.

ExistingDataset. We choose not to use an existing dataset DIRT [38].
The main reason is that it does not provide source binary files or

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Danning Xie et al.

decompiled code from fully-stripped binaries, which limits data
labeling (as outlined in Section 3.2), particularly for obtaining nec-
essary debug symbols and fully stripped binaries.

4.2 Training
We select pre-trained StarCoder 3B [40], one of the state-of-the-art
LLMs, as the base model for both VarDecoder and FieldDecoder.
During the training step, for VarDecoder, inputs exceeding 2,048
tokens are truncated, and those over 4,096 tokens are discarded.
For FieldDecoder, we discard any input exceeding 4,096 tokens and
choose not to truncate inputs to avoid truncating some field access
expressions that may lead to misinterpretation of the model. Note
that no functions are discarded during the inference stage, and
they are only truncated if the input exceeds the model’s inherent
8,192-token limit. Function discarding and truncation occurs only
during training for efficiency purposes, which is a common practice
in LLM training [6, 44, 69] and has been shown to have a negligible
impact on model performance [6, 44, 64, 69].

The fine-tuning was conducted on four A100 GPUs for three
epochs. The model weights are updated using an AdamW [43]
optimizer with a batch size of 16 and a learning rate of 5e-5, adjusted
by 500 warm-up steps followed by a cosine decay.

4.3 Metrics
We report the performance of VarDecoder on recovering variable
information and FieldDecoder on its recovery of field access expres-
sions. In addition, we access the capability of ReSym’s recovery on
user-defined structures with posterior reasoning.

4.3.1 VarDecoder: Variable Name and Type Recovery. For VarDe-
coder, we assess the accuracy of the variable name and type pre-
dictions using a perfect match criterion [11, 38]. The accuracy
for names, defined as 𝐴𝑐𝑐n =

𝑁𝑚𝑐

|𝑉 | , is calculated by dividing the
total number of correctly predicted names 𝑁𝑚𝑐 by the total num-
ber of variables across all decompiled functions in the test set
|𝑉 | = ∑

d∈𝐷test |𝑉
𝑑 |. Similarly, the accuracy for type is 𝐴𝑐𝑐n =

𝑇𝑦𝑐
|𝑉 |

with 𝑇𝑦𝑐 being the count of correctly predicted types for variables
across all functions in the test set. We further evaluate VarDecoder’s
ability to identify variable clusters, i.e., stack-inlined structures and
arrays, as introduced in Section 3.2.1 with precision, recall, and F1
score. We consider a cluster correctly predicted if and only if VarDe-
coder identifies the exact same set of variables with the ground
truth. Precision is the rate of correctly predicted clusters over the
total number of predicted clusters. Recall is the rate of correctly
predicted clusters over the total number of clusters in the ground
truth. The F1 score is the harmonic mean of precision and recall.

4.3.2 FieldDecoder: Field Access Expression Recovery. The perfor-
mance of FieldDecoder is evaluated based on its accuracy in pre-
dicting the four properties for each field access expression: base
name, base type, field name, and field type. We report accuracy for
each of these four properties. The accuracy metrics are calculated
similarly to 𝐴𝑐𝑐n, as defined previously.

4.3.3 User-Defined Data Structure Recovery. For each decompiled
function 𝑑 with variables 𝑉𝑑 , we evaluate each variable 𝑢 ∈ 𝑈𝑑

that is by ground truth or predicted as a structure or a pointer

Table 2: ReSym-VarDecoder’s accuracy (%) on variable name
and type prediction.

Overall In Train Not in Train

Name Type Name Type Name Type

56.4 64.6 88.2 89.5 37.5 49.9

Table 3: ReSym-VarDecoder’s Precision (P), Recall (R), and F1
score (F1) (%) on identifying clusters.

Overall In Train Not in Train

P R F1 P R F1 P R F1

83.9 88.0 85.9 93.0 97.4 95.2 80.2 84.2 82.1

to a structure, where 𝑈𝑑 ⊂ 𝑉𝑑 . For example, in Fig. 4, 𝑉𝑑 =

{a1, a2,v3,v4,dest}, and 𝑈𝑑 = {a1} since a1 by ground truth and
predicted as a pointer to a structure. We evaluate the struct layout
and struct annotation for these variables. It is important to note
that we do not consider arrays and pointers to arrays in this con-
text, as arrays have already been evaluated as variable clusters in
VarDecoder. Similarly, pointers to arrays are essentially pointers
to their corresponding primitive types and are thus evaluated with
VarDecoder as well.
Struct Layout.We evaluate structure layout based on the predicted
offsets and sizes for each field. Following existing work [88], we
use a rigorous standard that considers a field as correct if and
only if both the offset and size are correct. We define the pre-
dicted layout for variable 𝑢 as 𝑃𝑟𝑒𝑑𝑢

𝐿
= {⟨𝑜1, 𝑠1⟩, ⟨𝑜2, 𝑠2⟩, ...} which

contains a set of fields represented as offset-size pairs. For exam-
ple, in Fig. 4, ReSym’s predicted layout for a1 (H) is 𝑃𝑟𝑒𝑑a1

𝐿
=

{⟨0, 8⟩, ⟨8, 8⟩, ⟨16, 8⟩, ⟨24, 4⟩, ⟨28, 4⟩}. Similarly, we define𝐺𝑡𝑢
𝐿
as the

ground truth layout, which in this case is the same with 𝑃𝑟𝑒𝑑u
𝐿
as

the predicted layout is correct. We thereby define the precision and
recall of the struct layout as:

𝑃𝑟𝑒𝐿 =

∑
𝑢∈𝑈 |𝐺𝑡𝑢

𝐿
∩ 𝑃𝑟𝑒𝑑𝑢

𝐿
|∑

𝑢∈𝑈 |𝑃𝑟𝑒𝑑𝑢𝐿 |
, 𝑅𝑒𝑐𝐿 =

∑
𝑢∈𝑈 |𝐺𝑡𝑢

𝐿
∩ 𝑃𝑟𝑒𝑑𝑢

𝐿
|∑

𝑢∈𝑈 |𝐺𝑡𝑢
𝐿
|

where 𝑈 =
⋃

𝑑∈𝐷Test 𝑈
𝑑 . The F1 score is the harmonic mean of

precision and recall 𝐹1𝐿 =
𝑃𝑟𝑒𝐿 ·𝑅𝑒𝑐𝐿
𝑃𝑟𝑒𝐿+𝑅𝑒𝑐𝐿 .

Struct Annotation. The struct annotation includes the struct types
(e.g., Buffer in Fig. 4 H), field names, and field types (e.g., pos and
uint8_t * of the second field). We compare them against all the
fields of the ground truth and report the accuracy. If ReSym fails to
detect the field, the field name and type are both considered wrong.

5 EVALUATION
In this section, we report ReSym’s performance (Section 5.1), com-
parative experiments with existing approaches (Section 5.2), three
ablation studies (Section 5.3), and a case study on a real-world
malware (Section 5.4).

5.1 Our Results
5.1.1 Name and Type Recovery with VarDecoder. Table 2 presents
the performance of ReSym VarDecoder in predicting variable names
and types. The model demonstrates an overall accuracy of 56.4% for

ReSym: Harnessing LLMs to Recover Variable and Data Structure Symbols from Stripped Binaries CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 4: ReSym-FieldDecoder’s accuracy (%) on predicting base
name (Name𝑏), base type (Type𝑏), field name (Name𝑓), and
field type (Type𝑓) for field access expressions.

Overall In Train Not In Train

Name𝑏 Type𝑏 Name𝑓 Type𝑓 Name𝑏 Type𝑏 Name𝑓 Type𝑓 Name𝑏 Type𝑏 Name𝑓 Type𝑓

54.4 53.8 55.2 55.7 89.0 87.5 89.0 89.0 34.0 33.9 35.3 36.0

Table 5: ReSym’s results of user-defined data structures (%).

Struct Layout Struct Annotation (Accuracy)

Precision Recall F1 Struct Type Field Name Field Type

72.9 28.9 41.4 46.8 16.3 16.9

name and 64.6% for type recovery. Notably, while ReSym exhibits
high accuracy (over 85%) for variables within functions “In Train”,
it also shows great generalizability for variables from functions
“Not in Train”, achieving 37.5% accuracy in name and 49.9% in type
recovery.

Table 3 shows the effectiveness of ReSym-VarDecoder on identi-
fying variable clusters (Section 3.2.1). ReSym effectively identifies
clusters in both seen and unseen data, achieving over 80% in preci-
sion, recall, and F1 score across both subsets. This high performance
can be attributed to the earlier-mentioned fact that variable clus-
ters predominantly consist of stack-inlined structures and arrays,
which are adequately accessed within their enclosing functions.
The advanced capabilities of LLMs enable VarDecoder to deliver
accurate predictions when provided with adequate information.

5.1.2 Field Access Expression Recovery with FieldDecoder. Table 4
displays the effectiveness of ReSym’s FieldDecoder in recovering
field access expressions. The model achieves over 50% accuracy in
predicting the base names, base types, field names, and field types.
For variables from “Not in Train” functions, ReSym’s accuracies
remain above 30%, while it exceeds 85% for “In Train” functions.

5.1.3 User-DefinedData Structure Recovery. Table 5 outlinesReSym’s
performance in recovering user-defined data structures. Predomi-
nantly, ReSym successfully recovers struct layouts, with 72.9% of
its predicted offsets and sizes accurate. The struct layout’s rela-
tively low recall rate of 28.9% arises from several factors. A primary
issue is the discarding of some functions due to the token limit
(Section 4.2). This often leads to incomplete calling contexts and po-
tentially overlooked field access expressions, an inherent challenge
with ML-based methods. Moreover, data-flow analysis is inherently
undecidable [62], which impedes the collection of both sound and
complete analysis results. Consequently, ReSym might miss some
data-flow relations, leading to incomplete type grouping (Tg in Sec-
tion 3.4.1). This means variables that are of the same type according
to the source code might be divided into two distinct type groups.
We believe that implementing a more sophisticated data-flow anal-
ysis could improve ReSym’s performance. We leave it for future
work.

For “Struct Annotation”, ReSym achieves a 46.8% accuracy in
correctly naming the data structures. For example,ReSym accurately
predicts struct Operand for a data structure in the test set. The
accuracies for “Field Name” and “Field Type” are relatively lower,
primarily due to our strict evaluation criteria, where both the field
name and type are considered wrong if ReSym fails to recover the

Table 6: Comparison on variable name and type accuracy (%).

Method

Overall In Train Not in Train

All Struct All Struct All Struct

name type name type name type name type name type name type

ReSymVar 56.7 60.7 50.0 55.6 74.6 75.0 74.4 75.7 45.1 51.4 41.8 48.9
DIRTY [11] 48.7 55.8 38.6 39.6 70.4 73.5 62.3 59.2 34.8 44.5 31.0 33.3

field. Given the relatively low recall of 28.9% for “Struct Layout”, it
is expected that these accuracies would be correspondingly lower.
Moreover, we use a strict evaluation metric, perfect match, as a
correct criterion to evaluate variable names and types. For instance,
in Fig. 2, field names with semantic similarities, such as bufferSize
versus size, are marked as incorrect. Types like uint8_t* and char*,
despite being functionally equivalent, are also considered incorrect
under our strict evaluation criteria.

Overall, ReSym exhibits great proficiency in recovering variable
information, field access expressions, and user-defined data struc-
tures. It demonstrates both its capacity to memorize seen data (“In
Train” functions) and its ability to generalize to unseen data (“Not
in Train” functions).

5.2 Comparison with Prior Work
We compare ReSym on name and type recovery with DIRTY [11],
as well as recovering struct layout of user-defined data structures
with OSPREY [88] and DIRTY [11].

5.2.1 Name and Type Recovery. We reproduced DIRTY using our
dataset of fully stripped decompiled functions, maintaining the
same settings as the original study, i.e., split the training-testing set
by binaries and having a token limit of 1,024. We followed DIRTY’s
preprocessing and training procedures to train the DIRTY model
for 16 epochs. Note that the variable clusters are not included in the
training/testing data in this experiment as they are out of the scope
of DIRTY. Meanwhile, we fine-tuned ReSym-VarDecoder under
identical settings for a direct comparison, with results in Table 6 as
“ReSymVar”. Additionally, we report the performance of variables
with structure types as DIRTY does in its paper.

There are discrepancies between our reproduced results in Ta-
ble 6 and DIRTY’s reported numbers. The “Overall” results are
influenced by the proportion of “functions in training”, which varies
from the datasets and the splitting. The “In Train” and “Not in Train”
performance are also 2.1%–21.3% less than their reported numbers.
This divergence primarily stems from two factors: 1) we use a dif-
ferent and sanitized dataset that minimizes training-testing data
leaking (Section 4.1), and 2) different from DIRTY, our dataset con-
tains fully stripped decompiled code as input (Section 4.1), which
may be a harder task for models.

In Table 6, ReSymVar outperforms DIRTY across all columns,
achieving an overall increase in accuracy by 8.0% for names and
4.9% for types. In addition, unlike DIRTY, which is limited to predict-
ing previously seen names and types through multi-classification
methods (Section 2.1), ReSym can recover field access expressions
and identify previously unseen user-defined data structures.

5.2.2 Struct Layout Recovery. Our study compared struct layout re-
covery of user-defined data structures on Coreutils [67] benchmark
among OSPREY [88], DIRTY [11], and ReSym. OSPREY categorizes
variables into two groups: visited and non-visited. Visited variables

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Danning Xie et al.

Table 7: Comparison with existing approaches on struct lay-
out recovery in Precision (P), Recall (R), and F1 score (F1) (%).

Method Overall Visited Non-Visited

P R F1 P R F1 P R F1

ReSym 81.9 34.6 48.6 88.9 40.5 55.6 54.4 18.0 27.1
Osprey [88] 38.1 60.2 46.7 68.7 78.8 73.4 2.6 7.3 3.9
DIRTY [11] 54.6 3.3 6.2 48.1 2.4 4.6 64.8 5.7 10.5

are those accessible from the main function, and non-visited are the
rest of them. We use the binaries and results for Coreutils provided
by OSPREY’s authors for this comparison.

For our analysis, we applied our reproduced DIRTY and ReSym
to this benchmark. DIRTY, employing a multi-classification model,
predicts types of variables, including complete definitions for struc-
tures, e.g., struct rlimit {rlim_t rlim_cur; rlim_t rlim_max;},
from which layout information can be inferred. We transformed
these fields into offset-size pairs, as introduced in Section 4.3.3. The
comparative results are in Table 7.

Overall, ReSym achieves a 27.3% higher precision and a 1.9%
higher F1 score than the best of the two approaches. However,
ReSym shows a lower recall than OSPREY. The reasons for this dis-
crepancy are in Section 5.1.3. It is important to note that OSPREY
utilizes a complex data-flow analysis [89], which has considerable
overhead and limited scalability. On average, ReSym analyzes a
binary program from the Coreutils benchmark in 3.4s (1.4s infer-
ence time for VarDecoder and FieldDecoder and 0.6s for posterior
reasoning), whereas OSPREY takes 528.24s. While DIRTY exhibits
a higher overall precision than OSPREY, it falls short of the recall,
which is only 3.3%. This is because DIRTY focuses on name and type
recovery and lacks of design tailored for data structure recovery.

5.3 Ablation Study
To further evaluate our design choices, we conducted three abla-
tion studies: 1) We evaluate our reduced task design (Section 3.1),
where we let the LLMs only output essential information with strict
guidelines, against an end-to-end model approach for regenerating
entire functions (Section 5.3.1). 2) We compare the effectiveness
of fine-tuning versus using LLMs with Few-shot Learning (FSL)
(Section 5.3.2). 3) We analyze the impact of posterior reasoning
(Section 3.4) by comparing results before and after it (Section 5.3.3).

5.3.1 End-to-End Fine-tuning. For an end-to-end approach, we
fine-tune a StarCoder 3B model [40] to transform decompiled code
directly into source code, where the output from this model can
be arbitrary, making it challenging to automatically align with the
original source code. To assess the results, we randomly sample
100 outputs and manually evaluate them against their ground truth,
focusing on semantic integrity. Our analysis revealed that 68% of
these outputs altered the original semantics. The dominant issues
include alterations in statements (47%) and modifications in control
flow (40%). These findings highlight the necessity of our reduced
sub-tasks (Section 3.1) when prompting models.

5.3.2 Few-Shot Learning (FSL). FSL [8] employs pre-trained LLMs
to adapt to new tasks with several examples. We use GPT-4 [53],
with a token limit of 8,192, and compare its effectiveness of FSL with
ReSym-VarDecoder on variable name and type recovery. As FSL’s

Table 8: Comparison of accuracy (%) with few-shot learning.

Method Name Type

ReSym-VarDecoder 51.2 63.9
GPT-4 18.7 30.6

Table 9: Before and after posterior reasoning (%).

Method Struct Layout Struct Annotation (Accuracy)

Precision Recall F1 Struct Type Field Name Field Type

ReSym 72.9 28.9 41.4 46.8 16.3 16.9
ReSymLight 74.9 16.8 27.4 42.6 9.2 9.5

effectiveness generally increases with more examples, as shown in
previous study [8], we select as many examples as possible within
the token limit. Due to the limited resources, we conducted FSL
on 100 randomly sampled functions from the test set, each supple-
mented by an average of 19.45 randomly selected training set func-
tions as examples. Table 8 compares FSL and ReSym-VarDecoder
on these functions. ReSym outperforms GPT-4 by 32.5% and 33.3%,
despite using a model with significantly fewer parameters. This
underscores the challenges LLMs face in deciphering decompiled
code without fine-tuning.

5.3.3 Without Posterior Reasoning. Table 9 shows the user-defined
structure recovery results before (row “ReSymLight”) and after (row
“ReSym”) posterior reasoning. Notably, the overall performance
after aggregation is with a 14.0% improvement over the F1 score
for “Struct Layout”. “Struct annotation” accuracy also increases by
4.2% – 7.4%, reinforcing the importance of the aggregation process.

However, there is a slight decline (2.0%) in struct layout precision.
This decrease primarily results from the analysis noise encountered
during posterior reasoning, particularly in identifying type-agnostic
arguments (Section 3.4). Recall that identifying type-agnostic ar-
guments in binaries is a significant challenge due to the absence
of type-casting statements. In some cases, ReSym may incorrectly
group variables of different types into the same type group, leading
to potential false positives in posterior reasoning and a consequent
reduced precision. One potential solution is to incorporate an addi-
tional LLM to more accurately identify type-agnostic arguments.
Despite this, the aggregation still notably identified 16,411 addi-
tional correct offsets and sizes, enhancing the recall by 12.1%.

5.4 Case Study with a Real-World Malware
To demonstrate ReSym’s applicability in addressing security chal-
lenges and provide qualitative insights into its recovery capabilities,
we apply it to Mirai [78], a real-world malware that conducts large-
scale network attacks. In Fig. 9, we compare a function’s source
code, decompiled code, and the code recovered by ReSym.

Compared to the decompiled code, ReSym significantly enhances
readability by recovering meaningful names and types for variables,
e.g., from unsigned int16 *v68 to struct udp_hdr *udp in line
5. In addition, ReSym adeptly recovers field access expressions,
converting (_WORD*)(v68+2) to udp->dst_port in line 11, etc. On the
right side of the figure is the comparison of the ground truth with
ReSym’s recovered data structure used on line 5. ReSym accurately
reconstructs the complete layout with meaningful field names and

ReSym: Harnessing LLMs to Recover Variable and Data Structure Symbols from Stripped Binaries CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

struct udphdr {
 __be16 source;
 __be16 dest;
 __be16 len;
 __sum16 check;
};

struct udp_hdr {
 uint16_t src_port;
 uint16_t dst_port;
 uint16_t len;
 uint16_t chksum;
};

// 0-1
// 2-3
// 4-5
// 6-7

// 0-1
// 2-3
// 4-5
// 6-7

Ground Truth Structure

RESYM Recovered Structure

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Source Code Decompiled Code
void attack_udp_dns
 (uint8_t targs_len, ...) {
 int domain_len;
 struct iphdr *iph;
 struct udphdr *udph;
 ...
 for (i = 0; i < targs_len; i++){
 if (...)
 udph->source = rand_next();
 if (...)
 udph->dest = rand_next();
 udph->check = checksum_tcpudp(
 iph, udph,
 udph->len,
 data_len + domain_len + 27);
 ...
 } ...
}

unsigned int64 sub_40C09E
 (unsigned int8 a1, ...) {
 int v56; // [rbp-88h]
 unsigned int16 *v67; // [rbp-38h]
 unsigned int16 *v68; // [rbp-30h]
 ...
 for (i = 0; i<a1; ++i) {
 if (...)
 *v68 = sub_410F98();
 if (...)
 (_WORD)(v68+2) = sub_410F98();
 (_WORD)(v68+6) = sub_40D5B2(
 (__int64)v67, v68,
 (_WORD)(v68+4),
 (unsigned int)v48 + v56 + 27);
 ...
 } ...
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

RESYM Recovered Code
unsigned int64 sub_40C09E
 (size_t pkt_size, ...){
 int domain_len; // [rbp-88h]
 struct ip_hdr* iphdr; // [rbp-38h]
 struct udp_hdr* udp; // [rbp-30h]
 ...
 for (i = 0; i< pkt_size; ++i) {
 if (...)
 udp->src_port = sub_410F98();
 if (...)
 udp->dst_port = sub_410F98();
 udp->chksum = sub_40D5B2(
 ip_hdr, udp,
 udp->len,
 proto + domain_len + 27);
 ...
 } ...
}

Figure 9: Case study: a recovered function and data structure in a real-world malware Mirai.

types. For example, it recovers the first field with the name src_port
while the ground truth is source. As a result, the readability of the
decompiled code is significantly enhanced thanks to ReSym.

6 RELATEDWORK
6.1 Binary Analysis
Binary analysis is crucial in software security and engineering,
impacting essential areas such as malware analysis [12, 24, 75,
85], vulnerability detection [5, 15, 30, 36, 55, 71], and software
reuse [19]. Given the opaque nature of binary, many research pa-
pers focus on enhancing the maintainability and readability of
binary code, such as translation [2, 27], similarity analysis [74,
82], memory analysis [54], identifying functions [37], recovering
procedure names [16], etc. In this paper, we focus on recovering
types and names of variables, field access expressions, and user-
defined data structures. There have been previous efforts in rele-
vant directions. DIRE [38], Direct [49], DIRTY [11], and LmPa [83]
explored recovering variable names from the decompiled code.
TIE [39], Retyped [50], and OSPREY [88] focus on recovering vari-
able types. Similarly,Debin [31] and Cati [10] use machine learning
approaches to predict debug information and types from stripped
binaries. We discuss (Section 2.1) and compare (Section 5.2) ReSym
with two state-of-the-art approaches DIRTY [11] and OSPREY [88].

6.2 Large Language Models
Modern large languagemodels (LLMs), typically based on the Trans-
former [72] architecture, are categorized into three main struc-
tures: encoder-only, decoder-only, and encoder-decoder. Encoder-
only LLMs, like BERT [18], RoBERTa [41], GraphBERT [87], Code-
BERT [20], and GraphCodeBERT [28], focus on encoding natu-
ral language text or source code into vectorized embeddings for
tasks such as similarity detection. Decoder-only LLMs, including
GPTs [8, 52, 56], LLaMA [58, 70], and StarCoder [40], generate text
or code auto-regressively, which are widely studied and adopted
currently. Encoder-decoder LLMs like T5 [57] and CodeT5 [86] offer
flexibility for both understanding and generation tasks.

LLMs have significantly advanced various code-related domains,
thanks to their capabilities of understanding code and extensive
knowledge of source code syntax and semantics acquired from
massive pre-training datasets. These domains include code genera-
tion [3, 23, 29, 40, 48, 58, 86], code explanation and refinement [13,

45, 51, 59], software testing and fuzzing [17, 35], comments and spec-
ification generation [25, 81], automated program or vulnerability
repair [34, 63, 79, 80], and proof synthesis [21, 84]. Recent work has
explored LLMs’ capabilities in binary-related tasks. CodeArt [66]
pre-trains an attention-regularized BERT-like model on binary func-
tions and explicit program dependencies to enhance binary code
understanding. ProRec [65] augments binary code with source code
contexts to improve binary summarization and function name re-
covery. LLM4Decompile [68] fine-tunes LLMs for decompilation,
significantly increasing the re-executability rate. In this work, we
fine-tune LLMs, addressing their limited understanding of binary
or decompiled code, and combine them with program analysis
methods to recover variable and data structure information from
decompiled code.

7 CONCLUSION
In this paper, we present ReSym, an advanced system for automatic
reverse engineering that effectively recovers symbol information
from stripped binaries. ReSym reduces the complex task of symbol
recovery into two specific sub-problems, utilizing two finely-tuned
large language models, each tailored for a task. Integrating LLMs’
insights with a Prolog-based reasoning system, ReSym substan-
tially improves decompiled code readability. Our evaluation on
real-world data shows ReSym’s effectiveness, outperforming exist-
ing methods in variable and user-defined data structure recovery
with 72.9% precision and identifying inlined structures or arrays
with an 85.9% F1 score. ReSym’s application to real-world malware
further demonstrates its effectiveness in security challenges.

ACKNOWLEDGMENTS
We would like to thank all the anonymous reviewers for their con-
structive comments and feedback. We are grateful to the Center for
AI Safety for providing computational resources. This research was
supported in part by IARPA TrojAIW911NF-19-S0012; NSF 1901242,
1910300, and 2006688; ONR N000141712045, N000141410468 and
N000141712947; and a CFI fund.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Danning Xie et al.

REFERENCES
[1] 2024. ReSym Artifact. https://github.com/lt-asset/resym/ Accessed: 2024-06-30.
[2] Iftakhar Ahmad and Lannan Luo. 2023. Unsupervised Binary Code Translation

with Application to Code Clone Detection and Vulnerability Discovery. In Find-
ings of the Association for Computational Linguistics: EMNLP 2023. 14581–14592.

[3] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Uni-
fied Pre-training for Program Understanding and Generation. In Proceedings of
the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. Association for Computational
Linguistics, Online, 2655–2668. https://doi.org/10.18653/v1/2021.naacl-main.211

[4] Lars Ole Andersen. 1994. Program analysis and specialization for the C program-
ming language. (1994).

[5] Ioannis Angelakopoulos, Gianluca Stringhini, and Manuel Egele. 2023. FirmSolo:
Enabling dynamic analysis of binary Linux-based IoT kernel modules. (2023).

[6] Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng,
Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, et al. 2024. Deepseek llm: Scaling
open-source language models with longtermism. arXiv preprint arXiv:2401.02954
(2024).

[7] Anthony Bouchard. 2022. New p0laris jailbreak for legacy iOS 9.x firmware
released. https://www.idownloadblog.com/2022/04/20/p0laris-ios-9-jailbreak/
Accessed: 2024-01-01.

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[9] Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou,
and Weizhu Chen. 2022. Codet: Code generation with generated tests. arXiv
preprint arXiv:2207.10397 (2022).

[10] Ligeng Chen, Zhongling He, and Bing Mao. 2020. Cati: Context-assisted type
inference from stripped binaries. In 2020 50th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 88–98.

[11] Qibin Chen, Jeremy Lacomis, Edward J Schwartz, Claire Le Goues, Graham
Neubig, and Bogdan Vasilescu. 2022. Augmenting decompiler output with learned
variable names and types. In 31st USENIX Security Symposium (USENIX Security
22). 4327–4343.

[12] Sanchuan Chen, Zhiqiang Lin, and Yinqian Zhang. 2021. SelectiveTaint: Efficient
Data Flow Tracking With Static Binary Rewriting. In 30th USENIX Security
Symposium (USENIX Security 21). 1665–1682.

[13] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2023. Teaching
Large Language Models to Self-Debug. arXiv:2304.05128 [cs.CL]

[14] William F Clocksin and Christopher S Mellish. 2003. Programming in PROLOG.
Springer Science & Business Media.

[15] Victor Cochard, Damian Pfammatter, Chi Thang Duong, and Mathias Humbert.
2022. Investigating Graph Embedding Methods for Cross-Platform Binary Code
Similarity Detection. In 2022 IEEE 7th European Symposium on Security and Privacy
(EuroS&P). 60–73. https://doi.org/10.1109/EuroSP53844.2022.00012

[16] Yaniv David, Uri Alon, and Eran Yahav. 2020. Neural reverse engineering of
stripped binaries using augmented control flow graphs. Proceedings of the ACM
on Programming Languages 4, OOPSLA (2020), 1–28.

[17] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming
Zhang. 2023. Large language models are zero-shot fuzzers: Fuzzing deep-learning
libraries via large language models. In Proceedings of the 32nd ACM SIGSOFT
international symposium on software testing and analysis. 423–435.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
CoRR abs/1810.04805 (2018). arXiv:1810.04805 http://arxiv.org/abs/1810.04805

[19] Steven HH Ding, Benjamin CM Fung, and Philippe Charland. 2019. Asm2vec:
Boosting static representation robustness for binary clone search against code
obfuscation and compiler optimization. In 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 472–489.

[20] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A Pre-Trained Model for Programming and Natural Languages. CoRR
abs/2002.08155 (2020). arXiv:2002.08155 https://arxiv.org/abs/2002.08155

[21] Emily First, Markus Rabe, Talia Ringer, and Yuriy Brun. 2023. Baldur: Whole-
proof generation and repair with large language models. In Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1229–1241.

[22] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda, Christo-
pher Kruegel, and Giovanni Vigna. 2016. Triggerscope: Towards detecting logic
bombs in android applications. In 2016 IEEE symposium on security and privacy
(SP). IEEE, 377–396.

[23] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen tau Yih, Luke Zettlemoyer, and Mike Lewis. 2023. InCoder: A
Generative Model for Code Infilling and Synthesis. arXiv:2204.05999 [cs.SE]

[24] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018. VulSeeker:
A semantic learning based vulnerability seeker for cross-platform binary. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software

Engineering. 896–899.
[25] Mingyang Geng, Shangwen Wang, Dezun Dong, Haotian Wang, Ge Li, Zhi

Jin, Xiaoguang Mao, and Xiangke Liao. 2023. An Empirical Study on Using
Large Language Models for Multi-Intent Comment Generation. arXiv preprint
arXiv:2304.11384 (2023).

[26] GeoSn0w. 2022. New Blizzard Jailbreak released by GeoSn0w For
iOS 9.0 – 9.3.6, 32-Bit Devices. https://idevicecentral.com/jailbreak-
news/new-blizzard-jailbreak-released-by-geosn0w-for-ios-9-0-9-3-6-32-bit-
devices/#google_vignette Accessed: 2024-01-01.

[27] Redha Gouicem, Dennis Sprokholt, Jasper Ruehl, Rodrigo CO Rocha, Tom Spink,
Soham Chakraborty, and Pramod Bhatotia. 2022. Risotto: A Dynamic Binary
Translator forWeakMemoryModel Architectures. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 1. 107–122.

[28] DayaGuo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou,
Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun Deng,
Colin B. Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and Ming
Zhou. 2020. GraphCodeBERT: Pre-training Code Representations with Data Flow.
CoRR abs/2009.08366 (2020). arXiv:2009.08366 https://arxiv.org/abs/2009.08366

[29] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong,Wentao Zhang, Guant-
ing Chen, Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang.
2024. DeepSeek-Coder: When the Large Language Model Meets Programming –
The Rise of Code Intelligence. arXiv:2401.14196 [cs.SE]

[30] Haojie He, Xingwei Lin, Ziang Weng, Ruijie Zhao, Shuitao Gan, Libo Chen,
Yuede Ji, Jiashui Wang, and Zhi Xue. 2024. Code is not Natural Language:
Unlock the Power of Semantics-Oriented Graph Representation for Binary Code
Similarity Detection. In 33rd USENIX Security Symposium (USENIX Security 24),
PHILADELPHIA, PA.

[31] Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev, and Martin Vechev.
2018. Debin: Predicting debug information in stripped binaries. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
1667–1680.

[32] hex rays. 2024. IDA Pro. https://hex-rays.com/ida-pro/ Accessed: 2024-01-01.
[33] huzecong. 2024. GitHub Cloner & Compiler. https://github.com/huzecong/ghcc

Accessed: 2024-01-01.
[34] Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of code lan-

guage models on automated program repair. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). IEEE, 1430–1442.

[35] Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Large language models are few-
shot testers: Exploring llm-based general bug reproduction. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 2312–2323.

[36] Dongkwan Kim, Eunsoo Kim, Sang Kil Cha, Sooel Son, and Yongdae Kim. 2022.
Revisiting binary code similarity analysis using interpretable feature engineering
and lessons learned. IEEE Transactions on Software Engineering 49, 4 (2022),
1661–1682.

[37] Soomin Kim, Hyungseok Kim, and Sang Kil Cha. 2023. FunProbe: Probing
Functions from Binary Code through Probabilistic Analysis. In Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1419–1430.

[38] Jeremy Lacomis, Pengcheng Yin, Edward Schwartz, Miltiadis Allamanis, Claire
Le Goues, Graham Neubig, and Bogdan Vasilescu. 2019. Dire: A neural approach
to decompiled identifier naming. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 628–639.

[39] JongHyup Lee, Thanassis Avgerinos, and David Brumley. 2011. TIE: Principled
Reverse Engineering of Types in Binary Programs. (2 2011). https://doi.org/10.
1184/R1/6469466.v1

[40] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 2023.
StarCoder: may the source be with you! arXiv preprint arXiv:2305.06161 (2023).

[41] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. arXiv:1907.11692 [cs.CL]

[42] LLVM. 2024. Clang: a C language family frontend for LLVM. https://clang.llvm.
org/ Accessed: 2024-01-01.

[43] Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101 (2017).

[44] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu,
Chongyang Tao, Jing Ma, Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-instruct. arXiv preprint
arXiv:2306.08568 (2023).

[45] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah
Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean
Welleck, Bodhisattwa Prasad Majumder, Shashank Gupta, Amir Yazdanbakhsh,
and Peter Clark. 2023. Self-Refine: Iterative Refinement with Self-Feedback.
arXiv:2303.17651 [cs.CL]

[46] Alessandro Mantovani, Simone Aonzo, Yanick Fratantonio, and Davide Balzarotti.
2022. {RE-Mind}: a First Look Inside the Mind of a Reverse Engineer. In 31st
USENIX Security Symposium (USENIX Security 22). 2727–2745.

https://github.com/lt-asset/resym/
https://doi.org/10.18653/v1/2021.naacl-main.211
https://www.idownloadblog.com/2022/04/20/p0laris-ios-9-jailbreak/
https://arxiv.org/abs/2304.05128
https://doi.org/10.1109/EuroSP53844.2022.00012
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2204.05999
https://idevicecentral.com/jailbreak-news/new-blizzard-jailbreak-released-by-geosn0w-for-ios-9-0-9-3-6-32-bit-devices/#google_vignette
https://idevicecentral.com/jailbreak-news/new-blizzard-jailbreak-released-by-geosn0w-for-ios-9-0-9-3-6-32-bit-devices/#google_vignette
https://idevicecentral.com/jailbreak-news/new-blizzard-jailbreak-released-by-geosn0w-for-ios-9-0-9-3-6-32-bit-devices/#google_vignette
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/2401.14196
https://hex-rays.com/ida-pro/
https://github.com/huzecong/ghcc
https://doi.org/10.1184/R1/6469466.v1
https://doi.org/10.1184/R1/6469466.v1
https://arxiv.org/abs/1907.11692
https://clang.llvm.org/
https://clang.llvm.org/
https://arxiv.org/abs/2303.17651

ReSym: Harnessing LLMs to Recover Variable and Data Structure Symbols from Stripped Binaries CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[47] NationalSecurityAgency. 2024. GHIDRA. https://ghidra-sre.org/ Accessed:
2024-01-01.

[48] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. Codegen: An open large language
model for codewithmulti-turn program synthesis. arXiv preprint arXiv:2203.13474
(2022).

[49] Vikram Nitin, Anthony Saieva, Baishakhi Ray, and Gail Kaiser. 2021. DIRECT: A
Transformer-based Model for Decompiled Identifier Renaming. In Proceedings
of the 1st Workshop on Natural Language Processing for Programming (NLP4Prog
2021). 48–57.

[50] Matt Noonan, Alexey Loginov, and David Cok. 2016. Polymorphic type infer-
ence for machine code. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 27–41.

[51] Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and
Armando Solar-Lezama. 2023. DemystifyingGPT Self-Repair for CodeGeneration.
arXiv:2306.09896 [cs.CL]

[52] OpenAI. 2024. ChatGPT. https://openai.com/blog/chatgpt Accessed: 2024-01-01.
[53] OpenAI. 2024. Models. https://platform.openai.com/docs/models/ Accessed:

2024-01-01.
[54] Kexin Pei, Dongdong She, Michael Wang, Scott Geng, Zhou Xuan, Yaniv David,

Junfeng Yang, Suman Jana, and Baishakhi Ray. 2022. NeuDep: neural binary mem-
ory dependence analysis. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(<conf-loc>, <city>Singapore</city>, <country>Singapore</country>, </conf-
loc>) (ESEC/FSE 2022). Association for Computing Machinery, New York, NY,
USA, 747–759. https://doi.org/10.1145/3540250.3549147

[55] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi Ray. 2023.
Learning Approximate Execution Semantics From Traces for Binary Function
Similarity. IEEE Transactions on Software Engineering 49, 4 (2023), 2776–2790.
https://doi.org/10.1109/TSE.2022.3231621

[56] Alec Radford and Karthik Narasimhan. 2018. Improving Language Understanding
by Generative Pre-Training. https://api.semanticscholar.org/CorpusID:49313245

[57] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2023. Exploring
the Limits of Transfer Learning with a Unified Text-to-Text Transformer.
arXiv:1910.10683 [cs.LG]

[58] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xi-
aoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Fer-
rer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and
Gabriel Synnaeve. 2023. Code Llama: Open Foundation Models for Code.
arXiv:2308.12950 [cs.CL]

[59] Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Angelica
Chen, Kyunghyun Cho, and Ethan Perez. 2023. Training Language Models with
Language Feedback at Scale. arXiv:2303.16755 [cs.CL]

[60] Edward J Schwartz, Cory F Cohen, Michael Duggan, Jeffrey Gennari, Jeffrey S
Havrilla, and Charles Hines. 2018. Using logic programming to recover c++
classes and methods from compiled executables. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. 426–441.

[61] Ehud Shapiro and Akikazu Takeuchi. 1983. Object oriented programming in
Concurrent Prolog. New Generation Computing 1, 1 (1983), 25–48.

[62] Johannes Späth, Karim Ali, and Eric Bodden. 2019. Context-, flow-, and field-
sensitive data-flow analysis using synchronized pushdown systems. Proceedings
of the ACM on Programming Languages 3, POPL (2019), 1–29.

[63] Benjamin Steenhoek, Md Mahbubur Rahman, Richard Jiles, and Wei Le. 2023.
An Empirical Study of Deep Learning Models for Vulnerability Detection. In
2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE).
2237–2248. https://doi.org/10.1109/ICSE48619.2023.00188

[64] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng
Liu. 2024. Roformer: Enhanced transformer with rotary position embedding.
Neurocomputing 568 (2024), 127063.

[65] Zian Su, Xiangzhe Xu, Ziyang Huang, Kaiyuan Zhang, and Xiangyu Zhang. 2024.
Source Code Foundation Models are Transferable Binary Analysis Knowledge
Bases. arXiv preprint arXiv:2405.19581 (2024).

[66] Zian Su, Xiangzhe Xu, ZiyangHuang, Zhuo Zhang, Yapeng Ye, JianjunHuang, and
Xiangyu Zhang. 2024. CodeArt: Better Code Models by Attention Regularization
When Symbols Are Lacking. arXiv preprint arXiv:2402.11842 (2024).

[67] GNU Operating System. 2024. Coreutils. https://www.gnu.org/software/
coreutils/ Accessed: 2024-01-01.

[68] Hanzhuo Tan, Qi Luo, Jing Li, and Yuqun Zhang. 2024. LLM4Decompile: Decom-
piling Binary Code with Large Language Models. arXiv preprint arXiv:2403.05286
(2024).

[69] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[70] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[71] Jayakrishna Vadayath, Moritz Eckert, Kyle Zeng, Nicolaas Weideman, Gokulkr-
ishna Praveen Menon, Yanick Fratantonio, Davide Balzarotti, Adam Doupé,
Tiffany Bao, Ruoyu Wang, et al. 2022. Arbiter: Bridging the static and dynamic
divide in vulnerability discovery on binary programs. In 31st USENIX Security
Symposium (USENIX Security 22). 413–430.

[72] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2023. Attention Is All
You Need. arXiv:1706.03762 [cs.CL]

[73] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jeffrey S Foster, and Michelle L
Mazurek. 2020. An observational investigation of reverse {Engineers’} processes.
In 29th USENIX Security Symposium (USENIX Security 20). 1875–1892.

[74] Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei
Zhuge, and Chao Zhang. 2022. jTrans: jump-aware transformer for binary
code similarity detection. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis (Virtual, South Korea) (ISSTA 2022).
Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.
org/10.1145/3533767.3534367

[75] Junzhe Wang, Matthew Sharp, Chuxiong Wu, Qiang Zeng, and Lannan Luo.
2023. Can a Deep Learning Model for One Architecture Be Used for
Others?{Retargeted-Architecture} Binary Code Analysis. In 32nd USENIX Secu-
rity Symposium (USENIX Security 23). 7339–7356.

[76] Yuting Wang, Xiangzhe Xu, Pierre Wilke, and Zhong Shao. 2020. CompCertELF:
verified separate compilation of C programs into ELF object files. Proceedings of
the ACM on Programming Languages 4, OOPSLA (2020), 1–28.

[77] John Whaley, Dzintars Avots, Michael Carbin, and Monica S Lam. 2005. Using
Datalog with binary decision diagrams for program analysis. In Programming
Languages and Systems: Third Asian Symposium, APLAS 2005, Tsukuba, Japan,
November 2-5, 2005. Proceedings 3. Springer, 97–118.

[78] Wikipedia. 2024. Mirai (malware). https://en.wikipedia.org/wiki/Mirai_
(malware) Accessed: 2024-01-01.

[79] Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr
Babkin, and Sameena Shah. 2023. How Effective Are Neural Networks for Fixing
Security Vulnerabilities. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis (, Seattle, WA, USA,) (ISSTA 2023).
Association for Computing Machinery, New York, NY, USA, 1282–1294. https:
//doi.org/10.1145/3597926.3598135

[80] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
program repair in the era of large pre-trained language models. In Proceedings of
the 45th International Conference on Software Engineering (ICSE 2023). Association
for Computing Machinery.

[81] Danning Xie, Byungwoo Yoo, Nan Jiang, Mijung Kim, Lin Tan, Xiangyu Zhang,
and Judy S Lee. 2023. Impact of Large Language Models on Generating Software
Specifications. arXiv preprint arXiv:2306.03324 (2023).

[82] Xiangzhe Xu, Shiwei Feng, Yapeng Ye, Guangyu Shen, Zian Su, Siyuan Cheng,
Guanhong Tao, Qingkai Shi, Zhuo Zhang, and Xiangyu Zhang. 2023. Improving
Binary Code Similarity Transformer Models by Semantics-Driven Instruction
Deemphasis. In Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis. 1106–1118.

[83] Xiangzhe Xu, Zhuo Zhang, Shiwei Feng, Yapeng Ye, Zian Su, Nan Jiang, Siyuan
Cheng, Lin Tan, and Xiangyu Zhang. 2023. LmPa: Improving Decompilation
by Synergy of Large Language Model and Program Analysis. arXiv preprint
arXiv:2306.02546 (2023).

[84] Jianan Yao, Ziqiao Zhou, Weiteng Chen, and Weidong Cui. 2023. Leveraging
Large Language Models for Automated Proof Synthesis in Rust. arXiv preprint
arXiv:2311.03739 (2023).

[85] Wei You, Zhuo Zhang, Yonghwi Kwon, Yousra Aafer, Fei Peng, Yu Shi, Carson
Harmon, and Xiangyu Zhang. 2020. Pmp: Cost-effective forced execution with
probabilistic memory pre-planning. In 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 1121–1138.

[86] Wang Yue, Wang Weishi, Joty Shafiq, and C.H. Hoi Steven. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021.

[87] Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. 2020. Graph-Bert:
Only Attention is Needed for Learning Graph Representations. arXiv preprint
arXiv:2001.05140 (2020).

[88] Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-chuan Lee, Yonghwi
Kwon, Yousra Aafer, and Xiangyu Zhang. 2021. Osprey: Recovery of variable
and data structure via probabilistic analysis for stripped binary. In 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 813–832.

[89] Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and Xi-
angyu Zhang. 2019. BDA: practical dependence analysis for binary executables
by unbiased whole-program path sampling and per-path abstract interpretation.
Proceedings of the ACM on Programming Languages 3, OOPSLA (2019), 1–31.

https://ghidra-sre.org/
https://arxiv.org/abs/2306.09896
https://openai.com/blog/chatgpt
https://platform.openai.com/docs/models/
https://doi.org/10.1145/3540250.3549147
https://doi.org/10.1109/TSE.2022.3231621
https://api.semanticscholar.org/CorpusID:49313245
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2303.16755
https://doi.org/10.1109/ICSE48619.2023.00188
https://www.gnu.org/software/coreutils/
https://www.gnu.org/software/coreutils/
https://arxiv.org/abs/1706.03762
https://doi.org/10.1145/3533767.3534367
https://doi.org/10.1145/3533767.3534367
https://en.wikipedia.org/wiki/Mirai_(malware)
https://en.wikipedia.org/wiki/Mirai_(malware)
https://doi.org/10.1145/3597926.3598135
https://doi.org/10.1145/3597926.3598135

	Abstract
	1 Introduction
	2 Motivation
	2.1 Limitations of Existing Techniques
	2.2 Opportunities and Challenges
	2.3 Our Technique

	3 Approach
	3.1 Overview
	3.2 Phase 1: Training Data Preprocessing
	3.3 Phase 2: Fine-tuning
	3.4 Phase 3: Recovery
	3.5 Practical Challenges

	4 Experimental Setup
	4.1 Dataset
	4.2 Training
	4.3 Metrics

	5 Evaluation
	5.1 Our Results
	5.2 Comparison with Prior Work
	5.3 Ablation Study
	5.4 Case Study with a Real-World Malware

	6 Related Work
	6.1 Binary Analysis
	6.2 Large Language Models

	7 Conclusion
	Acknowledgments
	References

