Are Large Language Models Good at Generating Software Specifications? Yes, but not Quite.
Danning Xie!, Byungwoo Yoo?, Nan Jiang’, Mijung Kim?, Lin Tan!, Xiangyu Zhang!, Judy S Lee’

RQ1 & 2: Specification Extraction Capability

RQ3: Failure Root Cause Analysis

e Software specifications are essential for ensuring the reliability of
software systems.

e Existing approaches on specifications extraction (from comments
or documents) are domain-specific and semi-automatic.

~

/Funci'ion signature: isNullOrEmpty(java.lang.String string)
Javadoc comment: @return true if the string is null or is an empty string
Specification extracted by Jdoctor:

_ string==null || string.isEmpty() -> methodResultID==true

2

J

Are LLMs effective in generating software specifications from
documentation or comments?

What are the strengths and weaknesses of LLMs for software
specification generation compared to traditional approaches?

Study Overview RQ4: Model Comparison

Spec. extraction
techniques s

N
‘ > RQ1:
@ Software specification

extracting capabilities

- J
] ,
Software /,Random O—] |Benchmark - o2 ~ - N
spec. Retrieval/ Prompt LLM @ : 3
datasets | Prompt Comparative
construction failure
g emantic O— X Be"flt‘l'\fn"a"k \strategies JAS diagnosis y
— Retrieval / Prompt % 1
5 15 LLMs (RQ4-:
— .| Model comparison:

; Best
. Retrieval / Prompt @

Studied datasets and techniques:

e Jdoctor: translates Javadoc comments (@param, @returns,
@throws) into specifications

e DocTer: extracts DL-specific constraints (e.g., tensor shapes)
from API documentation.

L performance and cost.

Benchmark model — Starcoder
e 15.5 B, open-source, long input support (8,192 tokens)

Few-Shot Learning

Signature: <x, - signature>
Javadoc comment: <x, - comment>
Specification:

Random Retrieval Randomly
selecting K samples as the
few-shots.

Semantic Retrieval (SR):
Applying a ROBERTa model as the
semantic retrieval model to select
the most semantically similar K
samples as the few-shots.

Signature: <x, - signature>
Javadoc comment: <X - comment>
Specification:
Signature: <x __ - signature>

arget
Javadoc comment: <xmrge e comment>
Specification:

A Random A SR Jdoctor A Random A SR DocTer
100 100
Q e — 90
S 90 —A— 4 A A 4
. , Sl ~
5 80 l/k N /
o w 70
(&)
< 70 60
10 20 30 40 50 60 10 20 30 40 50 60
K (Few-Shots Count) K (Few-Shots Count)
_____ . . L . \
Starcoder, with 10-60 of randomly selected examples, achieves |
I\ comparable results with the SOTA specification extraction tools. |
— —_—— — —_—— — N ———.— J
X Semantic retrieval (SR) srrafegy further improves Starcoder’s \I

I
| performomce to outperforming SOTA approaches. |

— — — —————— —

“-” denotes experiments skipped due to token limits.

Approach/ #param open- Overall Accuracy (%) Cost
Model (+SR) source? K=10 20 40 60 ($)
Jdoctor v 83.0
StarCoder 15.5B v 88.9 91.0 917 93.0 0]
GPT-3 dCIViI’.lCi 175B* X 92.9 93.5 944 95.6 163.8
curie Unknown X 54.3 66.4 - - 3.9
GPT-3.5 turbo Unknown X 89.3 879 874 844 169
BLOOM 176B v 86.8 - - - 0]
16B v 86.4 88.4 - - 0]
CodeGen 6B v 86.0 88.4 - - o)
(Multi) 2B v 82.8 87.4 - - o)
350M v 68.7 78.5 - - 0]
16B v 86.5 89.0 - - 0]
/B v 83.5 88.3 - - o)
CodeGen2 3.7B v 700 804 - : 0
1B v 75.7 81.7 - - 0]
Incoder 6B v 52.7 61.6 - - o)
1B v 54.2 62.9 - - o)
. Most LLMs achieve better or comparable performance as \I
I\ custom-built traditional specification extraction techniques. /I
Q _____ — — —

StarCoder, an open-sourced model, is the most competitive model | |

| for extracting specifications, with its high performance, $0 cost, and |

| long prompt support, facilitating its adaptability and customization. }I

N — — —_—

Q __ __

i StarCoder’s strong performance makes GPT3 Davinci less desirable |
| given ifs size and cost. CodeGen and CodeGen2 are reasonable |
| open-source alternatives. }I

N — —_ _—— — —

———— —

——— e E—— —

Manually sample and examine failing cases of both LLM and the
baseline approaches to identify their unique failure root causes .

Large Language Models

We identify the root causes of the LLM by manually fixing them.

Poorly Phrased

Wrong Focus
13%

22%

Missing Domain Knowledge

28% Ineffective Prompts

34%

. : \
I(Ineffective prompts: The examples selected in the prompts are not |
| good enough. Fixed by manually selecting more relevant examples,

I\ or altering the order of examples. }I

-~ N
(Missing domain knowledge: LLM is lack of context while some

traditional methods are search-based.

+ Relevant functions: Additional
+ searchForDanger (int range,float threat) domain
+ o e s knowledge
(K examples)
prompt

Signature: isInDanger (int range,float threat)
Javadoc comment: @Rreturn True if a threat was found.

- Condition: this.getTile () .isInDanger (range,threat) — methodResultID==true

\ + Condition: this.searchForDanger (range, threat) — methodResultID==true)
N~ e
e \
| Wrong focus: values: 1-D or higher numeric "Tensor". |
I\ values: 1-D or higher 'numeric "Tensor'. |

J/
e . \
| Poorly Phrased: the original documents or comments are poorly |
I\ written, ambiguous, or hard to understand even for humans. /I
()
| Other: “contradictory document” and “unclear” |
N)

Baseline Approaches

e Missing rule (78%)
e Incomplete Semantic Comprehension (13.5%)

e Incorrect Rule (8.5%) Preprint

1 ? PURDUE

UNIVERSITYo,

TANIST ==

