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ABSTRACT
Automated generate-and-validate program repair techniques (G&V

techniques) suffer from generating many overfitted patches due

to in-capabilities of test cases. Such overfitted patches are incor-

rect patches, which only make all given test cases pass, but fail to

fix the bugs. In this work, we propose an overfitted patch detec-

tion framework named Opad (Overfitted PAtch Detection). Opad
helps improve G&V techniques by enhancing existing test cases

to filter out overfitted patches. To enhance test cases, Opad uses

fuzz testing to generate new test cases, and employs two test or-

acles (crash and memory-safety) to enhance validity checking of

automatically-generated patches. Opad also uses a novel metric

(named O-measure) for deciding whether automatically-generated

patches overfit.

Evaluated on 45 bugs from 7 large systems (the same benchmark

used by GenProg and SPR), Opad filters out 75.2% (321/427) overfit-

ted patches generated by GenProg/AE, Kali, and SPR. In addition,

Opad guides SPR to generate correct patches for one more bug (the

original SPR generates correct patches for 11 bugs). Our analysis

also shows that up to 40% of such automatically-generated test

cases may further improve G&V techniques if empowered with

better test oracles (in addition to crash and memory-safety oracles

employed by Opad).
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1 INTRODUCTION
Automated generate-and-validate program repair techniques [14,

16, 18, 28, 29, 34] (G&V techniques) show promising results to

reduce manual quality assurance efforts and to improve software

reliability. G&V techniques automatically generate patches to repair

buggy programs with the guidance of test cases and validate the

correctness of the generated patches using the same set of test

cases.

Despite the great potential, G&V techniques suffer from generat-

ing incorrect patches due to in-capabilities of test suites [18, 29, 32].

Qi et al. [29] pointed out that 98% of the patches that are generated

by GenProg [16] are incorrect. A large portion of such incorrect

patches are equivalent to deletion of buggy functionalities. These

incorrect patches make test cases pass after the entire buggy code

is removed, simply because the test cases do not cover the ex-

pected correct behaviors of the buggy code. For example, for the

bug libtiff-08603-1ba75 (an arithmetic bug), GenProg generates in-

correct patches that remove an integer overflow check to make

these given test cases pass because they do not expose the integer

overflows. Following previous work [32], we call such incorrect

patches overfitted patches, since they are overfitted to pass only

the given tests, but fail to fix the bugs.

Overfitted patches prevent G&V techniques from generating

correct patches. The terminating condition of G&V techniques is

to make all given test cases pass; thus, once an overfitted patch

is generated, G&V techniques often stop exploring other patch

candidates. This happens when the failing test case cannot well

define the bug and/or if the original passing test cases fail to define

all correct behaviors of the software. Thus, we need to improve test

cases to precisely decide whether the generated patches overfit and

make G&V techniques continue to generate correct patches.

There are limited prior efforts to enhance test cases for large

and complex systems to further improve G&V techniques. Previous

studies [32, 34] focus on illustrating the impacts of low-quality test

suites on the quality of automatically-generated patches. Recent

work [37, 39] on this direction demonstrates the challenges of using

automated test generation to improve G&V techniques in a real-

world setting. Xin et al. [37] design a new test generation technique

to cover the generated patches by G&V techniques. However, it

requires correctly-patched programs to get oracles (e.g., expected

outputs), which is difficult to obtain in practice.

In this work, we propose an Overfitted PAtch Detection frame-

work, Opad, that combines automated test generation, two oracles

(crash and memory-safety), and a novel overfitness metric to detect

overfitted patches. First, Opad improves existing test suites to better

define bugs and preserve the desired functionalities from two an-

gles: (1) generating new test cases automatically, and (2) leveraging

additional oracles (i.e., memory-safety oracles) to improve validity

checking of automatically-generated patches. For (1), Opad applies
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fuzz strategies on input from existing test cases to automatically

generates new test cases [1]. For (2), in addition to crash oracles

for automatically-generated tests and manual oracles for existing

test cases (e.g., expected output from developers), Opad obtains

memory-safety oracles using Valgrind [3], a well-known memory

bug detection tool, to ensure program memory safety.

This approach is analogous to the treatment of sickness: to de-

termine if a patient has recovered (analogous to whether a bug

has been fixed by a patch), in addition to checking if symptoms

have been improved, doctors often (1) order laboratory tests such

as blood tests (analogous to generating new tests), and (2) check

if medical metrics such as white blood cell counts have been im-

proved compared to those when a patient is sick (analogous to the

improved validity checking).

Second, Opad leverages a novel metric, the overfitness measure,
O-measure in short, to assist the improved test suite in detecting

overfitted patches. The proposed O-measure is shown to be an

effective approximation of the ideal metric that can best distin-

guish a correct patch from an overfitted patch. A prior study [32]

shows that deciding whether a patch is overfitted using whether

the patched version fails on any of the additional tests is imprecise

in distinguishing overfitted from correct patches. Different from

this prior study, our O-measure is built based on the assumption

that a correctly patched program should not behave worse than the

corresponding buggy program (e.g., fail on more test cases).

Third, we investigate howmany ofOpad’s automatically-generated

test cases have the potential to filter out more overfitted patches

if empowered with better test oracles (in addition to crash and

memory-safety) through a post-mortem manual analysis. The use-

fulness of automatically-generated test cases is limited by weak ora-

cles. Thus, we believe that there exist some automatically-generated

test cases that, although they currently do not contribute to identi-

fying overfitted patches due to the limitation of oracles, have the

potential to filter out more overfitted patches. We call such test

cases weakly relevant to the target bug.

We apply Opad to improve four G&V techniques, GenProg [16],

AE [35], Kali [29], and SPR [18], in generating patches for 45 bugs.

Opad automatically generates between 452 to 31,904 new test cases

per bug, which include both passing and failing test cases. Our

evaluation shows that:

• Opad filters out a significant portion (75.2%, 321/427) of

overfitted patches generated by the four G&V techniques.

With Opad, GenProg/AE, Kali, and SPR generate correct

patches for 2, 3, and 12 bugs respectively.

• By filtering out overfitted patches, Opad helps SPR [18]

generate a correct patch for one additional bug (libtiff-

d13be-ccadf) compared to the original SPR (vanilla SPR

generates correct patches for 11 bugs). In other words, with-

out our approach, SPR fails to generate this correct patch.

Although many overfitted patches are filtered out, Opad
does not always lead to the generation of more correct

patches, since, (1) to generate the correct patch, all overfit-
ted patches that precede the correct one in the search space

must be filtered, and (2) the search space must contain the

correct patch.

• Our relevance analysis shows that, for each bug, up to

40% (2,310/5,967) of automatically-generated test cases are

relevant to the target bug. The result indicates that a large

portion of the automatically-generated test cases may filter

out more overfitted patches if empowered with better test

oracles.

In summary, this paper makes the following contributions:

• We enhance test suites for improving G&V techniques.

• We formulate the ideal and theoretical metric for determin-

ing if a generated patch is overfitted, and propose a novel

practical metric for it.

• We explore and identify a scalable and practical approach

to enhance existing test suites by generating new test cases

and leveraging two oracles (crash and memory-safety).

• We evaluate the proposed approach by applying it to im-

prove four G&V techniques to repair large and complex

systems.

• We conduct a relevance analysis on automatically-generated

test cases: we identify promising test cases that can filter

out more overfitted patches if empowered with better test

oracles (in addition to crash and memory-safety).

Availability. We make the data from this work available at

http://asset.uwaterloo.ca/tests4repair.

2 BACKGROUND ON AUTOMATED G&V
PROGRAM REPAIR

We briefly describe how G&V techniques (GenProg [16], Kali [29],

AE [35], and SPR [18]) automatically generate patches given a

buggy version, and given both failing and passing test cases. Fig-

ure 1 shows the typical structure of G&V techniques (at the top)

and the structure of our patch validation framework (at the bot-

tom). G&V techniques start with a buggy program (i.e., code that

contains a target bug) and a set of failing and passing test cases

to define the target bug. Then, G&V techniques utilize spectrum-

based fault localization techniques to narrow down the scope of

the faulty source code. After that, G&V techniques use specific

approaches to construct a search space of patch candidates: 1) Gen-

Prog/AE, RSRepair [28], and Kali leverage different template-based

operators to generate patch candidates (i.e., fixes); and 2) SPR uses

parameterized templates. After constructing the search space, G&V

techniques iterate the patches in the search space until they find

a patch that can pass the patch validation (i.e., whether the patch

can make the same set of test cases pass).
Despite their differences, G&V techniques share the same tech-

niques of fault localization and patch validation. Imperfect patch

validation (e.g., using the same test cases for both patch generation

and validation) may lead to overfitted patches [32]. Overfitting hin-

ders the effectiveness of G&V techniques: when there is a correct

patch in the search space, G&V techniques risk failing to present it

to the developer due to the correct patch being preceded by overfit-

ted patches. In this paper, we propose an approach that filters out

overfitted patches that precede the correct patch and helps G&V

techniques generate more correct patches.
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Figure 1: Overview of the Proposed Overfitted Patch Detec-
tion Framework (Opad) and How Opad is Integrated with
G&V Techniques.

3 APPROACH
Overview. Figure 1 shows an overview of the proposed Overfitted
PAtch Detection framework (Opad) for validating the correctness
of automatically-generated patches. We also show how Opad can

be used to improve G&V techniques. Opad employs automatic test

generation, two test oracles (crash and memory safety), and a met-

ric (Overfitness-measure: O-measure) to assess the correctness of

automatically-generated patches. First, to generate new test cases,

Opad leverages fuzz testing and uses existing test suites as fuzzing

seeds. Second, for all test cases (including automatically-generated

test cases and developers’ original test cases), Opad employs two

additional oracles, a crash and a memory-safety oracle (e.g., buffer

overflows, uninitialized variables, and memory leaks), to improve

validity checking of automatically-generated patches. Third, based

on the validity results, for each automatically-generated patch,

Opad uses O-measure to decide whether a patch is overfitted. Fig-

ure 1 shows how Opad complements G&V techniques by deciding

whether a generated patch is overfitted. Opad guides G&V tech-

niques to continue choosing the next patch candidate in the search

space if a patch is identified as overfitted.

Challenges. There are two main challenges in designing an over-

fitted patch detection framework based on automatically-generated

new test cases for large and complex systems. The first challenge

is how to leverage the generated tests and bug detection tools to

determine if a patch is overfitted. A naive approach is that if a

patch causes any automatically-generated test to fail the improved

validity checking (e.g., the patched version contains a memory bug

as reported by a bug detection tool), then we consider the patch

overfitted. However, this approach is likely to filter out correct

patches, because there are other irrelevant bugs (i.e., bugs are not

related to the target bug) in the program. A correct patch may cor-

rectly fix the target bug, but fail to fix other irrelevant bugs in the

program, i.e., bugs that are not targeted by the G&V tool (current

G&V approaches are designed to fix only the target bug as defined

by developer failing test cases). To address such irrelevant bugs,

Opad uses O-measure (Section 3.3) that only considers a patch to be

overfitted if the patched program performs worse than the buggy

program under the same set of tests. Our assumption is that a cor-

rectly patched version should not behave worse than the buggy

version, e.g., the patched version should not fail on the test cases

on which the buggy version passes. Section 3.3 presents how and

why we define O-measure.

The second challenge is the lack of test oracles: developer-written

tests usually contain manually defined test oracles (e.g., assert
statements that compare the expected output of a program with

the actual output); however, it is an open challenge to automati-

cally generate such test oracles [4]. To address this challenge, we

leverage two oracles (crash and memory-safety) to help ensure the

correctness of the patches. These two oracles are correct because

programs should not crash under any circumstances (i.e., a crash is

a definite indication of a bug in the program) and should not violate
memory safety (e.g., memory leaks). By adding new test cases, the

memory-safety oracles can guarantee memory safety of more code

execution paths in the program by patched G&V techniques.

3.1 Generating New Test Cases Using Fuzz
Testing

In order to generate new test cases, we use fuzz testing [25]—a

well-established bug-finding technique that feeds the program un-

der test with randomly-generated input. We choose fuzz testing

due to the following constraints when improving G&V techniques

on large and complex systems. First, fuzz testing is scalable to

large and complex systems (i.e., programs of millions of lines of

code). Currently, many other advanced automatic test generation

techniques do not work for programs of such scale. Second, fuzz

testing can be applied to a wide spectrum of software (from image

manipulation programs to interpreters). Finally, our benchmark

consists of C programs, for which there are limited tools available;

unlike other languages, there are well-established tools (e.g., Ran-

doop [26] and EvoSuite [8] for Java). Primitive fuzzing techniques

rarely find errors deep within programs’ control flow because the

randomly-generated input is usually rejected at early stages of error

checking. To mitigate this issue, mutation-based fuzzing was pro-

posed [11, 33]. Mutation-based fuzzers perform random mutations

on well-formed input which allows mutated input to pass initial

sanity checks and trigger the bugs that lie deeper in the program. In

this work, we use American Fuzz Lop (AFL) [1], a coverage-guided

fuzz-testing tool, to generate new test cases for the bugs in the

evaluated benchmark. AFL is a mature mutation-based fuzz-testing

tool that detects significant vulnerabilities in mature C projects [1].

AFL works by applying mutation rules on input, by selecting the

new input that explores new paths (to achieve higher coverage),

and by continually mutating the newly created input until all inputs

are explored or AFL is terminated manually.

3.2 Generating Memory-Safety Oracles
Opad employs memory-safety oracles on both newly automatically-

generated test cases and developer test cases to improve validity

checking of automatically-generated patches. Weak oracles (e.g.,
checking only whether a program crashes) are not sufficient to

guarantee program correctness. This is true for both developer test

cases and automatically-generated test cases. To mitigate this, Opad
enhances validity checking of patches by inspecting the quality of

memory management and ensuring memory safety.

To validate large and complex systems, we need a practical and

scalable memory-safety checker. We chose dynamic analysis over
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Figure 2: Sets of failing test cases on the buggy version (B),
the versions with overfitted patches (OvfP), and the version
with correct patch (CorrP).

static analysis, since static analysis tools may generate too many

false positives. This makes static analysis unsuitable for our purpose

since false positives might erroneously prune overfitted patches

(not due to the defect in the patch); in addition, false positives are

likely to prune correct patches as well.

Opad leverages Valgrind [3] (i.e., Memcheck) for memory-safety

oracles. Specifically, Opad applies Valgrind with each test case (i.e.,

either from a developer or automatically-generated) and records

the detection results from Valgrind (i.e., memory errors and leaked

memory bytes). Valgrind inspects memory safety by instrumenting

the program under test, keeping track of validity of all unallocat-

ed/allocated memory, and reporting errors once memory safety

is violated. Valgrind can detect various memory-related problems,

such as using undefined values, accessing already-freed memory,

and memory leaks.

3.3 Measuring the Overfitness of a Patch Using
an Overfitness Metric (O-measure)

In this subsection, we present our definition of O-measure. Opad
uses O-measure to determine whether automatically-generated

patches overfit. Then, we provide a justification about why our

proposed definition of O-measure works best under both theoretical
and practical constraints for G&V techniques.

3.3.1 Defining O-measure. We propose a metric, O-measure, to
identify overfitted patches. The proposed O-measure is calculated
based on the results of executing test cases (both developer and

automatically-generated) against two oracles (crash and memory-

safety).

We present the definition of O-measure and how to use O-

measure to decide overfitness of patches below.

Definition 3.1. Given a test suite T ,
B: the set of test cases that make the buggy version fail (B ⊂ T ),

B: the set of test cases that make the buggy version pass (B ⊂ T ),
P: the set of test cases that make the patched version fail (P ⊂ T ).

O-measure is defined as the size of B ∩ P .

Definition 3.2. Apatch is overfitted if it has a non-zeroO-measure,

and not overfitted otherwise.

3.3.2 Calculating O-measure. Opad executes each test case on

both versions (the buggy and the patched versions) and records the

oracle-related execution results (i.e., whether the program crashes

and memory-safety detection results). Based on the results, Opad
calculates O-measure to determine the overfitness of patches. If

O-measure is non-zero for a patch, Opad determines the patch to

be overfitted, and not overfitted otherwise.

It is straightforward to calculate O-measure for test cases with

crash oracles. For memory-safety oracles, Opad decides whether

a test case contributes to O-measure (B ∩ P ) by checking whether

the patched version exposes more memory issues than the buggy

version. Different from crash oracles, for which the result is a bi-

nary value (whether the program crashes), memory-safety oracles

produce comprehensive memory detection results. Thus, simply

using whether memory safety is violated for deciding failure is not

sufficient. Instead, we calculate O-measure by checking whether

the patched version exposes more memory issues than the buggy

version. For example, Valgrind reports memory errors (e.g., “use

of uninitialized values") and the number of bytes leaked (definite-

ly/indirectly/possibly lost). If for a test case, the patched version

contains extra memory errors or extra leaked bytes of the three

types above-mentioned, the value of O-measure of this patch is

incremented by one.

3.3.3 Reasons Behind Our Choice of O-measure. The proposed
definition of O-measure (Definition 3.1) is merely one possible way

to define overfitness of patches. We illustrate why we propose this

O-measure definition from both theoretical and practical aspects.

The IdealOverfitnessMeasure (O-measure).We define the ideal
O-measure as the O-measure that can perfectly distinguish overfit-

ted patches from correct patches. Figure 2 demonstrates the relation-

ship among the sets of failing test cases on the buggy version (an-

notated as B), on the correctly-patched version (CorrP ), and on the

overfittedly-patched version (Ov f P ). We use B, CorrP , and Ov f P
to annotate the sets of passing test cases on the buggy version, the

correctly-patched version, and the overfittedly-patched version. In

Figure 2, the five regions are highlighted: R1 is B ∩ Ov f P ∩ CorrP ;

R2 is B ∩ Ov f P ∩ CorrP ; R3 is B ∩ Ov f P ∩ CorrP ; R4 is

B ∩ Ov f P ∩ CorrP ; and R5 is Ov f P ∩ CorrP .
The ideal O-measure should be able to differentiate between cor-

rect and overfitted patches. This means that there exists at least one

test case that shows different behaviors (i.e., fail or pass on the ora-

cle) on the two versions (i.e., the one with the correct patch, and the

one with an overfitted patch). So, the ideal O-measure for deciding
overfitness is the size of the set (Ov f P ∩CorrP) ∪ (Ov f P ∩CorrP)
(R1 ∪ R4 ∪ R5 in Figure 2). If the ideal O-measure of a patch is non-

zero, this patch is overfitted as it has different behaviors from the

correct patch on at least one test case.

From the Ideal O-measure to Our Definition of O-measure
(Definition 3.1). The ideal O-measure is annotated as R1∪R4∪R5
(Figure 2). In the context of automated program repair, the correct

patch is not available. This means that R5 (which is a subset of

CorrP ) is hard to approximate in practice. Thus, we take the first-
step approximation of the ideal O-measure: using R1∪R4 (a subset of
Ov f P ). However, R1∪R4 (a subset ofOv f P ) still cannot be directly
computed due to the unavailability of CorrP : R2 and R3 cannot
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be excluded precisely. We take the second-step approximation: us-

ing R3 ∪ R4 in Figure 2 (our O-measure definition, Definition 3.1)

to approximate R1 ∪ R4 by excluding R1 and including R3. R1 is

B ∩ Ov f P ∩ CorrP , and R3 is B ∩ Ov f P ∩ CorrP . The inclusion
of R3 in inevitable to approximate R4 due to the unavailability of

correct patch. Below, we illustrate why the exclusion of R1 is a

reasonable choice in the context of using Opad to improve G&V

techniques.

First, we prove that for a particular type of bugs and their corre-

sponding overfitted patches, R1 is empty in theory. If R1 is empty,

R1 ∪ R4 (the first-step approximation described above) equals to

R4. Thus, for these cases, using R3 ∪ R4 (our O-measure, a superset

of R4) will identify all overfitted patches that can be identified by

the first-step approximation of the ideal O-measure. We describe

the proof in “Proving the emptiness of B ∩Ov f P ∩CorrP for specific
cases" below. We manually investigate how many bugs and their

corresponding overfitted patches (GenProg 2012 benchmark that

we use for evaluation) fall into this particular pattern that we prove.

R1 is empty for 19% of the bugs (7/36, 36 bugs for which there is

at least one overfitted patch from the four G&V techniques), and

their corresponding 34 overfitted patches.

Second, R1 has to be approximated using R1 ∪ R2 (B ∩ Ov f P ).
Such approximation introduces the inclusion of R2. Since R2 is part
of CorrP and is not part of the ideal O-measure, the inclusion of

R2 causes two risks: 1) ineffectiveness in filtering out overfitted

patches, especially if R2 == B ∩ Ov f P ; and 2) incorrectly filtering

out correct patches. Empirically, we find that both of the two risks

are true in the evaluation: the bugs in the GenProg 2012 bench-

mark, the patches from the four G&V techniques (GenProg/AE,

Kali, and SPR), and automatically-generated test cases by Opad.
Particularly, for 92% of the overfitted patches in the evaluation,

R2 == B ∩ Ov f P . This shows that using B ∩ Ov f P to approxi-

mate R1 is ineffective to filter out overfitted patches since for most

cases, R1 is empty. In addition, B ∩ CorrP (i.e., R1 ∪ R2 when an

automatically-generated patch is correct instead of overfitted) is not

empty for correct patches of 53% of the bugs. This shows that using

R1∪R2 as O-measure or part of O-measure would incorrectly filter

out correct patches for 53% of the evaluated bugs. This echoes with

previous work [32], which shows that using Ov f P as O-measure

is ineffective.

In summary, we choose the definition of O-measure (Defini-

tion 3.1) due to both theoretical and practical concerns. The intu-

ition behind our O-measure is that the patched program should not

behave worse than the buggy program.

Proving the emptiness of B ∩ Ov f P ∩ CorrP for specific
cases. This proof is to show that for a particular type of bugs and

their corresponding overfitted patches, the proposed O-measure

is the most reasonable metric to distinguish between correct and

overfitted patches. Note that the proposed O-measure is not tied

to this particular type of bugs, and it also applies to other bugs (as

shown in the evaluation).

We first describe the particular type of bugs and its correspond-

ing overfitted patches, and then show that for these bugs and

patches, there do not exist test cases in R1 (B ∩ Ov f P ∩ CorrP ) in
Figure 2. First, the code structure of this particular type of bugs is:

if (cond) S1; else S2;

where S1 and S2 are code statements. Second, this particular type of

bugs and their corresponding overfitted patches satisfy the follow-

ing conditions (which constitute 19% of the studied benchmark):

(A1) I represents the entire input space; I = I1 ∪ I2 and I1 ∩ I2
= ∅.

(A2) On a buggy program (B), for every input i in I, S1 is always
executed.

We use “B(I { S1)" to represent that on a buggy pro-

gram, S1 is executed for every input in I. In the context of

G&V techniques, there must exist at least one test case (i.e.,

a pair of an input i and an oracle) so that B(i{ S1) leads
to a failure as the oracle is not satisfied. This proof should

cover all possible test cases in theory. It is unnecessary and

unrealistic to obtain the result of executing every possible

test case because the proof is generalizable for both cases:

B(I { S1) leads either a failure or a pass.
(A3) Overfitted patches modify conditions to redirect every in-

put in I to execute S2.
(A4) Correct patchmakes the failing test case pass by redirecting

every input in I1 to execute S2, while keeping every input

in I2 to execute S1.
(A5) Both overfitted and correct patches change program exe-

cutions by only modifying cond. Thus, such patches have

no side effects on other parts of the program other than

that the execution flow is changed, e.g., from executing S1
to S2. This means, for example, for the same input i, the
results of executing B(i{ S1), CorrP(i{ S1), and OvfP(i
{ S1) are the same as long as they all execute S1.

Proof of emptiness of B ∩ Ov f P ∩ CorrP . We start by in-

ferring the following facts from the conditions:

(F1) CorrP(I1{ S2).
From A4.

(F2) OvfP(I1{ S2).
From A1 and A3.

(F3) CorrP(I1{ S2) == OvfP(I1{ S2).
From F1, F2 and A5. This means that CorrP(I1{ S2) and
OvfP(I1{ S2) have the same result, i.e., either both failure

or both pass.

(F4) CorrP(I2 { S1).
From A4.

(F5) B(I2 { S1).
From A1 and A2.

(F6) CorrP(I2 { S1) == B(I2 { S1).
From F4, F5, and A5. Similar to F3.

We prove by contradiction. If B ∩Ov f P ∩CorrP is not empty,

there exists at least one test case that satisfies all three conditions:

fails on B (denoted as Condition1), fails on OvfP (Condition2), and
passes on CorrP (Condition3).

From A1, the input of such test case must be either I1 or I2: 1)
if the input is I1, based on F3, CorrP(I1{ S2) and OvfP(I1{ S2)
should have the same result, either both failures or both passes.

This means that Condition2 and Condition3 cannot be satisfied at

the same time; and 2) if the input is I2, based on F6, CorrP(I2 { S1)
and B(I2 { S1) should have the same result, thus Condition1 and
Condition3 cannot be satisfied at the same time.
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Thus, such test case that satisfies all the three conditions does

not exist, which means B ∩ Ov f P ∩ CorrP is empty.

□

The proof above shows that the proposed O-measure is the most

reasonable one for this particular type of bugs. In addition, the O-

measure also works well for other bugs (as shown in the evaluation).

3.4 An Optimized Setting of Opad
Opad calculates O-measure based on running test cases against test

oracles. Since Opad uses O-measure by only asserting whether it

is zero or not, Opad can be optimized by deciding a patch is over-

fitted as soon as O-measure becomes non-zero. For example, for a

patch from G&V techniques, once a test case (new or developer test

case) against test oracles (i.e., crash or memory-safety) fails on the

patched version but not on the buggy version, Opad decides this

patch is overfitted. Furthermore, when examining the next patch

from the search space of G&V techniques, Opad can prioritize run-

ning the test cases with oracles that have contributed to filtering

out overfitted patches before. In our evaluation, we evaluated Opad
without this optimization to get a full understanding of the effec-

tiveness of O-measure unless specified. However, we find that, by

using this optimization, we can significantly speed up Opad (e.g.,

from over 100 to less than 10 minutes for Opad to guide SPR to

generate a correct patch for libtiff-d13be-ccadf, a loose condition

bug).

4 EVALUATION
In this section, we present the experimental setup and the three

research questions we answer.

Experimental Setup.We evaluate Opad on the same set of bugs

evaluated by previous work (GenProg, AE, Kali, and SPR). Particu-

larly, we select all bugs for which at least one of the four repair tools

have generated at least one patch. In total, we apply our approach

on 45 bugs from 7 systems, and 449 corresponding patches (both

overfitted and correct ones) that are generated by G&V techniques.

To generate new test cases, we feed AFL (Section 3.1) with input

from non-crashing developer test cases (i.e., test cases that do not

make the program crash). Such non-crashing test cases include

all passing test cases and some failing test cases if the failures are

observed by non-crash oracles (e.g., defined expected output). The

reason is that AFL, by its design, does not mutate crashing test

cases in order to avoid focusing on the exact same crash. We ter-

minate AFL when no new paths are explored within two hours,

since AFL may keep running without manual interruption. AFL

leverages coverage to guide the mutation for better performance,

and the coverage is obtained by running executables from the pro-

gram under test. For some evaluated systems that contain more

than one executable, we only apply AFL on the executables that

are identified to expose the target bug by developer test cases. We

run each automatically-generated test case against crash oracles

ten times to mitigate possible non-determinism. This number was

chosen as an acceptable trade-off between efficiency of running test

cases and efficacy of mitigating non-determinism. The experiment

is primarily conducted in the virtual machine image released by

Le Goues et al. [16], except for SPR’s patches that are obtained

from the SPR virtual machine [18]. We host the virtual machines

on computers with 16G RAM and 3.10 GHz Intel i5 CPU.

RQ1: How many overfitted patches does Opad
filter out?
Motivation. Identifying overfitted patches is crucial for G&V tech-

niques since it allows them to continue exploring the search space

to eventually find the correct patch. Note that it is not realistic for

G&V techniques to iterate the entire search space to find all patches

that make the test cases pass. As stated in a recent study [19], there

can be up to thousands of overfitted patches per search space. So,

stopping at the first patch that makes all the test cases pass is a

reasonable design choice for G&V techniques. Even if one generates

all patches that make the test cases pass, filtering out overfitted

patches could still save developers’ time in selecting the correct one,

as often a few correct patches are hidden among many overfitted

patches [19].

Approach. We evaluate Opad on four automated G&V techniques

(GenProg, AE, Kali, and SPR) to studywhether our approach can cor-

rectly filter out overfitted patches while preserving correct patches.

Specifically for GenProg, AE and Kali, the generated patches are

publicly available. So we apply our approach on the released patches

and report how many overfitted patches are successfully pruned

by Opad. We obtained the ground truth for correct and overfitted

patches from Qi et al. [29]. A patch is correct if it fixes the bug.

Conversely, a patch is overfitted if it merely causes the test cases to

pass and does not fix the bug. For the bugs that we evaluate, the

correct patches from G&V techniques are semantically equivalent

to developer patches.

Results. In total, Opad filters out 75.2% (321/427) overfitted patches

from the four automated G&V techniques. Table 1 shows the overall

result of filtering out overfitted patches. Table 1 contains all the bugs

(45 in total) from the GenProg 2012 benchmark, for which at least

one of the four G&V techniques can generate patches (i.e., overfitted

or correct). Since AE is an adaptive version of GenProg based on

a different search algorithm, we merge GenProg and AE into one

column. To show the improvement from different components of

Opad, we show the number of pruned patches in four settings: 1)

using crash oracles on new test cases from fuzz testing (Column

“Crash + Fuzz”); 2) using memory-safety oracles on developer test

cases (Column “Mem. + Dev.”); and 3) using memory-safety oracles

on new test cases from fuzz testing (Column “Mem. + Fuzz”); 4)

using the combination of all the above (Opad, Column “All”).

GenProg/AE often generate several patches for a bug, so we show

the total number of patches per bug in Column “GenProg/AE”/“Total”.

Kali generates one patch per bug, which is a total of 17 overfitted

patches from Kali (we omit the column that shows the total number

of patches for Kali). For some bugs that SPR has correct patches

in the search space, we set SPR to continue exploring the search

space until a patch is accepted by Opad. Therefore, the number of

patches from SPR that are filtered out by Opad may be more than

one. Column “SPR”/“Total” shows the total number of overfitted

patches from SPR that are evaluated by Opad.
The three components of Opad mostly complement each other:

1) using crash oracles on fuzz test cases filters out 276 overfitted
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Table 1: The results of using Opad to filter out overfitted patches from GenProg/AE, Kali, and SPR. ‘Total’ is the number of
overfitted patches evaluated by Opad; for Kali, this number is always one (unless a Kali’s patch is correct). Check symbol
( ) means that GenProg/AE, Kali, or SPR find the correct patch, and these correct patches are not incorrectly pruned by
our approaches. Double check symbol ( ) means that Opad guides SPR to generate a correct patch (original SPR does not
generate this correct patch).

Bug GenProg/AE Kali SPR

Total Crash Mem. Mem. All Crash Mem. Mem. All Total Crash Mem. Mem. All

+ Fuzz + Dev. + Fuzz + Fuzz + Dev. + Fuzz + Fuzz + Dev. + Fuzz

gzip-3fe0-39a3 9 3 0 0 3 1 0 0 1 1 0 0 0 0

gzip-a1d3-f17c 1 0 0 0 0 - - - - 1 0 0 0 0

libtiff-08603-1ba75 6 5 0 0 5 0 0 0 0 1 1 1 1 1

libtiff-5b021-3dfb3 9 9 1 9 9 1 0 1 1 238 238 0 0 238

libtiff-90d13-4c666 1 0 0 0 0 0 0 0 0 1 0 0 0 0

libtiff-d13be-ccadf 6 3 0 0 3 1 0 0 1 13 13 0 0 13

libtiff-ee2ce-b5691 1 0 0 0 0 0 0 0 0 0 0 0 0 0

lighttpd-1794-1795 10 0 0 0 0 - - - - 1 0 0 0 0

lighttpd-1806-1807 6 0 0 0 0 - - - - 1 0 0 0 0

lighttpd-1913-1914 1 0 0 0 0 - - - - 1 0 0 0 0

lighttpd-1948-1949 - - - - - - - - - 1 0 0 0 0

lighttpd-2330-2331 9 0 2 0 2 - - - - 1 0 0 0 0

lighttpd-2661-2662 9 0 0 0 0 - - - - 1 0 0 0 0

python-69223-69224 1 0 0 0 0 - - - - 1 0 0 0 0

python-69368-69372 - - - - - - - - - 1 0 0 1 1

python-69709-69710 - - - - - - - - - 1 0 0 0 0

python-69783-69784 3 0 0 0 0 0 0 0 0 1 0 0 0 0

python-70019-70023 - - - - - - - - - 1 0 0 0 0

python-70098-70101 1 - 1 0 1 0 1 0 1 1 0 0 0 0

wireshark-37112-37111 10 0 10 0 10 0 1 1 1 1 0 0 1 1

wireshark-37172-37171 1 0 1 0 1 0 0 0 0 1 0 0 0 0

wireshark-37172-37173 1 0 1 0 1 0 0 0 0 1 0 1 0 1

wireshark-37284-37285 - - - - - - - - - 1 0 0 0 0

php-307562-307561 - - - - - - - - - 0 0 0 0 0

php-307846-307853 - - - - - - - - - 0 0 0 0 0

php-307914-307915 - - - - - - - - - 0 0 0 0 0

php-307931-307934 9 0 0 1 1 0 0 0 0 1 0 0 0 0

php-308262-308315 - - - - - - - - - 3 0 2 0 2

php-308323-308327 - - - - - - - - - 1 0 0 1 1

php-308525-308529 1 0 0 0 0 0 0 0 0 1 0 1 1 1

php-308734-308761 - - - - - - - - - 0 0 0 0 0

php-309111-309159 1 0 0 0 0 - - - - 1 0 0 0 0

php-309516-309535 - - - - - - - - - 0 0 0 0 0

php-309579-309580 - - - - - - - - - 0 0 0 0 0

php-309688-309716 - - - - - - - - - 1 0 0 0 0

php-309892-309910 0 0 0 0 0 0 0 0 0 0 0 0 0 0

php-309986-310009 10 0 5 0 5 0 0 0 0 1 0 1 0 1

php-310011-310050 9 0 6 5 8 0 1 0 1 6 0 5 0 5

php-310370-310389 - - - - - 0 1 0 1 1 0 0 0 0

php-310673-310681 2 0 0 0 0 0 0 0 0 1 0 0 0 0

php-310991-310999 - - - - - - - - - 0 0 0 0 0

php-311323-311300 - - - - - - - - - 1 0 0 0 0

php-311346-311348 - - - - - 0 0 0 0 0 0 0 0 0

gmp-13420-13421 - - - - - - - - - 0 0 0 0 0

gmp-14166-14167 3 0 0 0 0 0 0 0 0 1 0 0 0 0

Sum 120 20 27 15 49 3 4 2 7 290 252 11 5 265

patches (“Crash+Fuzz”); 2) using memory-safety oracles on devel-

oper test cases filters out 42 overfitted patches (“Mem+Dev.”); and

3) using memory-safety oracles on fuzz test cases filters out 24

overfitted patches (“Mem+Fuzz”).

Opad does not filter out correct patches incorrectly for ten bugs.

We use ‘ ’ or ‘ ’ in Table 1 to annotate the bugs that Opad
preserves the correct patches for them.Opad filters out three correct
patches (libtiff-5b021-3dfb3, php-307562-307561, and php-307846-

307853) because the correctly-patched programs behave worse than
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Table 2: Results of using Opad to improve SPR (SPR+Opad)
on the 19 bugs from the GenProg 2012 benchmark. Each
cell contains two symbols. The first symbol shows whether
SPR+Opad generates a correct patch (Y or N); and the second
symbol showshowOpad contributes in the patch generation
process— : filtering out overfitted patches, −: not filtering
out patches (neither overfitted nor correct), B: filtering out
both overfitted and correct patches, and ×: filtering out cor-
rect patches only.
Bug ID Crash Mem. Mem. All Bug ID Crash Mem. Mem. All

+ Fuzz + Dev. + Fuzz + Fuzz + Dev. + Fuzz

gzip-a1d3d-f17cb N − N − N − N − php-309111 N − N − N − N −

libtiff-5b021-3dfb3 N B N − N − N B php-309516 Y − Y − Y − Y −

libtiff-d13be-ccadf Y N − N − Y php-309579 Y − Y − Y − Y −

libtiff-ee2ce-b5691 Y − Y − Y − Y − php-309688 N − N − N − N −

python-69783-69784 N − N − N − N − php-309892 Y − Y − Y − Y −

php-307562 Y − Y − N × N × php-310011 N − N N − N

php-307846 Y − Y − N × N × php-310991 Y − Y − Y − Y −

php-307914 Y − Y − Y − Y − php-311346 Y − Y − Y − Y −

php-308262 N − N N − N gmp-13420 Y − Y − Y − Y −

php-308734 Y − Y − Y − Y −

1 int TIFFWriteDirectoryTagCheckedRational(double value , ...) {

2 assert(value >= 0.0); // failed assertion

3 // the earliest version

4 - if (value == (uint32)value) { ...

5 - } else if (value < 1.0) {...

6 - }

7 + if (value <= 0.0) { // the current version

8 ...}

9 ...}

Figure 3: A bug hidden in the buggy version of libtiff-5b021-
3dfb3.

the buggy programs based on O-measure (i.e., either crash or fail

the memory-safety oracles on some test cases, while the buggy

program does not). This happens because there are some hidden bugs
in the buggy version, and such hidden bugs are exposed after the
patches are applied. Such hidden bugs are exposed in the patched

version once the patch changes the control flow of the program

(some of these hidden bugs are later fixed by the developers).

We show an example of a hidden bug. In libtiff-5b021-3dfb3, a

hidden bug that is caused by a failed assertion is newly exposed by

a correct patch (line 2 in Figure 3). We reported the bug to libtiff

developers and the bug has been fixed
1
. This failed assertion should

have been removed after the functionality had been changed. The

earlier version of this function contains the assertion to abort the

program if value is invalid. However, this function was later mod-

ified to capture an invalid value in the if-branch (line 10) and the

assertion became obsolete. The buggy version exits before reaching

the assertion (due to the nature of the target bug), but the cor-

rectly patched version continues the execution until the assertion

fails; this results in a non-zero O-measure for the correct patch.

Nonetheless, the generated test cases and our approach should help

developers fix the new bugs in the patched version and, ultimately,

improve the quality of the software.

RQ2: Can Opad guide SPR to generate correct
patches for more bugs?
Motivation. We want to evaluate whether Opad can improve au-

tomated G&V techniques in terms of generating correct patches

for more bugs. In this evaluation, we focus on SPR because SPR

1
http://bugzilla.maptools.org/show_bug.cgi?id=2535

1 - if (nstrips > 1 // buggy

2 + if (nstrips > 2 // developer

3 + if (nstrips > 1 && 0 // overfitted

4 && compression == COMPRESSION_NONE

5 && stripbytecount [0] != stripbytecount [1]) {

6 TIFFWarning("Wrong␣field ,␣ignoring␣and"

7 "calculating␣from␣imagelength");

8 if (estimate(tif , ...) < 0)

9 goto bad;

10 }

Figure 4: Patches for libtiff-d13be-ccadf (a loose condition
bug).

is shown to have great potential: there are many correct patches

in the SPR search space that are not discovered because they are

blocked by overfitted patches. A prior study [19] shows that there

are no more correct patches in the search space of GenProg/AE

and Kali to be discovered for the bugs in this evaluation. Therefore,

although our approach filters out many overfitted patches gener-

ated by GenProg/AE, continuing running GenProg/Kali will not

generate more correct patches. In contrast, SPR has correct patches

for eight more bugs in its search space (but fails to generate correct

patches due to having too many overfitted patches).

Approach.We integrate Opad with SPR to see if Opad can guide

SPR to generate correct patches for more bugs (see the integration

in Figure 1). Particularly, whenever SPR generates one patch that

makes existing test cases pass, that patch will be validated by Opad
(by calculating O-measure based on new test cases and two oracles).

If this patch is determined as overfitted by Opad (O-measure is non-

zero), SPR will continue exploring the search space until it finds

the next patch that can pass both the original validation (developer

test cases) and Opad.
Results. Our approach guides SPR to generate a correct patch for

one additional bug (SPR previously fixed 11 bugs). Table 2 shows

the results of applying SPR+Opad on the 19 bugs (from the Gen-

Prog 2012 benchmark) for which there are correct patches in SPR’s

search space. We use ‘Y ’ to annotate the case that, Opad helps

SPR generate the correct patch. For libtiff-d13be-ccadf (a loose con-

dition bug), SPR cannot generate a correct patch without Opad: our
approach prunes 13 overfitted patches that block the correct one.

Finding the correct patch. We describe how Opad exposes the

flaws in overfitted patches for libtiff-d13be-ccadf (a loose condition

bug), filters them out and finds the correct patch. The bug is in the

image-reading routine (simplified code is presented in Figure 4).

The function estimate() at line 8 should only be called when

input images are ill-formed. However, since the condition at line 1

is incorrect, estimate() is called for some well-formed images as

well. The correct patch fixes the condition so that estimate() is
only called when it should be. However, an overfitted patch removes

the entire branch (line 3) by adding &&0 to the condition. Thus,

estimate() is never called, even for ill-formed images. When some

automatically-generated test cases exercise the overfitted patch

with ill-formed images, one garbage item, which should otherwise

be cleaned up in the estimate() routine, is used as an array index

and this leads to a segmentation violation. All the overfitted patches

that precede the correct one has the described flaw and, therefore,

have a non-zero O-measure and are filtered by Opad. Thus, with
the help of automatically-generated test cases, Opad successfully

guides SPR to generate the correct patch.
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RQ3: How many of Opad’s automatically-
generated test cases may filter out more
overfitted patches if empowered with better
oracles?
Motivation. The usefulness of test cases in filtering out overfitted

patches is limited by oracles, i.e., oracles might fail to precisely de-

fine correct behaviors. Generating effective oracles is an open chal-

lenge in software testing [4]. Even if an automatically-generated test

case explores relevant program paths, which is required to identify

an overfitted patch, the test case cannot filter out overfitted patches

without sufficient oracles. This does not mean such a test case is

useless in identifying overfitted patches. If with better oracles (e.g.,

manually-defined oracles, automatically-generated regression ora-

cles, or assert statements to distinguish different program states),

such test cases may filter out more overfitted patches. We call such

test cases weakly relevant to the target bug that we want to repair.

Approach.We first define weakly relevant test cases, then we de-

scribe how we perform relevance analysis manually.

A test case is weakly relevant if it exposes the target bug inexplic-
itly by showing differences in program states. A weakly relevant

test case usually does not expose the target bug explicitly due to the

limitations of its oracle. Instead, running weakly relevant test cases

shows the differences in the program states between the buggy

version and the correctly-patched version. This means that, if em-

powered with better oracles,weakly relevant test cases can explicitly
tell the differences between the buggy version and the correctly-

patched version. For example, libtiff-08603-1ba75 (an arithmetic

bug) is a bug in a check for an integer overflow; due to a developer’s

mistake, many benign inputs (that do not contain an integer over-

flow) are rejected. For this specific bug, we say that the test case

(essentially, the input of the test case) is weakly relevant if it is re-

jected by the buggy version and accepted by the developer version.

Another example is php-307562-307561: a bug is in the saveHTML()
routine of the DOMDocument class. Invoking saveHTML() with an

optional parameter generates empty results (this behavior is incor-

rect). We define a test case to be weakly relevant if it contains a call

to the saveHTML() with a parameter.

For each bug, we manually investigate the root cause of the tar-

get bug and create methodologies that can identify weakly relevant

from all the automatically-generated test cases. Then, we instru-

ment the buggy version and the correctly-patched version at the

points of interest, run each test case on both versions, and use the

collected data to determine the relevance of the test case. For exam-

ple, for the bug libtiff-08603-1ba75 (an arithmetic bug) described

above, the root cause of the bug is that many benign inputs are erro-

neously rejected. To find weakly relevant test cases, we instrument

the buggy version and the correctly-patched version using GCOV

coverage instrumentation [2] and observe the number of times the

input was rejected by each version. If the buggy version rejects

the input from a test caseM times, the correctly-patched version

rejects the same input N times, andM > N , then we say that this

particular test case is weakly relevant. The detailed methodology

of weakly relevance of each bug is on our project website.

Results. Our relevance analysis shows that up to 40% (2,310/5,967)

of the automatically-generated test cases are weakly relevant to

Table 3: Weakly relevant test cases from Opad throughman-
ual analysis.

Bug ID Weakly Total Bug ID Weakly Total

Relevant Relevant

gzip-3fe0c-39a36 47 2,052 php-307562-307561 9 26,556

gzip-a1d3d-f17cb 0 1,443 php-307846-307853 0 31,904

libtiff-08603-1ba75 1,312 1,312 php-307914-307915 0 6,791

libtiff-5b021-3dfb3 745 2,863 php-307931-307934 0 5,945

libtiff-90d13-4c666 982 2,693 php-308262-308315 0 10,695

libtiff-d13be-ccadf 249 1,361 php-308323-308327 0 6,192

libtiff-ee2ce-b5691 2,310 5,967 php-308525-308529 0 4,981

lighttpd-1794-1795 0 11,372 php-308734-308761 0 12,817

lighttpd-1806-1807 0 11,372 php-309111-309159 0 4,205

lighttpd-1913-1914 0 11,372 php-309516-309535 0 12,588

lighttpd-1948-1949 0 11,372 php-309579-309580 10 5,590

lighttpd-2330-2331 51 11,372 php-309688-309716 0 8,245

lighttpd-2661-2662 0 11,372 php-309892-309910 0 5,033

python-69223-69224 0 356 php-309986-310009 0 3,567

python-69368-69372 0 230 php-310011-310050 0 4,642

python-69709-69710 0 284 php-310370-310389 0 2,143

python-69783-69784 0 552 php-310673-310681 0 4,329

python-70019-70023 0 529 php-310991-310999 0 7,275

python-70098-70101 0 338 php-311323-311300 0 6,805

wireshark-37112-37111 0 858 php-311346-311348 0 5,456

wireshark-37172-37171 0 452

wireshark-37172-37173 0 889

wireshark-37284-37285 0 483

the target bug; and they may filter out more overfitted patches

if empowered with better oracles. Table 3 shows the results of

our manual relevance analysis on the automatically-generated test

cases. The weakly relevant test cases that are identified by relevance
analysis could filter out more overfitted patches if empowered with

better oracles. The column “Weakly Relevant” presents the number

of weakly relevant test cases from all the automatically-generated

test cases in Opad. The column “Total” shows the total number of

automatically-generated test case by fuzz testing for a particular

bug. For example, in the case of the bug libtiff-5b021-3dfb3, we

discovered 745 weakly relevant test cases out of 2,863. This shows

that these 745 test cases can indeed identify the differences between

the buggy version and the correctly-patched version from program

states (i.e., behaviors); however, these test cases currently cannot

do so due to limitations of the oracles.

In summary, for 9/45 bugs, there exist automatically-generated

test cases that can potentially identify more overfitted patches if

with better oracles (for each bug, up to 40% of test cases have such

a potential). These test cases can observe different behaviors be-

tween the buggy version and the correctly-patched version. Those

differences in behaviors can be encoded in oracles (e.g., assert, or
manually-defined expected output) to allow weakly relevant test
cases to identify more overfitted patches.

5 THREATS TO VALIDITY
Non-determinism. Some studied programs shownon-deterministic

behaviors during the execution of the automatically-generated test

cases. For example, a program may only crash one out of 10 times

given the same input (e.g., due to address space layout random-

ization). To mitigate this issue, we execute each automatically-

generated test case 10 times, which reduces the risk of getting

spurious results and erroneously filtering out a patch.

Hidden Bugs. In some cases, a correct patch can have a non-zero

O-measure because of hidden bugs. Such correct patches change

the control flow of a program and reveal the bugs that were hidden

in the buggy version; this leads to more crashes in the patched
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version compared to the buggy version and results in a non-zero O-

measure (as described in Section 4 for libtiff-5b021-3dfb3). Although

the correct patch would not be accepted by Opad in this scenario,

the test cases that we generated would help developers fix such

hidden bug manually, which remains as future work.

Limitations of Fuzz Testing. Fuzz testing has a limitation of tar-

geting initial levels of input-parsing in programs under test [22].

If a particular patch correctly fixes a bug in deeper levels of pro-

grams, but the program contains other bugs in initial levels, then

the fuzz test cases would crash the program without even reaching

the patched code. Our definition of O-measure eliminates this issue

by a comparison with the buggy version: both versions will fail on

such a test case and the correct patch will not be filtered out.

6 RELATEDWORK
Automated Program Repair. Researchers have been working on

various G&V techniques. GenProg [16] is the pioneer work in this

area, followed by Par [14], RSRepair [28], Kali [29], SPR [18], reli-

fix [34], and Nopol [38]. The above-mentioned techniques differ

from GenProg in terms of either search space and/or search al-

gorithm. Par [14] uses hard-coded patch templates to construct

search space. RSRepair [28] employs a random search algorithm in-

stead of genetic programming (which is used by GenProg). Kali [29]

uses a restricted search space—emphasizing on deleting operations

and an exhaustive search strategy. SPR [18], which outperforms

the previous work, constructs search space based on predefined

transformation schemas and leverages a targeted search algorithm.

The constructed search space contains more useful patches and

provides a larger set of fix templates than that of Par [14]. As an al-

ternative to G&V techniques, semantic-based automatic repair tools

are proposed (e.g., DirectFix [23], Angelix [24]). Semantic-based

automatic repair uses symbolic execution and constraint solvers

to synthesize a patch that by design passes all the developer test

cases. Our current approach focuses solely on G&V systems.

Recently, innovative approaches are proposed on top of exist-

ing automated program repair (e.g., GenProg/AE and SPR). Fan et

al. [20] apply probability model to improve the ranking of patches

in search space so that the correct patches can be selected first. Le

et al. [15] propose to prioritizefix candidates based on frequent fix

patterns that are mined from software fix history. Tan et al. [31] use

anti-patterns to identify overfitted patches, e.g., one anti-pattern

is to eliminate patches that only contain deletions. Different from

prior work, we focus on filtering out overfitted patches and gener-

ating correct ones from a new angle—improving test cases.

Using Testing to Improve G&V Techniques. Xin et al. [37] pro-

pose techniques to guide test generation techniques to cover patches

by G&V techniques with an assumption that perfect oracles are

already available. Our work shows that basic oracles can improve

G&V techniques. Yu et al. [39] aim to leverage test generation to

guide G&V techniques to generate patches that are less overfitted.

Differently, we use automatic test generation to improve G&V tech-

niques by filtering out overfitted patches, and then continuing G&V

techniques to generate correct patches. Liu et al. [17] propose a

novel technique which leverages the similarity of execution traces

to heuristically determine the correctness of the generated patches

by G&V techniques. Differently, we use new test inputs and oracles

directly to detect overfitted patches.

Empirical Study on Program Repair. Barr et al. [5] study what

percentage of fixes can be constructed from historical fixes. Mar-

tinez et al. [21] study the possibility of constructing fixes using

the code from the same version (i.e., buggy version). These papers

focus on the theoretical correctness of the fundamental assumption

of search-based automated program repair—whether fixes can be

constructed given a search space. Differently, our work empirically

studies the impacts of the quality of test cases on G&V techniques

on 45 bugs from 7 systems. Smith et al. [32] compare the quality

of automatically-generated patches with developers’ patches. In

terms of quality of patches, they use the passing ratio of an in-

dependent set of test cases from white-box test generation. This

work focuses on empirically studying whether patches of G&V

techniques have lower quality or not. Differently, our work focuses

on ways to distinguish overfitted patches from correct ones.

Automated Test Generation. There exist different types of auto-
mated test generation. Random test generation techniques [7, 27]

and fuzz testing tools scale to large systems, but lack of direction.

Dynamic symbolic execution [6] and concolic testing [30] tools aim

to generate test cases which achieve high coverage. Search-based

test generation techniques [9, 10] integrate search algorithms to

guide unit test generation to achieve high coverage. All the above

techniques use crashes as oracles. Alternatively, regression oracles

are automatically generated [36] by recording variable values dur-

ing running black-box test cases written by developers. In this work,

we use crash, which is a widely-accepted oracle, and memory-safety

oracles to improve validity checking of patches.

Empirical Study on Test Effectiveness. Previous work on test

suite effectiveness shows that coverage [12] is not strongly corre-

latedwith test suite effectiveness, andmutation detection is strongly

correlated with real fault detection [13]. Zhang et al. [40] show as-

sertions are strongly correlated with test suite effectiveness. In this

work, we study the effectiveness of test cases in the context of

automated program repair.

7 CONCLUSIONS
In conclusion, we experiment with ways to improve existing test

cases in order to improve G&V techniques. We propose an approach

to filter out incorrect patches by augmenting existing test cases.

Opad improves existing test cases from two angles—better validity

checking by employing memory-safety oracles and new test cases

from fuzz testing. We propose O-measure, to filter out overfitted

patches based on the new test cases and oracles. Our evaluation

on 45 bugs from 7 systems shows that Opad filters out 75.2% of the

overfitted patches. More importantly, Opad helps SPR generate the

correct patch for one additional bug (original SPR can only generate

correct patches for 11 bugs). In addition, we identify how many of

the automatically-generated test cases can filter out more overfitted

patches if used with better test oracles. Our findings highlight

promising research directions on improving G&V techniques.
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