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Abstract— Software specifications are essential for many Soft-
ware Engineering (SE) tasks such as bug detection and test
generation. Many existing approaches are proposed to extract
the specifications defined in natural language form (e.g., com-
ments) into formal machine-readable form (e.g., first-order logic).
However, existing approaches suffer from limited generalizability
and require manual efforts. The recent emergence of Large
Language Models (LLMs), which have been successfully applied
to numerous SE tasks, offers a promising avenue for automating
this process. In this paper, we conduct the first empirical study
to evaluate the capabilities of LLMs for generating software
specifications from software comments or documentation. We
evaluate LLMs’ performance with Few-Shot Learning (FSL)
and compare the performance of 13 state-of-the-art LLMs with
traditional approaches on three public datasets. In addition, we
conduct a comparative diagnosis of the failure cases from both
LLMs and traditional methods, identifying their unique strengths
and weaknesses. Our study offers valuable insights for future
research to improve specification generation.

Index Terms—software specifications, large language models,
few-shot learning

I. INTRODUCTION

Accurate and comprehensive software specifications are es-
sential for ensuring the correctness, dependability, and quality
of software systems [1]-[4]. Common software specifications
include pre- and post-conditions for a target function that
describes the constraints of input parameters and the expected
behaviors or output values. They are often required or crucial
for generating effective test cases and test oracles, symbolic
execution, and abnormal behavior identification [3], [5]-[7].

Numerous approaches have been proposed to advance au-
tomation in extracting specifications from software texts (e.g.,
documents or comments) into machine-readable forms, in-
cluding rule-based methods [1], [3], [8], ML-based methods
[4], [9], [10], search-based methods [11], etc. For example,
Jdoctor [1] leverages pattern, lexical, and semantic matching to
translate code comments into machine-readable specifications
of pre-/post-conditions, which enables automated test gener-
ation that leads to fewer false alarms and the discovery of
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more defects. Several other attempts have been made to further
improve these processes in various domains [9], [11]-[13].
However, most of existing work is domain-specific, relying
on heuristics [1], [8], [10] or a large amount of manually
annotated data [3], [11]. This reliance makes it challenging
to generalize these approaches to other domains.

With the emergence of Large Language Models (LLMs),
pre-trained on a tremendous amount of documents and source
code [14]-[19], they have been applied to various Software
Engineering (SE) tasks such as code generation [15], [20]-
[25] program repair [26], [27], and reasoning [28]. These
models have demonstrated competitive performance compared
to traditional approaches [15]-[17], [26], [29]. Given that
software specification extraction predominantly involves the
analysis and extraction from software texts, such as comments
or documents, and the translation of natural language into
(semi-)formal specifications, two research questions naturally
arise: (1) Are LLMs effective in generating software spec-
ifications from software texts? (2) What are the inherent
strengths and weaknesses of LLMs for software specifica-
tion generation compared to traditional approaches?

A. Our Study

To fill in the gap, we conduct the first empirical study to
evaluate the capabilities of LLMs in generating software speci-
fications, in comparison with traditional approaches. First, due
to the scarcity of labeled data in software specification extrac-
tion, we leverage LLMs with Few-Shot Learning (FSL) [30],
a technique that enables LLMs to generalize from a limited
number of examples. Second, we explore the potential of
combining LLMs and FSL by investigating different prompt
construction strategies and assessing their effectiveness. Third,
we conduct an in-depth comparative diagnosis of the failure
cases from both LLMs and traditional approaches. This al-
lows us to pinpoint their unique strengths and weaknesses,
providing valuable insights to guide future research and im-
provement of LLM applications. Fourth, we conduct extensive
experiments, involving 13 state-of-the-art LLMs, and evaluate
their performance and cost-effectiveness to facilitate model
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selection in software specification generation. Our study setup
and findings are shown below:

« FSL with random examples outperforms traditional
methods: To assess the performance of LLMs with FSL,
we first collect three available datasets from the previous
specification extraction research, which contain software
documents and comments, as well as the corresponding
ground-truth specifications. We start with a basic prompt
construction method that randomly selects examples for
FSL. We then compare the results with the state-of-the-art
specification extraction techniques. Our Finding 1 reveals
that with 10 — 60 randomly selected examples, LLMs’
results that are comparable to (2.1% lower) or better
than (0.8 — 4.3% higher) the state-of-the-art specification
extraction techniques.

« Advanced prompt strategy enlarges the performance
gap: To further explore the potential of LLMs with
FSL for specification generation, we evaluate and com-
pare different prompt construction strategies in terms of
their impact on the performance of LLMs. Such prompt
construction strategies include the above-mentioned ran-
dom selection and a semantics-based selection strategy.
Finding 2 shows that with a more sophisticated prompt
construction method, the performance gap between LLMs
and traditional approaches is enlarged (to 1.9 — 10.5%).

o LLMs and traditional techniques exhibit unique
strengths and weaknesses: While LLMs outperform
traditional methods overall, our analysis of failure cases
reveals noticeable differences in their failure patterns
— Finding 3: traditional methods often produce empty
outputs, whereas LLMs tend to generate incomplete or ill-
formed specifications. This variation in failures prompts
us to analyze the distinct capabilities of LLMs and
traditional methods. We hence conduct an in-depth com-
parative diagnosis of the failure cases from both ends
and investigate their root causes. We identified several
unique challenges for LLMs, such as ineffective prompts
and missing domain knowledge, which account for 75%
of their unique failures. In contrast, traditional methods
fail uniquely 90% due to insufficient or incorrect rules
derived from limited datasets. (Findings 4 — 5)

o Open-sourced CodeLlama-13B and StarCoder2-15B
are the most competitive models: Lastly, given the
vast spectrum of LLMs in terms of their open-source
availability, costs, and model sizes, it becomes impera-
tive to understand their capabilities. We perform rigor-
ous experiments on 13 popular state-of-the-art LLMs,
e.g., CodeLlama-13B, GPT-4, etc., varying in designs
and sizes, and evaluate their performance and cost-
effectiveness in generating software specifications. Re-
markably, our Findings 6 — 9 show that most LLMs
achieve better or comparable performance compared to
traditional techniques. CodelLlama-13B and StarCoder2-
15B are the overall most competitive model among the 13
evaluated models for generating specifications, with high

performance, open-sourced flexibility and long prompt
support. Their strong performance makes commercial
models (e.g., GPT-4) less desirable due to size and cost.

o Identifying areas for future enhancement: These find-
ings enable us to identify challenges for further improve-
ment in LLM applications, i.e., hybrid approaches, that
integrate LLMs and traditional methods, and improving
prompts effectiveness.

B. Contributions

This paper makes the following key contributions:

1) We conduct the first empirical study comparing the effec-
tiveness of LLMs and traditional methods in generating
software specifications from comments or documents and
find that LLMs with FSL achieve results that are compa-
rable to (2.1% lower) or better than (0.8 — 4.3% higher)
the traditional methods with only 10 — 60 randomly
selected examples (Section V-A).

2) We evaluate the impact of different prompt construction
strategies on the FSL performance and find that the
advanced strategy can further enlarge the performance
gap between the LLM approach and traditional methods
(to 1.9 — 10.5%) (Section V-B).

3) We present a comprehensive failure diagnosis, highlight-
ing unique strengths and weaknesses of both traditional
methods and LLMs, guiding future research (Section VI).

4) We extensively experiment on 13 state-of-the-art LLMs,
assessing their performance and cost-effectiveness (Sec-
tion VII).

5) We discuss the future directions for LLMs in generating
software specifications including hybrid approaches and
enhanced prompt design (Section VIII).

6) We release the artifacts in [31].

II. BACKGROUND

1) Software Specifications: Software specifications de-
scribe software functionalities, behaviors, and usage, includ-
ing pre- and post-conditions for functions to ensure correct
use. For example, TensorFlow’s API tf.nn.max_pool3d
requires the parameter input to be a “5-D Tensor”, failing
which leads to exceptions. Specifications are critical for tasks
like test generation [1], [3], program analysis [11], bug detec-
tion [2], [10], [13], and code synthesis [32]. These are typi-
cally from documents or comments in natural language form,
requiring extraction into formal machine-readable formats for
downstream tasks.

Various approaches [4], [8], [10], [13] have been developed
to extract such specifications, but they rely on domain-specific
heuristics or labeled data, limiting their generalizability. For
example, Jdoctor [1] uses manually crafted patterns with pre-
/post-processing, requiring coding and domain expertise.

2) Large Language Models (LLMs) and Few-Shot Learning
(FSL): LLMs, pre-trained on extensive corpora of natural
language and code, acquire general knowledge through tasks
like masked span and next-token prediction [18], [19], [33],
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[34]. To adapt pre-trained LLMs into customized tasks, fine-
tuning [19], [26], [35], which requires significant labeled data,
and prompting [18], which adapts LLMs using task-specific
examples without modifying weights, are common approaches.
FSL enhances LLM performance on downstream tasks with
limited labeled data [18], [30], [36]. In in-context FSL [18],
[37], examples are provided in the input, allowing the model
to generalize without altering weights. This makes prompting
a practical and efficient method for specification generation.

III. STUDY SETUP

Fig. 1 presents an overview of our study. We collect
available datasets from previous specification extraction work,
containing software documents or comments and the corre-
sponding ground-truth specifications. We then answer four
research questions (RQs):

RQI: How do LLMs with FSL perform compared to tradi-
tional rule-based approaches in extracting software specifica-
tions? We apply the benchmark LLM to the collected datasets
and compare its performance with the traditional approaches.
We use a basic prompt construction strategy, random retrieval,
to construct prompts with random examples (Section III-B2a),
which coach the LLMs to generate specifications by examples.
RQ2: How do prompt construction strategies affect the
performance of the LLM approaches? We compare the
performance of different prompt construction strategies, i.e.,
Random Retrieval and Semantic Retrieval. Semantic retrieval
selects examples based on semantic similarity to the target
context (Section III-B2b).

RQ3: What are the unique strengths and weaknesses of
LLMs and traditional approaches? To provide better insights
into the capabilities of different approaches and shed light on
future research, we conduct a comparative failure diagnosis.
In particular, we sample a set of cases that the LLM approach
succeeds while the traditional approach fails and vice versa.
We analyze the symptoms and root causes of these failures,
and identify their unique strengths and limitations.

RQ4: How do different LLMs compare in terms of their
performance and cost for generating software specifications?
To assess performance and cost-effectiveness, we conduct ex-
tensive experiments with 13 state-of-the-art LLMs of different
sizes, designs, and so forth. We employ the best-performing

TABLE I: Software specification datasets

Tag Type @param @return ~ @throws  Total
Jdoctor-data [1] FAnnotations 243 139 ZYp) 854
’ Library TensorFlow PyTorch MXNet  Total
DocTer-data [3] #Annotations 1,008 187 384 2876
CallMeMaybe-data [10]  #Annotations 89

Function signature | isNullOrEmpty (java.lang.String string)

Javadoc comment | @return true if the string is null or is an empty string

Specification string==null| |string.isEmpty () -methodResultID==true

Fig. 2: An example data point from Jdoctor-data.

prompt construction strategy (‘“Best Retrieval” in Fig. 1) based
on the results of RQ2.

A. Existing Specification Extraction and Data

We study three state-of-the-art rule-based approaches
for specification extraction, Jdoctor [1], DocTer [3], and
CallMeMaybe [10], as well as their respective datasets, con-
taining annotated comments or documents with associated
specifications. To avoid confusion, we use the terms Jdoctor-
data, DocTer-data, and CallMeMaybe-data to refer to the
datasets, while Jdoctor, DocTer, and CallMeMaybe refer to
the three approaches. Table I presents the number of data
points in each dataset. Rows “#Annotation” lists the number
of document-specification pairs annotated

1) Jdoctor-data and Jdoctor: Jdoctor-data contains pre-
and post-conditions written as executable Java expressions,
translated from Javadoc comments of @return, @param,
and Qthrows tags. Fig. 2 provides an example involving
the post-condition for the function 1 sNullOrEmpty. Jdoctor
uses a combination of pattern, lexical, and semantic matching
to identify key components, such as (subject, predicate) pairs,
which are then converted into executable Java expressions
through manually defined heuristics.

2) DocTer-data and DocTer: DocTer-data contains DL-
specific specifications extracted from the API documents of
TensorFlow, PyTorch, and MXNet. Specifications are cate-
gorized into four types: dtype (data types), structure (data
structures), shape (parameter shape or number of dimensions),
and valid value (valid ranges or enums). Fig. 3 shows an
example data point. DocTer extracts constraints using syntactic
rules constructed from annotated API descriptions

3) CallMeMaybe-data and CallMeMaybe: CallMeMaybe-
data contains temporal constraints represented as event se-
quences, translated from natural language descriptions in
code comments. Fig. 4 provides an example of a Java func-
tion, including its signature, comment, and the translated
specifications that capture temporal relations between events
this.isEmpty () and this.clear (). The extraction
process of CallMeMaybe involves identifying propositions
related to temporal dependencies and translating them into
temporal constraints using semantic analysis and heuristic-
based translations.



Function signature | tf.image.extract_glimpse (input,size,offsets,...)

Document
description

input: A ‘'Tensor’ of type ‘float32'. A 4-D float tensor
of shape " [batch_size, height,width,channels]’.

dtype: £loat32

structure: tensor

shape: [batch_size, height, width, channels]
ndim: 4

range: Null

enum: Null

Specifications

Fig. 3: An example data point from DocTer-data.

Function signature |clear ()

Comment Removes all of the elements from this priority queue.

The queue will be empty after this call returns.

Specification this.isEmpty() <- this.clear()

Fig. 4: An example data point from CallMeMaybe-data.

B. Specification Generation with LLMs

To extract specifications using an LLM, we construct
prompts with examples, i.e., via few-shot learning.

1) Few-Shot Learning (FSL): Consider a dataset D =
(i, i) ‘11:)‘1 where x represents the context (e.g., document or
comment) and y represents the target software specifications.
For each data point (iqrget, Ytarget)» We select K examples
from the other data points in D, excluding the target itself,
using leave-one-out cross-validation [38]-[40]. These K ex-
amples, along with '¢4,4e¢, form the prompt used by the LLM
to generate the output ¥,,:, Which is then compared to the
ground-truth y;grges-

2) FSL Prompt Construction: Fig. 5 shows simplified
prompts for each dataset. For Jdoctor-data and CallMeMaybe-
data, each of the K examples includes a function signature,
comment, and the corresponding condition, with the target
appended. For DocTer-data, the prompt includes a function
signature, parameter description, and annotated constraints.

We treat the three tag types of Jdoctor-data (Table I) and
the DocTer-data from three libraries as separate sub-datasets.
For example, for a target of @param tag, we only select K
examples from the other 242 data points of @param tag,
excluding itself. Similarly, in DocTer-data, for a target, we
select examples from the same library, excluding itself.

We study two commonly used strategies to choose the K
examples: random retrieval and semantic retrieval.

a) Random Retrieval: It selects K examples ran-
domly from the dataset, excluding the target, ie., D \
{(Ztarget, Ytarget) }. For instance, with K = 20, 20 random
instances are selected as prompts, excluding the target.

b) Semantic Retrieval (SR): It selects examples seman-
tically similar to the target, shown to be more effective than
random retrieval [41], [42]. We use RoBERTa-large [43] due to
its strong performance on the STS dataset [44]. The impact of
different retrieval models is not studied, as previous research
suggests minimal differences in performance [45].

3) Post-Processing of LLM Output: For Jdoctor-data, LLM
completions can be semantically correct but not identical to the
annotated specifications. Fig. 6 shows an example where both

Signature: <x, - signature>
Comment: <x, - comment>
Condition:

Signature: <x, - signature>
Description: <x, - param.> - <x, - descp.>
Constraints:

Signature: <x, - signature>

Signature: <x, - signature>
Comment: <x,- comment>

Description: <x, - param.> - <x,_- descp.>

Condition: Constraints:

Signature: <x, - signature> Signature: X ™ signature>

Comment: <x, - comment> Description: <x, -param.>-<x_  -descp.>
e " farget target

Condition: Constraints:

(a) Jdoctor/CallMeMaybe (b) DocTer-data
Fig. 5: Prompt structures with target highlighted in orange.

Signature: min(float[] array)

Javadoc: @param array a nonempty array of float values
Annotation: (array.length==0)==false

Generated: array.length>0

Fig. 6: Semantically equivalent specs from Jdoctor-data

annotated (highlighted in yellow) and LLM-generated specifi-
cations (blue) convey the same condition but differ syntacti-
cally. Such equivalent but syntactically different specifications
frequently occur in LLM results and makes automatic assess-
ment challenging, especially when domain-specific knowledge
is needed (e.g., array length is non-negative). Therefore, we
manually inspect the generated completions for Jdoctor-data
and report both the raw accuracy of perfect match and final
accuracy after manual corrections. Two authors conducted
independent reviews, resolving disagreements with a third.

Note that since Jdoctor uses a pattern-based method, it
does not require such post-processing as the output format is
constrained by heuristics. For DocTer-data and CallMeMaybe-
data, we use perfect match, as post-processing is unnecessary
for DocTer-data (orderless specifications) and CallMeMaybe-
data (deterministic outputs).

C. Studied Large Language Models

Table II summarizes 13 LLMs from six series that we
study in this paper, including the state-of-the-art generic,
code-specific, open-sourced, and commercial LLMs. For open-
source models, we focus on models that are smaller than
15B due to resource constraints. We do not focus on models
with small sizes (e.g., 1B) as our preliminary experiments
show their non-ideal performance. We run open-source models
locally using 4 Nvidia RTX A6000 GPUs with 48GB memory.

D. Benchmark LLM

We choose to use CodeLlama-13B as the benchmark LLM
for the study of RQs 1-3 (Fig. 1). CodeLlama-13B is one
of the state-of-the-art open-source code LLMs, ensuring the
reproducibility of our results. Additionally, it supports more
input tokens (Table II), allowing a wide range of experimental
settings, such as different numbers of examples in the prompt.

After identifying the best prompt construction strategies
(“Best Retrieval” in Fig. 1) using CodeLlama-13B, we apply
it to all other LLMs listed in Table II for the study of RQ4.

IV. EXPERIMENTAL SETTINGS
A. Model Settings

As per our experimental design, we truncate examples from
the beginning of the prompts to fit the token limit of each



TABLE II: Studied LLMs: sizes, token limits, prices per
1,000 tokens, and open-source statuses.

TABLE IV: Comparison of CodelLlama-13B with random
prompt construction and DocTer: Precision/Recall/F1 (%).

Model #Param Token limit  Price (per 1K) Open-source? Approach K TensorFlow PyTorch MXNet Overall
GPT4 [46] Unknown 8,192 $0.03 X DocTer - 90.0/74.8/81.7 78.4/77.4/77.9 87.9/82.4/85.1 85.4/78.2/81.6
CodeLlama-13B 10 68.3/74.3/712  72.9/69.1/70.9 66.4/71.8/69.0 68.2/72.2/70.1
GPT3.5 [47] Unknown 16,384  $0.0015 X CodeLlama-13B 20 77.9/72.5/75.1 76.6/72.2/743 71.7/69.7/70.7 74.7/71.1/72.8
CodeLlama [48] 13B, 7B 16,384 v CodeLlama-13B 40 77.8/80.4/79.1 78.7/72.7/75.5 75.3/75.2/75.2  76.1/76.6/76.6
CodeLlama-13B 60  80.9/79.8/80.4 79.6/76.4/77.9 78.3/80.4/79.4 79.4/79.5/79.5
Llama3 [49] 8B 8,192 v/
Llama? [50] 138, 7B 4,096 v TABLE V: Comparison of CodeLlama-13B with random
deepseek-coder [51] 678 16,384 v prompt construction and CallMeMaybe: Accuracy (%).
StarCoder2 [52] 15B, 7B 16,384 v
StarCoder [53] 15.5B 8,192 v Approach K Accuracy
CodeGen2 [54] 16B, 7B 2,048 v CallMeMaybe 70.0
CodeLlama-13B 10 48.3
. . CodeLlama-13B 20 57.3
TABLE III: Comparison of CodeLlama-13B with random CodeLlama-13B 40 629
prompt construction and Jdoctor: Accuracy (%). CodeLlama-13B 60 70.8

Overall
Raw  Processed

@throws
Raw  Processed

@return
Raw  Processed

@param
Raw  Processed
Jdoctor - 970 97.0 69.0 69.0 79.0 79.0 83.0 83.0
CodeLlama-13B 10 81.1 89.7 353 489 76.3 87.3 71.0 81.7
CodeLlama-13B 20 84.4 92.6 39.6 55.4 73.9 88.0 71.3 84.0
CodeLlama-13B 40  92.2 94.2 482 61.2 79.9 90.3 782 86.7
CodeLlama-13B 60 91.8 94.7 489 56.8 83.3 924 80.1 87.3

Approach K

model (as shown in Table II). If the median number of tokens
in the prompts exceeds the limit, we skip that experiment.
For instance, we skip the experiment for Jdoctor-data when
K = 60 for CodeGen2 (with a token limit of 2,048) since
the median number of tokens in the prompts is 3,737. To
provide comprehensive results, we run the benchmark model
(CodeLlama-13B) for RQ1 and RQ2 in all settings. All mod-
els’ temperatures are set to O for minimal randomness.

B. Accuracy and F1 Metrics

To evaluate the correctness of the generated specifications
for Jdoctor-data and CallMeMaybe-data, we use accuracy,
defined as the ratio of correctly generated specifications to
the total annotated specifications.

For DocTer-data, we follow the previous work [3] and use
precision, recall, and F1 to evaluate the generated results for
each specification category (e.g., dtype). For category ¢, let C;
be the number of correctly generated specifications, N; be the
total number of annotated specifications in the dataset, and G,
denote the number of generated specifications for category t.
We define precision as P; = %’ recall as R; = %, and F1
score as F; = 2- 11’2 tﬁgt . We report the overall precision, recall,
and F1 across all four categories (dtype, structure, shape, and
valid value) for each library (e.g., TensorFlow).

As discussed in Section III-B2, we treat Jdoctor-data of
different tag types and DocTer-data of different libraries as
separate datasets. We report the accuracy and F1 metrics for
them separately, as well as the overall ones.

V. EVALUATION RESULTS
A. RQI: Specification Extracting Capabilities

We evaluate LLMs on Jdoctor-data, DocTer-data, and
CallMeMaybe-data using random retrieval strategy for
prompt construction (Section III-B2a) with CodeLlama-13B
as the subject model (Section III-D). Results for both

CodeLlama-13B and baseline methods (Jdoctor, DocTer, and
CallMeMaybe) are presented in Tables III, IV, and V. In the
tables, we highlight (bold) the results of CodeLlama-13B that
surpass the baseline methods with the fewest examples used.

As described in Section III-B3, we manually post-process
the specification generated for Jdoctor-data and present the raw
accuracy (automatically calculated with perfect match) in col.
“Raw” and the final accuracy (after manual correction) in col.
“Processed” in Table III. For Jdoctor (row Jdoctor), these two
values are the same. The columns “K” represent the number
of examples in the prompts.

a) Results Summary: CodelLlama-13B demonstrates
strong performance across all datasets. For Jdoctor-data (Ta-
ble III), it achieves 84.0% accuracy using only 20 ran-
domly chosen examples per comment type, surpassing Jdoc-
tor (83.0%). It also outperforms Jdoctor for @throws and
matches its performance for @param comments. For DocTer-
data (Table IV), it reaches an F1 score of 79.5% with 60 exam-
ples per library, just 2.1% below DocTer (81.6%), despite Doc-
Ter’s need for 2,696 annotated examples. For CallMeMaybe-
data (Table V), CodeLlama-13B achieves 70.8% accuracy with
60 examples, outperforming CallMeMaybe by 0.8%.

Finding 1: CodelLlama-13B, with a small number (20 —
60) of randomly selected examples achieves comparable
results (2.1% lower) with DocTer and outperforms the
state-of-the-art specification extraction technique Jdoctor
and CallMeMaybe by 0.8 — 4.3%.

B. RQ2: Prompt Construction Strategies

Tables VI, VII, and VIII reveal that CodeLlama-13B, when
employing the SR strategy, outperforms all baseline methods
(Jdoctor, DocTer, and CallMeMaybe), even with only 10
examples selected in the prompt from each type/category.

Fig. 7 showcases the effectiveness of random and SR
strategies across prompt sizes. SR strategy consistently outper-
forms both the random strategy and traditional specification
techniques across different prompt sizes, highlighting the
importance of an appropriate prompt construction strategy for
improved FSL performance.
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Fig. 7: Comparison of FSL performance using Random and Semantic Retrieval (SR) for prompt sizes (K) 10 — 60.

TABLE VI: Comparison of CodeLlama-13B using SR
prompt construction and Jdoctor: Accuracy (%).

Overall
Raw  Processed

@throws
Raw  Processed

@return
Raw  Processed

@param
Raw  Processed

Jdoctor - 970 97.0 69.0 69.0 79.0 79.0 83.0 83.0
CodeLlama-13B + SR 10 93.0 96.7 62.6 71.2 84.5 90.3 83.4 89.0
CodeLlama-13B + SR 20 94.7 975 63.3 734 86.4 913 85.0 90.2
CodeLlama-13B + SR 40 959 97.9 62.6 727 89.6 94.7 87.0 82.0
CodeLlama-13B + SR 60 959 98.8 65.5 755 90.3 96.0 879 935

Approach K

TABLE VII: Comparison of CodelLlama-13B using SR
prompt construction and DocTer: Precision/Recall/F1 (%).

Approach K TensorFlow PyTorch MXNet Overall
DocTer - 90.0/74.8/81.7 78.4/77.4/77.9 87.9/82.4/85.1 85.4/78.2/81.6
CodeLlama-13B + SR 10 82.8/82.4/82.6 81.6/80.2/80.9 86.0/87.4/86.7 84.1/84.4/84.3

84.1/84.4/84.2
85.9/85.8/85.9
86.5/86.3/86.4

83.6/82.7/83.1
83.4/83.4/83.4
85.0/84.3/84.6

86.6/88.4/87.5
87.5/88.4/87.9
88.3/89.2/88.7

85.2/86.0/85.6
86.2/86.6/86.4
87.1/87.4/87.2

CodeLlama-13B + SR 20
CodeLlama-13B + SR 40
CodeLlama-13B + SR 60

TABLE VIII: Comparison of CodeLlama-13B with SR
prompt construction and CallMeMaybe: Accuracy (%).

Approach K Accuracy
CallMeMaybe - 70.0
CodeLlama-13B + SR 10 71.9
CodeLlama-13B + SR 20 70.8
CodeLlama-13B + SR~ 40 75.3
CodeLlama-13B + SR 60 76.4

Finding 2: The semantic retrieval strategy further im-
proves Codellama-13B’s performance, leading to a 6.0
— 10.5% improvement over Jdoctor, a 2.7 — 5.6% in-
crease over DocTer, and a 1.9 — 6.4% increase over
CallMeMaybe.

VI. RQ3: COMPARATIVE FAILURE DIAGNOSIS

In light of the outstanding performance of LLM compared
with traditional techniques, it is crucial to delve deeper into
their strengths and limitations. We manually examine failing
cases of both LLM-based (e.g., CodeLlama-13B) and baseline
approaches (i.e., Jdoctor, DocTer, and CallMeMaybe), and
study their failure symptoms and root causes in a comparative
manner, aiming to provide insights and directions for future
techniques. Due to space constraints, we present results for the
Jdoctor-data dataset, with the other two datasets available in
the supplementary material [31]. The conclusions hold across
all datasets, with no significant differences observed.

Fig. 8 presents the comparative performance of the
CodeLlama-13B-based LLM method (L) and baseline method
Jdoctor (J) as a Venn diagram. The number in the intersection
(L N J) denotes cases where both methods are correct, while

r— 32
Lu ] (3.7%)
115 683 24
(13.5%) (80.0%) (2.8%)
IL,

Fig. 8: Venn diagrams of specification generation. L:
CodeLlama-13B; J: Jdoctor.

the number in section L U J indicates cases they both fail.
The presented results are derived from the experiment using
CodeLllama-13B with SR and K = 60 in RQ2 (Table VI).

Fig. 8 shows that both the LLM and Jdoctor perform
well on the majority of cases (80.0%), indicating that the
LLM quickly learns most specification extraction rules from
a small number of examples in the prompts. The LLM has
more (10.7%) unique correct cases than Jdoctor, indicating the
generalizability of LLMs from extensive pretraining. There are
a few cases where both methods fail, possibly due to inherent
difficulties such as incomplete software text.

To better understand the pros and cons of different methods,
we investigate the symptoms and the underlying causes of the
failing cases. We randomly sample 30 cases from each section
of Fig. 8 where at least one of the methods fails, i.e., L N J,
LNJ, and L U J. For the sections that have less than 30 cases
(e.g., LnNJ), we sample all the failure cases.

The sampling results in 147 failing cases of Codellama-
13B and 135 of the baseline methods across three datasets,
with a margin of error of 6% at a 90% confidence level.
Two authors categorize these cases independently with a third
author resolving disagreements.

A. Failure Symptom Analysis

We conduct further analysis on the distributions of failure
symptoms of both LLMs and traditional methods. The failure
symptoms are classified into four categories, “ill-formed”,
“incorrect”, “incomplete”, and “empty”. Category “ill-formed”
refers to the generated specifications that are invalidly formed.
“Incorrect” indicates specification errors, while “Incomplete”
denotes the specification is a strict subset of the ground truth.
“Empty” denotes a missing specification. The full results and
more examples can be found in the artifacts [31].

We have the following observations:

a) LLMs are more likely to generate ill-formed and
incomplete specifications: A small fraction (0-3%) of
CodeLlama-13B’s failures are ill-formed, unlike traditional
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CodeLlama-13B (L) - 26% 50% 13% 6% 6%
CodeLlama-13B (Ln)) - 25% 50% 25%
CodeLlama-13B (LUj) - 27% 50% 3% 10% 10%

0% 25% 50% 75% 100%

(a) Root causes of Codellama-13B

Missing Rule ic Compr
Jdoctor () - 93% 7%
Jdoctor (Ln)) - 90% 10%
Jdoctor (LUJ) - 97% 3%
0% 25‘% 56% 75'% 106%

(b) Root causes of the baseline method (Jdoctor)

Fig. 9: Distributions of root causes on Jdoctor-data failures.

rule-based methods that guarantee valid outputs. In addition,
LLMs are 8% more likely to produce incomplete specifications
compared to rule-based methods, which reliably extract all
types by directly matching sequences. In contrast, generative
LLMs use sampling to decode outputs from a distribution,
which may occasionally miss tokens.

b) Traditional techniques are much more likely to gener-
ate empty specifications than LLMs: For all three datasets,
the most common failure of (rule-based) baseline methods
is “Empty” (67%), where no specification is generated due
to inapplicable rules. In contrast, LLMs generate results by
predicting missing tokens and will only produce empty results
when “empty” is a valid outcome. Although with a lower
empty rate, LLM tends to generate incomplete and ill-formed
specifications as discussed in (a).

Finding 3: Compared to LLMs, traditional specification
extraction approaches are much more likely to generate
empty specifications, while LLMs are more likely to
generate ill-formed or incomplete specifications.

B. Root Cause Analysis

In this section, we categorize the root causes of failures and
study their distributions. At the end, we perform a comparative
study based on the sections in the Venn diagrams (Fig. 8).

1) LLM Failure Root Causes: Since LLM results are diffi-
cult to interpret, it is in general difficult to determine the root
causes of failing cases of LLMs. We employ the counterfactual
method [55], [56]: a structured approach to identifying causal
factors by altering one variable at a time to observe the impact
on the outcome. In particular, we determine the root cause by
finding a fix for it. The nature of the fix indicates the root
cause. In some cases, the failure may be fixed in multiple
ways. We consider the one requiring the least effort as the
root cause and categorize them into five categories. Fig. 9a
presents the distributions of the root causes of Codellama-
13B in different sections of the Venn diagrams (Fig. 8). We
now explain the five categories.

Ineffective Prompts: It means that the failure is due to
the ineffectiveness of the examples in the prompt, even with
SR. Although SR significantly improves FSL’s performance

Signature: tf.sparse.fill empty_ rows (sp_input,...)
Description: sp_input - A ‘SparseTensor’ with shape '[N, M]".

Constraints: shape: [N, M] ErompS
ndim: Null

+ Signature: tf.math.lbeta(x,...)
+ Description: x -Arank 'n + 1’ ‘Tensor’, 'n >= 0" with type "float’, or ‘double’. Additional
+ Constraints: shape: Null Example
o ndim: >=1

Signature: tf.sparse.softmax(sp_input,...)

Description: sp_input - 'N'-D ‘SparseTensor’, where 'N >= 2.

Constraints: shape: Null Completion
- ndim: Null
+ ndim: >=2 New completion

Fig. 10: Example of “Ineffective Prompt”. Yellow, blue, and
green denote the original prompt (simplified), generated
completion, and an added example that enables LLM to
generate the correct specification.

+ Relevant functions: Additional
+ searchForDanger (int range,float threat) domain
+ P knowledge
. (K examples)
prompt

Signature: isInDanger (int range,float threat)

Javadoc comment: @return True if a threat was found.
- Condition: this.getTile () .isInDanger (range,threat) — methodResultID==true
+ Condition: this.searchForDanger (range, threat) — methodResultID==true

Fig. 11: Example of “Missing Domain Knowledge”. Yellow,
blue, and green denote the original prompt (simplified),
generated completion, added domain knowledge, and the
new completion.

(Section V-B), it occasionally falls short in selecting the
appropriate examples. If we can fix a failing case by manually
selecting more relevant example(s) to the prompt, or simply
altering the order of the examples in the original prompt, we
consider the failure is due to ineffective prompts.

According to bar “CodeLlama-13B (L)” from Fig. 9a, 26%
CodeLlama-13B’s failures on Jdoctor-data are due to this
reason. We find that the order of examples plays a crucial
role, as 21% of the failure cases in this category are resolved
by rearranging the order of the examples.

Fig. 10 presents a portion of the prompt for the target
parameter sp_input. CodeLlama-13B fails to generate the
specification ndim:>=2, which is not explicitly stated in
the description and requires CodeLlama-13B to comprehend
the implicit relationship between N and its value range, i.e.,
“N>=2". Adding an example with such implicit constraints
enables CodeLlama-13B to generate the correct specification.

Missing Domain Knowledge: This refers to LLM’s failures
due to insufficient domain knowledge. For instance, in Fig. 11,
CodeLlama-13B generates a specification using a non-existent
function, isInDanger, instead of searchForDanger.
This issue arises as the LLM lacks relevant context, such
as the methods in the class, while Jdoctor employs a search-
based approach examining all methods in the relevant classes.
This result uncovers LLMs’ limitation compared to traditional
search-based methods: a deficiency in domain knowledge.
To validate our hypothesis, we manually incorporate relevant
domain knowledge into the prompt, alongside the provided
examples. CodeLlama-13B then successfully generates the
accurate specification, utilizing the correct function (in green).
Fig. 9 shows that 50% of CodeLlama-13B’s failures are due
to missing domain knowledge.



values: 1-D or higher numeric ‘Tensor".

values: 1-D or higher ‘'numeric’ 'Tensor'.

Fig. 12: Example of “Wrong Focus”. A minor adjustment
(quoting keyword) enables generating correct specification.

Wrong Focus: It denotes instances where LLMs fail to
focus on crucial keywords or are misguided or diverted by
other content. For example, Fig. 12 shows the LLM fails to
generate the correct specification from the original document
(in yellow), numeric, which specifies the data type of the
input tensor. By employing a slightly revised description that
merely quotes the keyword, the LLM successfully generates
the specification. Fig. 9 reveals that 13% of CodeLlama-13B’s
failures are due to the wrong focus.

To identify such failures, we apply three input mutation
strategies: minor modifications by simply adding quotation
marks to the keywords; rewriting the sentence while preserving
the same syntactic structure (e.g., changing “A or B” to “B
or A”); and deleting redundant content to help the LLM
concentrate on the essential parts. All three strategies involve
simple and semantics-preserving mutations and do not have
impacts on the rule-based methods like DocTer as they rely
on syntactic structure. We find that 42% of such cases can be
resolved by merely quoting the keyword(s).

Poorly Phrased: It refers to instances where the original
documents or comments are ambiguous, poorly written, or
hard to understand. Rewriting the sentence to clarify its
meaning enables LLMs to generate correct answers. According
to Fig. 9, it contributs to 6% of CodeLlama-13B’s failures.

Others: We group less common categories as ‘“‘others”,
including “contradictory document” and “unclear”, accounting
for 6% of CodeLlama-13B’s failures. The former refers to
buggy or self-contradictory comments or documents, causing
discrepancies between dataset annotations and LLM-generated
specifications. “Unclear” indicates failures with unclear root
causes, which we fail to fix despite various attempts.

Finding 4: The two dominant root causes combined
(ineffective prompts and missing domain knowledge) result
in 76% of CodeLlama-13B failures.

2) Baseline Methods Failure Root Causes: We manually
investigated the sampled failing cases for Jdoctor, DocTer, and
CallMeMaybe and identified three root causes: missing rule,
incomplete semantic comprehension, and incorrect rule. The
distributions on Jdoctor-data are in Fig. 9b.

Missing Rule: It refers to the absence of relevant rules
or patterns, usually resulting in “empty” specifications (Sec-
tion VI-A). A notable 93% baseline methods’ failing cases fall
into this category, exposing a limitation of rule-based methods:
heavily dependent on manually defined or limited rules.

Incomplete Semantic Comprehension: This occurs when
rule-based methods match part of a sentence but fail to grasp
its full semantics, leading to incorrect results. For example,
DocTer extracts a structure specification vector from “Ini-

TABLE IX: Comparison of different LLMs with SR on
Jdoctor-data: Accuracy (%) and Cost ($).

Approach/ K @param @return @throws Overall Cost
Model (+SR) Raw Processed Raw Processed Raw Processed Raw Processed $)
Jdoctor - 970 970 690 690 790 790 830 830
GPT 4 60 90.1 955 633 777 900 949 857 923 117
35 60 863 8.1 595 722 801 847 794 844 7.8
Codellama 3B 60 959 988 655 755 903 960 879
7B 60 955 984 604 727 909 953 872 925
deepseek-coder  6.7B 60 93.8 963 604 712 915 960  87.1 92.0
Llama3 8B 60 959 964 655 777 900 945 871 92.9
Llama2 13B 60 951 984 568 683 86 930 853 905
amas 7B 60 951 975 561 676 869 917 842 894
9
StarCoder? I5B 60 963 984 650 777 917 956 887
7B 60 959 979 640 763 905 945 877 925
StarCoder 16B 60 959 984 647 777 903 947 817  93.0
16B 20 934 989 608 709 842 88l 840  89.0

CodeGen2 7B 20 918 967 646 722 845 876 842 883

tializer for the bias vector” but ignores full context or element
relationships, affecting the correctness. This accounts for 7%
of failures across the three datasets.

Incorrect Rules: This category denotes the cases where the
applied rules are incorrect. This category of failure is unique
to DocTer in the three tools we evaluated and is therefore not
shown in the figure. DocTer automatically constructs the rules
(map from syntactic patterns to specifications) based on their
co-occurrence in the annotated dataset, which can potentially
introduce incorrect rules, leading to incorrect extractions. 10%
of DocTer’s failing cases are due to incorrect rules, while
Jdoctor and CallMeMaybe does not have any of such failures
since their rules are all manually defined.

3) Comparative Root Cause Analysis: We compare the root
cause distributions of CodeLlama-13B (Fig. 9a), with those of
the baseline methods (Fig. 9b).

In cases where the baseline method succeeds (bar
“CodeLlama-13B (L N .J)”), CodeLlama-13B’s dominating
failure causes are ineffective prompts, missing domain knowl-
edge, and wrong focus. Notably, the wrong focus is par-
ticularly prevalent here, in contrast to section L U.J where
both approaches fail. For cases CodelLlama-13B succeeds
(bar “Jdoctor (L N J)”) and the baseline method fails, we
observe that the unique baseline failures are primarily due to
missing rules and incomplete semantic comprehension. That
is, when prompts and software texts are of high quality, LLMs
demonstrate outstanding generalizability, unbounded by rule
sets. They make predictions based on entire descriptions rather
than partial ones. Notably, 10% of DocTer’s unique failures
are due to incorrect rules, all of which can be addressed by
CodeLlama-13B. We suspect that any automatic rule inference
techniques may suffer from such problems if human correc-
tions are not in place.

Finding 5: Compared to traditional methods, CodeL.lama-
13B struggles with ineffective prompts and missing do-
main knowledge, causing 75% of its unique failures.
LLMs, however, demonstrate excellent generalizability,
whereas rule-based approaches often rely on insufficient
or incorrect rules extracted from limited datasets.




TABLE X: Comparison of different LLMs with SR on
DocTer-data: Precision/Recall/F1 (%), and Cost ($).

Approach / Model (+SR) K TensorFlow PyTorch MXNet Overall Cost ($)

DocTer 90.0/74.8/81.7  78.4/77.4/77.9  87.9/82.4/85.1  85.4/78.2/81.6

. 4 60 847/87.5/86.1 82.8/873/850 86.8/30.0/883  854/88.6/87.0 78

35 20 81.9/83.7/82.8 77.3/81.2/792 84.3/87.3/85.8 823/85.0/83.6 52
CodeLiam 3B 60 86.5/36.3/864 850/343/846 88.3/30.2/887 87.1/87.4/87.2
odellama 7B 60 86.4/83.6/85.0 84.4/30.4/82.4 88.2/38.8/88.5  86.9/85.6/86.2
deepseek-coder  67B 60 859/854/857 85.6/34.6/85.1 87.5/80.1/883  86.6/87.0/86.9
Llama3 8B 60 86.1/82.8/844 83.3/83.0/83.1 87.7/85.6/36.7 86.4/84.2/85.3
Llama2 13B 20 83.9/30.0/81.9 80.4/74.2/772 84.4/81.3/82.8  83.6/79.6/81.5
7B 20 80.5/79.2/79.8 77.7/15.5776.6 84.0/80.6/82.3  81.7/79.3/80.5
StarCoder2 ISB 60 87.9/87.2/87.6 85.8/85.4/856 88.6/89.4/89.0 $7.9/88.0{87.9]
artode 7B 60 86.8/86.7/36.7 84.8/854/85.1 87.7/89.1/88.4  86.9/87.6/87.2
StarCoder 16B 60 850/36.7/858 834/34.6/840 87.4/802/883  859/87.5/86.7
CodeGen? 16B 10 79.7/81.4/80.6 77.6/79.3/78.5 85.0/86.3/857 81.9/83.4/82.7
-odeGen 7B 10 7777773775 76.6/77.27769 82.2/84.0/83.1  79.7/80.5/80.1

TABLE XI: Comparison of different LLMs with SR on
CallMeMaybe-data: Accuracy (%), and Cost ($).

Approach / Model (+SR) K Accuracy Cost ($)
CallMeMaybe - 70.0 -
4 60 70.8 15.15
GPT 35 40 73.0 1.01
ellams 13B 60
Codellama 7B 60 753
deepseek-coder 6.7B 60 66.3
Llama3 8B 60 71.9
JUN 13B 40 73.0
Ulama2 7B 40 9.7
. 15B 60 76.4
StarCoder2 7B 60 753
StarCoder 16B 60 73.0
16B 20 68.5
CodeGen2 7B 20 674

C. Generalizibility

To validate the generalizability of our analysis and conclu-
sions, we extended our evaluation with two additional models,
StarCoder-15.5B and GPT-3.5. The distributions from these
models align with our findings and conclusions. Detailed
results for these models are provided in the artifacts [31].

VII. RQ4: MODEL COMPARISON

Tables IX, X, and XI compare the performance and cost
of 13 LLMs with the baseline methods (Jdoctor, DocTer, and
CallMeMaybe). We only list the best results for each model
with SR, and the full results can be found in the artifacts [31].
Model response time for generating specifications, subject to
various factors such as environment, is omitted. Generally, the
response time is reasonably quick for practical usage, ranging
between 0.6 to 26.6 seconds. Due to the token limitation
discussed in Section IV-A, some experiments are skipped.
More experiments on DocTer-data are skipped since prompts
for DocTer-data are much longer than those for other datasets,
making them inapplicable for certain settings.

Overall, generic LLMs with as few as 10 domain exam-
ples achieve better or comparable performance as custom-
built state-of-the-art specification extraction techniques such
as DocTer. Specifically, 13, 10, and 9 out of the 13 mod-
els outperform traditional techniques Jdoctor, DocTer, and
CallMeMaybe.

Finding 6: Most LLMs achieve better or comparable
performance as custom-built traditional specification ex-
traction techniques.

a) Best Performing Models: Among the 13 models,
CodeLlama-13B and StarCoder2-15B achieve the best perfor-
mance on all datasets, with an F1 score of 87.9% (Table X)
and accuracies of 93.5% (Table IX) and 76.4% (Table XI).

Finding 7: CodeLlama-13B and StarCoder2-15B are
the most competitive open-source models for extracting
specifications, with among the highest performance, $0
cost, and long prompt support, facilitating its accessibility,
adaptability, and customizibility.

b) Commercial Models (GPT-3.5 and GPT-4): GPT-3.5
and GPT-4 ($0.0015 and $0.03 per 1,000 tokens) achieve
slightly worse performance than the best-performing models
(e.g., CodeLlama-13B) given the same number of examples.
Compared to CodeLlama-13B and StarCoder2-15B, which are
free, open-source, and with much fewer parameters (Table II),
commercial models (e.g., GPT-4) add no F1 or accuracy gains.
Specifically, GPT-4’s total cost of $32.8 (for K = 10— 60) on
CallMeMaybe-data causes a 5.6% accuracy degradation.

Despite the costs and risks of commercial models, such as
charges for usage and concerns regarding the accessibility and
continuity of research and applications, they are often more
convenient, requiring only an API call with minimal hardware
demands. In contrast, open-source models like Codel.lama-
13B via Hugging Face APIs require more substantial hardware
(e.g., GPUs) and technical expertise for configuration and
optimization. Both options offer distinct advantages, allowing
users to choose based on their needs, resources, and budget.

Finding 8: Commercial models (e.g., GPT-4) offer conve-
nience and top-tier performance but with higher costs and
risks such as accessibility, whereas open-source models are
cost-effective and flexible alternatives but require greater
technical expertise and hardware.

c) Other  Open-Source  Models  (CodeLlama-7B,
deepseek-coder-6.7B, Llama3, Llama2, StarCoder2-7B,
StarCoder, and CodeGen2): StarCoder2-7B and Codellama-
7B offer high performance, slightly below the best-performing
model (by 0.7% - 1.7%), presenting it as a viable,
smaller alternative to CodeLlama-13B and StarCoder2-15B.
Conversely, Llama2, despite having the same model sizes
as CodeLlama (7B and 13B), performs 3.0% - 5.7%
worse, making it less suitable for this task. StarCoder-
16B and Llama3 demonstrate their strong performance
by outperforming the baseline methods by 1.9 — 10.0%.
CodeGen2, on the other hand, has worse performance on
the task. deepseek-coder-6.7B performs 3.7% worse than
CallMeMaybe.

Finding 9: CodeLlama-13B and StarCoder2-15B yield
the best performance on software specification genera-
tion among tested open-source models. Codellama-7B,
StarCoder2-7B, StarCoder-16B, and LLama3-8B are rea-



Isonable open-source alternatives.

VIII. CHALLENGES AND FUTURE DIRECTIONS

Our analysis of failure cases highlights several challenges,
pointing to future research directions in two areas:

a) Hybrid Approaches: Root cause analysis (e.g., Sec-
tion VI-B3) indicates that combining the complementary
strengths of LLMs and traditional methods could improve
specification generation. Hybrid approaches can harness the
generalizability of LLMs along with the domain-specific pre-
cision of traditional techniques to address gaps like missing
domain knowledge. Promising work has begun in this area,
integrating LLMs with software testing, program analysis [21],
[22], [57], and retrieval-augmented generation [24], [25].

b) Improving Prompt Effectiveness: Improving prompts
is another key direction to enhance LLM performance in
specification extraction. Recent research on crafting more
expressive, customizable, and domain-specific prompts [58]-
[60] shows potential in guiding LLMs for better accuracy.

IX. THREATS TO VALIDITY

a) Manual Evaluation: To address the equivalence spec-
ification issue in Jdoctor-data (Section III-B3), we manually
evaluated results for RQ1, RQ2, and RQ4, and analyzed
failure cases sampled in RQ3. To minimize biases, two authors
independently conducted evaluations with 5.9% disagreement,
resolving disagreements with a third author.

b) Analysis on Sampled Cases: In RQ3 (Section VI),
we conduct a comparative analysis on a randomly sampled
set of cases. This sampling approach could potentially limit
the generalizability of our conclusions to the entire data
population. To mitigate this concern, we extend the analysis
to include failure cases from 2 additional models, GPT-3.5
and StarCoder (Section VI-C), where we observed consistent
patterns, thereby reinforcing the robustness of our findings.

¢) Data Leakage: Using public datasets introduces po-
tential risks of data leakage. To address this, we analyze
performance sensitivity to the number of examples in prompts
(RQI1 and RQ2) and conduct zero-shot (ZSL) and one-shot
(OSL) learning experiments. ZSL shows extremely poor per-
formance (0-0.2% accuracy/F1), and OSL’s performance is
28.9—77.2% lower than FSL, emphasizing the role of in-
context learning.

X. RELATED WORK

1) Software Specification Datasets and Extraction Methods:
Traditional techniques for extracting software specifications
from text, such as rule-based [1]-[4], [8], [13] or ML-based
methods [1], [4], [12], shows limited generalizability across
domains and require manual effort and domain knowledge.
Our work is the first to study LLMs’ capability on this
task, leveraging FSL that offers improved generalizability and
requires little annotated data. We evaluate LLMs on three
datasets (Section III-A). Other than Jdoctor, techniques like
@tcomment [8], Toradocu [2], and C2S [11] also extract
specifications from Javadoc. They are excluded from this

study as C2S is unavailable and the others are outdated or
less effective [1], [11]. Advance [12] and DRONE [13] are
excluded due to the absence of ground-truth specifications.

2) Large Language Models (LLMs): LLMs have been
developed and used for a wide range of natural language
understanding tasks such as question answering [18], [19],
[35], [61]-[63] and natural language generating tasks such as
text summarizing [18] and machine translation [18], [35], [62].
LLMs such as CodeLLlama-13B have demonstrated their strong
capabilities in numerous fields. We evaluate 13 state-of-the-art
LLMs, varying in their design, sizes, etc., and discussed them
in Section III. While other LLLMs exist, they are not explored
in this study as they are unsuitable for our task [19], less
effective [17], [62]-[64], or unable to fit in our devices [65].

3) Applications of LLMs to SE tasks: LLMs have also been
effectively applied to SE tasks such as code completion [15],
[24], [25], [48], [53], test case generation [21], [22], [66],
[67], program repair [27], [68], and software security [69]—
[71], often outperforming traditional methods. However, LLMs
have shown limitations in areas like code summarization [72],
code suggestions [73], and software Q&A [74]. For example,
developers frequently outperform LLMs in code-related tasks,
highlighting the need for a comprehensive evaluation of LLMs
in generating software specifications to identify their strengths
and weaknesses in this specific SE context.

XI. CONCLUSION

We present the first empirical study that assesses the ef-
fectiveness of 13 LLMs for software specifications gener-
ation. Our findings reveal that most LLMs achieve better
or comparable performance compared to traditional methods.
Two of the best-performing models, CodeLlama-13B and
StarCoder2-15B, as open-source models, outperform tradi-
tional approaches by 5.6 — 10.5% with semantically simi-
lar examples. Their strong performance makes closed-source
commercial models (e.g., GPT4) less desirable due to size
and cost. Additionally, we conduct a comprehensive failure
diagnosis and identify the strengths and weaknesses of both
traditional methods and LLMs. The two dominant limitations
of LLMs are ineffective prompts and missing domain knowl-
edge. Our study offers insights for future research to improve
LLMs’ performance on specification generation including hy-
brid approaches of combining traditional methods and LLMs,
and improving prompts effectiveness.
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