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Abstract—Many defect prediction techniques are proposed to
improve software reliability. Change classification predicts defects
at the change level, where a change is the modifications to one
file in a commit. In this paper, we conduct the first study of
applying change classification in practice.

We identify two issues in the prediction process, both of which
contribute to the low prediction performance. First, the data are
imbalanced—there are much fewer buggy changes than clean
changes. Second, the commonly used cross-validation approach
is inappropriate for evaluating the performance of change classi-
fication. To address these challenges, we apply and adapt online
change classification, resampling, and updatable classification
techniques to improve the classification performance.

We perform the improved change classification techniques
on one proprietary and six open source projects. Our results
show that these techniques improve the precision of change
classification by 12.2-89.5% or 6.4–34.8 percentage points (pp.) on
the seven projects. In addition, we integrate change classification
in the development process of the proprietary project. We have
learned the following lessons: 1) new solutions are needed to
convince developers to use and believe prediction results, and
prediction results need to be actionable, 2) new and improved
classification algorithms are needed to explain the prediction
results, and insensible and unactionable explanations need to be
filtered or refined, and 3) new techniques are needed to improve
the relatively low precision.

I. INTRODUCTION

Software defect prediction techniques leverage information
such as code complexity, code authors and software devel-
opment history to predict code areas that potentially contain
defects [1]–[9]. Code areas that contain defects are also
referred to as buggy code areas. Defect prediction techniques
typically predict defects in a component [4], [8], [10], [11], a
file [3], [7], [12], a method [13], or a change [1], [2], [14],
[15]. A change is the committed code in a single file [1].

A recent study [16] reports the experience and lessons
learned of predicting buggy files at Google. Compared to file
level prediction, the application of change level prediction
has its benefits and challenges. Following the prior work [1],
we refer to change level prediction as change classification.
Change classification [1], [14], [15], [17] can predict whether
a change is buggy at the time of the commit, which allows
developers to act on the prediction results as soon as a commit
is made. In addition, since a change is typically smaller than
a file, developers have much less code to examine in order
to identify defects. However, for the same reason, it is more
difficult to predict on changes accurately.

To the best of our knowledge, there are no published
case studies of the application of change classification on a

proprietary code base in industry. In this paper, we apply
change classification on a proprietary code base at Cisco and
share the experience and lessons learned.

A high prediction precision is important for the adoption of
change classification in practice. If a developer finds that many
predicted buggy changes contain no real bugs, i.e., the changes
are clean, developers are likely to ignore all prediction results.
We apply change classification techniques [17] on one of
Cisco’s code bases and adapt them for integration in practice.
We find that the precision is only 18.5%, which is significantly
lower than the precisions on open source projects [1], [17]. We
have identified the following main reasons.

1) The Challenge of Imbalanced Data The proprietary code
base has a lower buggy rate—the percentage of changes that
are buggy—than that of the open source projects. In other
words, the data in the code base are imbalanced. When the
buggy rate is low, it is challenging to learn accurate models
because there are fewer positive instances (i.e., buggy changes)
for learning. Classifying imbalanced data is a known open
challenge [18].

Irrespective of proprietary or open source, the data sets are
imbalanced. The six evaluated open source projects, Linux
kernel, PostgreSQL, Xorg, Eclipse, Lucene, and Jackrabbit,
have buggy rates of 14.7–37.4%, whereas the buggy rate of
the proprietary project is below 14% (Table I). Thus, solutions
to address the imbalanced data challenge should improve the
performance, e.g., precision and recall, of change classification
on both proprietary and open source projects.

To address the imbalanced data challenge, we leverage
techniques to increase the percentage of positive instances in
the training set. The training set contains the data used to train
the model, while the test set contains the data to evaluate the
model. For example, a simple resampling technique duplicates
positive instances in the training set to balance the two classes.
Four resampling approaches, i.e., Simple Duplicate, the Syn-
thetic Minority Oversampling Technique (SMOTE), Spread
Subsample, and Resampling with/without Replacement, are
used to improve the performance of change classification.
The test set is unchanged for an objective evaluation of the
classification performance.

2) False High Precisions from Cross-Validation K-fold
cross-validation is commonly used to evaluate software defect
prediction [1], [6]–[8], [14], [17]. Specifically, k-fold cross-
validation randomly divides a data set into k partitions (k > 1),
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and uses k−1 partitions to train the prediction model and the
remaining 1 partition as the test set to evaluate the model.

However, cross-validation is inappropriate for estimating the
performance of change classification because the data points,
i.e., changes, follow a certain order in time. Randomly parti-
tioning the data set may cause a model to use future knowledge
which should not be known at the time of prediction to predict
changes in the past. For example, cross-validation may use
information regarding a change committed in 2014 to predict
whether a change committed in 2012 is buggy or clean. This
scenario would not be a real case in practice, because at the
time of prediction, which is typically soon after the change is
committed in 2012 for earlier detection of bugs, the change
committed in 2014 is nonexistent yet. Using cross-validation
could also cause the data to be labeled ahead by currently
unknown data. Section III-A provides the details of these
problems.

In practice, we need time sensitive change classification.
In other words, at time t when a change c is committed,
the information used to classify c or any change before c
should be information known until time t only. To test the
impact of cross-validation, we applied both 10-fold cross-
validation and time sensitive change classification on seven
projects (one proprietary and six open source). We found that
the precision of time sensitive change classification is only
18.5–59.9%, while the precision of cross-validation is 55.5–
72.0% for the same data (details in Section VI-A). The results
suggest that cross-validation presents a false impression of
higher precisions.

This paper makes the following contributions:

• We apply and adapt time sensitive change classification
and online change classification, both addressing the
problems of change classification with cross-validation.

• We leverage resampling techniques to address the imbal-
anced data challenge, and apply updatable classification
algorithms to improve classification performance as well.
These techniques have improved the precision of time
sensitive change classification by 12.2-89.5% or 6.4–34.8
percentage points (pp.) on the one proprietary project
and six open source projects. If a technique improves
the precision from a to b, the technique improves the
precision by ((b− a)/a)% or (b− a) pp.

• We conduct the first case study of integrating change
classification in the development process of a propri-
etary project. In addition to the prediction (whether
a change is buggy or not), we generate and improve
explanations from prediction models and present them to
Cisco developers. Explanations were lacking in previous
studies [16], [19], which makes it hard for developers to
act on the prediction [16].

The main lessons learned include 1) since change classifi-
cation is relatively new to developers, we need new solutions
to convince developers to use and believe prediction results
and make prediction results actionable; 2) new and improved
classification algorithms for explaining the prediction results

Fig. 1. Process of Change Classification. A check mark annotates a clean
change, and a cross mark annotates a buggy change.

are needed, and insensible and unactionable explanations need
to be filtered or refined; and 3) even with the improved
approaches, the prediction precision is still relatively low,
suggesting that new techniques are needed to improve the
precision.

II. SOFTWARE CHANGE CLASSIFICATION

This section provides a background of change classification.
Figure 1 shows the process of change classification [1], which
consists of the following steps: 1) labeling each change as
buggy or clean to indicate whether the change contains bugs;
2) extracting the features to represent the changes; 3) using
the features and labels to construct a prediction model; 4)
extracting the features for new changes and applying the model
to predict their labels.

A. Labeling Buggy and Clean Changes

The labeling process uses data from the Version Control
Systems (VCS) and Bug Tracking Systems (BTS). We follow
the same approach used in previous work [17], [20], [21].
A line that is deleted or changed by a bug-fixing change is a
faulty line. A bug-fixing change is a change that fixes bugs. The
most recent change that introduced the faulty line is considered
a buggy change. If a project’s BTS is not well maintained
and linked, we consider changes whose commit messages
contain the word “fix” bug-fixing changes. If a project’s BTS
is well maintained and linked, we consider changes whose
commit messages contain a bug report ID bug-fixing changes.
Manually verified bug reports are available for Lucene and
Jackrabbit [22], which are used in our study for extracting
more accurate bug-fixing changes. The blaming or annotating
feature of the VCS is used to find the most recent changes
that modified the faulty line, which are the buggy changes.
We consider the remaining changes as clean changes.

B. Extracting Features

Features are used to represent the changes for prediction.
The types of features are the same as those in previous
work [17]: metadata, bag-of-words, and characteristic vectors.

We use all the meta features from previous work [17], e.g.,
commit time and full path. In addition, we add the following
features: the added line count per change, the deleted line
count per change, the changed line count per change, the
added chunk count per change, the deleted chunk count per



change, and the changed chunk count per change. The bag-
of-words feature is a vector of the count of occurrences of
each word in the text. We use the snowBall stemmer [23]
to group words of the same root and Weka [24] to obtain the
bag-of-words features from both the commit messages and the
source code. The characteristic vectors consider the count of
the node type in the Abstract Syntax Tree (AST) representation
of code. Deckard [25] is used to obtain the characteristic vector
features.

III. APPROACHES

This section first demonstrates the problems of cross-
validation when used for evaluating change classification in
practice (Section III-A). It then describes the time sensitive
change classification (Section III-B), followed by its improved
version—online change classification (Section III-C). Sec-
tion III-D and III-E present two approaches to improve the
performance of the online change classification.

A. Problems of Using Cross-Validation for Evaluating Change
Classification

Cross-validation is a commonly used method to evaluate
the prediction models [1], [7], [8], [14], [17], [26]. The
process of 10-fold cross-validation is to 1) separate the data
set into 10 partitions randomly; 2) use 1 partition as the test
set and the other 9 partitions as the training set; 3) repeat
step 2) with a different partition as the test set until all
the data have a predicted label; 4) compute the evaluation
results through comparison between the predicted labels and
the actual labels of the data. This process reduces the bias in
the error estimation of classification.

Using cross-validation to evaluate change classification has
two problems (Figure 2). Changes C1–C10 are committed
chronologically, where C1 is the oldest, and C10 is the most
recent. Dots denote buggy changes, and circles denote clean
changes. An arrow links a buggy change and the corresponding
change that fixes the buggy change. For example, C4 fixes the
bugs in C3; therefore, C3 is a buggy change.

First, cross-validation will use future data for prediction. In
this example, 10-fold cross-validation will make each change
the test set in each iteration. For example, it will use C2–C10
to predict whether C1 is buggy or not, which does not match
a real-world usage scenario where we typically want to make
the prediction at the time when C1 is committed and by then
C2–C10 are not available yet.

Second, cross-validation mislabels changes. Using cross-
validation, changes will be labeled as shown in Figure 2 [1],
[14], [17]. For example, C5 will be labeled buggy. However,
in practice, when we predict whether C6 is buggy, we would
only have information at time tpredict. Therefore, C5 should
be clean at time tpredict because C7 was nonexistent at that
time. It is incorrect for cross-validation to consider C5 buggy
when we predict the label of C6 at time tpredict, because we
would not know that C5 is buggy at time tpredict.

Due to these issues, it is unclear whether precisions obtained
from cross-validation are accurate estimates of precisions of

Fig. 2. Illustrating Problems of Using Cross-Validation to Evaluate Change
Classification. Dots are buggy changes, while circles are clean changes.

defect prediction in practice. Our experiments show that cross-
validation provides false high precisions (Section VI-A).

B. Time Sensitive Change Classification

Time sensitive change classification uses information,
known at time t only, to classify change c that is committed at
t. For example, in Figure 2, time sensitive change classification
predicts at time tpredict for the change C6, i.e., the test set.
The changes committed before C6 are the training set, i.e.,
C1-C5, which is used to build models.

However, this method has three limitations. First, in prac-
tice, we prefer to predict as soon as changes are committed so
that we can examine them to identify bugs earlier. Therefore,
the time period of the test set is often short, e.g., a few days or
months. However, bugs typically take years to be discovered
and fixed [27]–[29]. Therefore, at the prediction time tpredict,
many buggy changes in the training set, especially the changes
committed close to time tpredict, would not have been found
and fixed yet. Therefore, many of these changes in the training
set, e.g., C5, will be labeled clean, indicating that the buggy
rate in the training set, i.e., 1/5, will be lower than the typical
buggy rate, i.e., 2/5, of a project. If the buggy rate of the
training set is much different from the buggy rate of the test
set, a classification algorithm may fail to learn an accurate
model for the test set.

Second, the performance of time sensitive change classifi-
cation depends on the particular data set. For example, if we
pick a time period which is right before a release deadline for
evaluation, then the changes from this time period may not
be representative of the changes from other periods of time.
Thus, the prediction performance of this time period may not
be representative of the performance of other time periods.

Third, if the changes in the test set are committed over
a long period of time, many development characteristics,
such as the development tasks, the developer experience, and
the programming styles, may be different from those of the
training set. Therefore, the training set may be too old to build
accurate prediction models for the test set.

C. Online Change Classification

To address the three challenges, we use the balanced online
time sensitive change classification, online change classifica-
tion in short. To address the first challenge, we make the
training set more balanced in time sensitive models. Specifi-
cally, we leave a gap between the training set and the test set
(Figure 3), which allows more time for buggy changes in the
training set to be discovered and fixed. For example, the time
period between time T2 and time T4 is a gap. This way, the



Fig. 3. Online Change Classification.

training set will be more balanced, i.e., the training set will
have a higher buggy rate which is consistent with the buggy
rate in the test set. A reasonable setup is to make the sum
of the gap and the test set, e.g., the duration from time T2
to T5, close to typical bug-fixing time—the time from a bug
is introduced until it is fixed. Our results show that using a
gap of 0.2 year yields an average 14.4 pp. improvement on
precision for Jackrabbit and 15.5 pp. for PostgreSQL with 1.0
year’s gap.

To address the second and third challenges, we make
change classification online, which applies multiple runs of
time sensitive change classification, where the training set is
constantly updated with new data. For each run, we add to
the training set the data immediately following the training
set. The performance is the weighted average performance of
these runs. Online change classification performs prediction on
multiple test sets to minimize the bias from a particular test
set. Since the training set is constantly updated, the training
set is more likely to have similar characteristics as the test set,
hence, to construct more accurate models.

Figure 3 illustrates the process of online change classifica-
tion. Two runs are illustrated. The second run combines the
training set in the first run and the data from time T2 and T3
(i.e., changes from T1 to T3) to form the training set for the
second run. In this paper, for simplicity, the duration from T2
to T3 is the same as the duration from T4 to T5, which is
the duration for each test set. However, this duration can be
other values for generality. The gap for the second run is T3
to T5. More recent changes (between T5 and T6) form the
test set for the second run. The new prediction time is T6;
thus, changes in the new training set will be labeled using
information available at time T6.

D. Resampling

As discussed in Section I, data for change classification are
typically imbalanced, i.e., the buggy changes are much fewer
than the clean changes. The clean changes are referred to as the
majority class, and the buggy changes are called the minority
class. For software with a lower buggy rate, it is harder for
classification algorithms to learn the patterns of the buggy
changes.

We apply two established approaches to improve the pre-
diction performance on imbalanced data—resampling tech-
niques [30] and updatable classification techniques [31]–
[37]. This section describes resampling techniques; and Sec-
tion III-E describes the updatable classification techniques.

Resampling is an effective way to mitigate the effects of
imbalanced data in change classification [18], [38]. Different
algorithms are used to change the distribution between the

majority class and the minority class. Two main categories of
resampling techniques are oversampling and undersampling.
Oversampling creates more buggy changes; whereas under-
sampling eliminates clean changes.

We use four types of resampling techniques to predict
for the imbalanced data: simple duplicate, SMOTE, spread
subsample, and resampling with/without replacement [24].
Simple duplicate and SMOTE are oversampling techniques,
while spread subsample is an undersampling technique. Re-
sampling with/without replacement can achieve both. We tune
the parameters as illustrated in Section V, and reserve the
parameters which contribute to the highest precision.

1) Simple Duplicate: randomly copies instances in the
minority class to make the two classes have the same number
of instances. Due to the randomness, we run this method five
times and calculate the average performance.

2) SMOTE: first selects instances from the minority class
and finds k nearest neighbors for each instance, where k is a
given number. It then creates new instances using the selected
instances and their neighbors.

3) Spread Subsample: eliminates instances in the majority
class until the ratio of majority instances over minority in-
stances is equal to a given ratio. Weight is a property of the
instance that reflects the level of impact this instance has on
its class. Spread subsample also updates the weight of each
instance in order to maintain the overall weight of the two
classes.

4) Resampling with/without Replacement: randomly picks
instances for either eliminating or duplicating until the buggy
rate reaches a given value. The instances may be used multiple
times for resampling with replacement whereas for resampling
without replacement the instances are used only once.

E. Updatable Classification

Updatable classification algorithms update the training set
incrementally to take advantage of the feedback from each
run. Our online change classification updates the training set
with the test set but does not take advantage of the feedback
from the learning process. Therefore, we apply the updatable
models to benefit from the feedback in each run.

We experiment with the following updatable learning algo-
rithms: Bayes [31], IBK [32], KStar [33], LogitBoost [34],
LWL [35], NNge [36], and SPegasos [37]. We select them
because they are based on various basic types of machine
learning algorithms, including Naive Bayes (Bayes, LWL),
instance-based learning (IBK, KStar), boosting (LogitBoost),
nearest-neighbors (NNge), and SVM (SPegasos).

IV. A CASE STUDY OF INTEGRATING CHANGE
CLASSIFICATION RESULTS IN SOFTWARE DEVELOPMENT

We deploy online change classification in the software de-
velopment process of the evaluated project at Cisco. The goal
is to understand how to generate and present explanations of
the prediction results to developers, and how to improve online
change classification for its adoption in software development.



To achieve this goal better, we conduct a qualitative study
instead of a quantitative one.

In addition to predicting on each change as it is committed,
it is also beneficial to predict on the changes committed in
recent years since bugs typically take years to be discovered
and fixed [27], [28]. The recently committed changes may be
buggy but have not been detected and fixed yet. Therefore, we
apply our prediction models on the changes of the proprietary
software made in the last year.

Before a developer makes a commit, the developer sends
the diffs to the review board, i.e., a new review request is
created in the review board. The status of a review request is
open, submitted, or discarded. An open review request means
the commit is not committed to the repository yet and is still
in the review stage; a submitted review request means this
request has passed the review stage and the change has been
committed to the repository; and a discarded review request is
a request that has been abandoned after code review. Discarded
reviews are not in the software repository; therefore, we do
not use them in our experiments. We predict on open review
requests to discover buggy changes before their code review
has been completed and predict on submitted review requests
to discover committed buggy changes.

Change classification is integrated after a developer submits
a review request of a commit to the review board (Figure 4).
Then our change classification tool automatically obtains the
diff file—Patches in Figure 4—of this commit and extracts
all the features of the commit. Next, it builds a model from
recent changes. This model predicts labels of the changes
in the commit. If a change is predicted buggy, our tool
automatically generates an explanation of why this change is
predicted buggy based on the model; then, our tool pushes
the explainable results to the review board. The review board
notifies the developers of the results. After examining the
suggestions provided by change classification, the developers
submit the feedback as whether the suggestion is taken or
rejected as well as the corresponding reason.

To increase the possibility of a positive adoption experience,
we select developers on whose changes our tool can predict
accurately. Specifically, we first build independent models for
each developer who has made at least 100 buggy changes in
this project. Among them, we select seven developers whose
model(s) built by either resampling techniques or updatable
classification could achieve 100% precision on the test sets
(Table IV) for this case study. The test sets contain older
changes that have been fixed so that we can compare the
predicted labels with the actual labels of changes to measure
precision. As a small case study, we start with 30 most recent
review requests of each selected developer. If a developer has
made fewer than 30 review requests, all of the developer’s
review requests are selected for this case study.

Since it is easier for developers to examine relatively small
changes, we only reported the changes with 50 or fewer lines,
to the developers. Totally we have predicted 96 small buggy
changes of 39 review requests from the seven developers for

Fig. 4. The Integration of Change Classification in the Code Review Process.

the field trial. In our pilot study, we create four review requests
regarding 11 changes from one developer and four reviewers.

The above process was considered intrusive in a production
environment when integrated with the review board. Later we
opt for a less intrusive option: emailing prediction results
to the developers who are interested in trying out change
classification. We have emailed the prediction results of 85
changes to the remaining six developers. We also have enlisted
the predictions in a file and verified their validity with a few
developers in an offline process. Due to the relatively small
scale of the case study, we focus on discussing our qualitative
instead of quantitative results. We share the experience learned
in conducting this case study in Section VII.

V. EXPERIMENTAL SETUP

A. Evaluated Projects

We evaluate the change classification techniques on one pro-
prietary project from Cisco and six open source projects, i.e.,
Linux, PostgreSQL, Xorg, Eclipse, Lucene, and Jackrabbit.
For Xorg and Eclipse, only data from a subdirectory is used,
i.e., Xserver and JDT core respectively. Columns “Lang” to
“Ch” of Table I show the basics of these projects. The features
retrieved are from the source code files1 only.

B. Data Selection

We select changes in the middle of the software history
of a project, because the characteristics of a project may
be unstable at the beginning of its history. The most recent
changes are excluded because buggy changes in them would
not have been found and fixed yet. Note that this is for
evaluation only. In practice, we predict on the latest changes
so that developers can find bugs in them earlier, which is the
experiment that we conducted in our case study (Section IV).

The specific time parameters used in online change classi-
fication are Start-Gap, Gap, End-Gap, and Update-Time.

1) Start-Gap is the time period at the beginning of a project
when changes are excluded from our experiments.

2) Gap, e.g., T2–T4 or T3–T5 in Figure 3, is the time
period between the training set and the test set. Adding
such a gap allows enough time for buggy changes in
the training set to be discovered by the prediction time
(Section III-C).

3) End-Gap is the time period at the end of a project’s
data collection, when changes are excluded from our

1The files with these extensions are included: .java, .c, .cpp, .cc, .cp, .cxx,
.c++, .h, .hpp, .hh, .hp, .hxx and .h++.



TABLE I
EVALUATED SOFTWARE. LANG IS THE PROGRAMMING LANGUAGE USED FOR THE PROJECT. LOC IS LINES OF CODE. FIRST DATE IS THE DATE OF THE
FIRST COMMIT OF A PROJECT, WHILE LAST DATE IS THE DATE OF THE LATEST COMMIT. CH IS THE TOTAL NUMBER OF CHANGES FOR EACH PROJECT

THROUGH LISTED HISTORY. SG IS THE START-GAP. EG IS THE END-GAP. UT IS UPDATE-TIME. THE UNIT FOR THE START-GAP, GAP, AND END-GAP IS
year, AND THE UNIT FOR THE UPDATE-T IS day.

Project Lang LOC First Date Last Date Ch SG Gap EG UT ExpCh ExpBR TrSize TSize NR
Proprietary C >10M 2003-xx-xx 2014-xx-xx >100K 5.0 x.xx x.x 365 >20,000 <14.0% >5,000 >10,000 3
Linux C 7.3M 2005-04-16 2010-11-21 429K 3.0 0.03 2.3 8 10,443 22.8% 1,608 6,864 4
PostgreSQL C 289K 1996-07-09 2011-01-25 89K 7.0 0.20 5.9 60 10,810 27.4% 1,232 6,824 7
Xorg C 1.1M 1999-11-19 2012-06-28 46K 5.2 0.40 5.0 100 10,956 14.7% 1,756 6,710 6
Eclipse Java 1.5M 2001-06-05 2012-07-24 73K 5.0 0.10 6.2 40 9,190 20.5% 1,367 6,974 6
Lucene Java 828K 2010-03-17 2013-01-16 76K 0.5 0.10 1.5 30 11,106 23.6% 1,194 9,333 8
Jackrabbit Java 589K 2004-09-13 2013-01-14 61K 3.0 0.20 3.3 60 13,069 37.4% 1,118 8,887 10

experiments. Typically it is the average time that it takes
to discover and fix a bug, i.e., the average bug-fixing time.

4) Update-Time, e.g., T2–T3, in Figure 3, is the time period
used to update the training set to build a new model.

Different time parameters are used for different projects
due to their data variance, e.g., length of development history
and average bug-fixing time. Initially we follow the previous
paper [17] for Start-Gaps, which are three years for most
projects. To ensure enough runs of experiments, the average
test set size is smaller than one fourth of the total count of
experimental changes in each project. In addition, we set the
quotient of the total experimental change count of each project
divided by the number of runs as the upper bound of average
training set size. Gap is the difference between average bug-
fixing time and test set time period for each project. Update-
Time is the same as the test set duration. Given the constraints,
our tool automatically determines the number of runs for each
project based on the data’s suitability, i.e., the buggy rate in
both the training set and the test set for a run should be above
0%. End-Gap is set depending on the number of runs. If the
data sets cannot be determined by one run of the tool, i.e.,
the parameters or the data sets generated do not satisfy the
constraints, the tool will add 1 month to the Start-Gap and try
to find the desired data sets again.

The specific time parameters for the projects are shown in
columns “SG” to “UT” of Table I. The remaining columns
show the number of changes in our data sets. Certain informa-
tion of the proprietary project is kept vague for confidentiality.
Column “ExpCh” is the number of changes used for the ex-
periment, i.e., all changes excluding the changes during Start-
Gap and End-Gap. All these experimental changes are used for
10-fold cross-validation. Column “ExpBR” is the ratio of the
buggy changes in the experimental changes. For our online
change classification, we collect data for the multiple runs
from the experimental changes as described above. “TrSize”
is the average size of training sets in all runs, while“TSize” is
the total number of test instances in all runs combined. “NR”
is the number of runs for each project.

We conduct an additional experiment on selected top de-
velopers because the overall precision of online change clas-
sification is low. We want to show that we can achieve higher
precision on top developers, following previous work [17]. We
rank developers by the total number of bugs in their commit

history. We pick the top 10 of the developers on the list; then
we select the developers whose changes allow for at least two
runs and the precision of the first run is higher than 60%.

C. Classification Algorithms and Experiments

We use alternating decision tree (ADTree [39]) in Weka [24]
as the classification algorithm, since it performs best in
previous work [17]. ADTree has two parameters: one is the
maximum iteration time, and the other determines the number
of paths to search for building the tree. We tune the maximum
iteration time of ADTree the same way as previous work [17];
and finally we set 10 as the maximum iteration time. We set
the default value, i.e., -3, for the second parameter to search
all possible paths to find the best model.

After we obtain all the preliminary results from the above
setting, we apply the resampling and the updatable classi-
fication techniques (Section III). We use Weka [24] for all
the resampling and updatable classification techniques except
the simple duplicate method because Weka does not have an
implementation of it.

We experiment with following parameter values of the
approaches. We report the highest precision for each project, as
high precision is crucial for adoption. The number of nearest
neighbors in SMOTE ranges from 2 to 10. The percentage
of the minority class duplications is within the range (50, 80,
100, 200, 300, 400, 500). For spread subsample, we select the
best among all the ratio between the two classes varying from
1:1–10:1. As such, whether to adjust the total weight of the
classes depends on the results. For the resampling with/without
replacement method, all the combinations of with/without
replacement and original/uniform distribution of input data are
used. The output percentage of the sample size is in the same
range as the SMOTE range list.

After tuning, the updatable classification algorithms choose
the following values for different parameters: for the Bayes,
we do not uniform the distribution of input data. Both IBK
and LWL use the linear nearest neighbor search algorithm;
and IBK chooses one nearest neighbor. The global blending
percentage in the KStar is set to 20%. The default settings
(10 iterations, no internal cross-validation, and reweighting for
boosting) are used for LogitBoost. NNge has two parameters:
the number of attempts of generalization and the number of
folders for computing the mutual information. For SPegasos,



the hinge loss function is used, the regularization constant is
set to 0.0001, and the epochs is set to 500.

D. Evaluation Metrics

We use the commonly used metrics [4], [40] to measure
the results. They are 1) precision, the percentage of correctly
predicted buggy changes in all the changes which are predicted
buggy; 2) recall, the percentage of correctly predicted buggy
changes in all the changes which are real buggy; and 3) F1-
score, F1 in short, the harmonic mean of the precision and
recall.

VI. RESULTS

This section presents the experimental results. We focus
on discussing the improvement on precision because a high
prediction precision is crucial for the adoption of change
classification in practice as explained in Section I. We answer
the following research questions (RQ):

A. RQ1: Does cross-validation produce false higher preci-
sions?

Table II shows that the precisions of the basic online
change classification are 18.5–59.9% on the seven evaluated
proprietary and open source projects. The precisions using
cross-validation are 55.5–72.0%, which are much higher than
those of basic online change classification, the one applicable
in practice. The gap on precision is 7.6–37.0 percentage points
(pp.) with an average of 18.4 pp. The gap on F1 is 4.4–46.7
pp., with an average of 26.6 pp. The results show that cross-
validation provides false higher precisions and F1s.

B. RQ2: What is the effect of resampling and updatable
classification on classification performance?

Table II shows that the precisions of online change clas-
sification with resampling techniques are 33.3–73.7%. Com-
pared to the basic online change classification (“Baseline” in
Table II), resampling techniques increase precision by 12.2–
89.5%, which is 6.4–34.8 pp. (13.2 pp. on average). The
precisions of online change classification with updatable clas-
sification are 30.9–59.7%. Updatable classification improves
the precision of the baseline by 8.4–67.0% which is 3.8–17.3
pp. (10.6 pp. on average) for four projects. For the other three
projects, it reduces the precision by 3.4 pp. on average.

Recall that we select the highest precision among all runs
with different parameters, because we favor higher precision
over higher recall. The trade-off between precision and recall
is well understood: while one increases precision, one might
sacrifice recall [1]. F1 is the balanced measure of precision and
recall. If one prefers a higher F1, one can select the highest F1
among all runs instead. Therefore, we have also obtained the
performance results by selecting the highest F1 of all runs for
the three techniques—the basic online change classification,
resampling, and updatable classification. These results show
that resampling increases F1 by 2.2–417.2% over the basic
online change classification which is 0.5–30.5 pp., 13.9 pp. on
average, for all seven projects; while updatable classification

TABLE II
OVERALL CHANGE CLASSIFICATION RESULTS. P IS THE PRECISION. R IS

THE RECALL. THE HIGHEST METRIC VALUE AMONG THE THREE
FLAVOURS OF ONLINE CHANGE CLASSIFICATION ARE BOLDED.

Data Model P R F1

Proprietary

Cross-Validation 55.5% 12.3% 20.1%
Baseline 18.5% 13.6% 15.7%
Resampling 33.3% 7.1% 11.7%
Updatable Classification 30.9% 31.1% 31.0%

Linux

Cross-Validation 59.0% 49.0% 54.0%
Baseline 38.9% 4.0% 7.3%
Resampling 73.7% 0.9% 1.8%
Updatable Classification 47.9% 3.0% 5.6%

PostgreSQL

Cross-Validation 65.0% 58.0% 61.0%
Baseline 57.4% 30.9% 40.2%
Resampling 67.3% 9.6% 16.8%
Updatable Classification 50.8% 46.7% 48.7%

Xorg

Cross-Validation 69.0% 62.0% 65.0%
Baseline 42.4% 15.6% 22.8%
Resampling 49.1% 6.3% 11.1%
Updatable Classification 59.7% 7.5% 13.4%

Eclipse

Cross-Validation 59.0% 48.0% 53.0%
Baseline 45.1% 17.2% 24.9%
Resampling 57.6% 9.1% 15.7%
Updatable Classification 48.9% 11.9% 19.1%

Lucene

Cross-Validation 58.0% 46.0% 51.0%
Baseline 46.2% 21.7% 29.5%
Resampling 52.6% 15.8% 24.3%
Updatable Classification 43.9% 31.5% 36.7%

Jackrabbit

Cross-Validation 72.0% 72.0% 72.0%
Baseline 59.9% 41.7% 49.2%
Resampling 67.2% 21.3% 32.3%
Updatable Classification 58.6% 58.7% 58.6%

improves F1 by 21.1–370.2%, which is 4.4–27.0 pp., 11.9 pp.
on average, for all seven projects.

In summary, online change classification with resampling
generally improves the precision of the basic online change
classification, while updatable classification only improves
precision under certain circumstances.

C. RQ3: What classification performance can we achieve on
more predictable developers?

Despite the precision improvement, the overall precisions of
all time sensitive change classification techniques are still low.
Previous work—personalized defect prediction [17]—shows
that some developers may be more predictable than others,
i.e., we may achieve higher prediction performance on some
developers. Therefore, we select top developers according to
the standards described in Section V, perform time sensitive
change classification on those more predictable developers,
and choose the best results for each developer. Table III shows
the weighted average performance of those more predictable
developers. In practice, we can focus on predicting the changes
from these developers to increase the chance of successful
adoption of change classification in the software development
process.

The result demonstrates that with better data selection,
we can achieve higher precision than the basic techniques.
The weighted average precisions are 70.2-100.0% for the
more predictable developers from the seven evaluated projects,
which are much higher than the overall precisions.



TABLE III
TOP DEVELOPERS RESULT. DEV# IS THE COUNT OF SELECTED

DEVELOPERS. P IS PRECISION. R IS RECALL.

Project Dev# P R F1
Proprietary 5 75.0% 11.8% 20.3%
Linux 2 85.7% 54.5% 66.7%
PostgreSQL 3 73.2% 16.5% 26.9%
Xorg 2 100.0% 12.3% 22.0%
Eclipse 3 70.2% 7.9% 14.2%
Lucene 3 78.5% 10.1% 17.9%
Jackrabbit 4 78.5% 21.8% 34.1%

TABLE IV
THE RESULTS OF THE SELECTED DEVELOPER MODELS. DEV IS THE

DEVELOPER ID. P IS PRECISION. R IS RECALL.

Dev Technique P R F1
1 Resampling 100.0% 100.0% 100.0%
2 Updatable 100.0% 5.9% 11.1%
3 Resampling 100.0% 50.0% 66.7%
4 Resampling 100.0% 33.3% 50.0%
5 Resampling 100.0% 50.0% 66.7%
6 Updatable 100.0% 6.7% 12.5%
7 Resampling 100.0% 6.7% 12.5%

As discussed in Section IV, we apply online change clas-
sification techniques on the latest changes of the proprietary
project in our case study. To find more predictable developers,
we build prediction models for more developers in the propri-
etary project and select seven developers on whose changes we
can achieve 100% precision (Section IV). The test sets contain
79–490 changes for these seven developers. Table IV shows
the prediction performance of the seven selected developers.
Although the recalls are low, the precisions are high, which is
crucial for the case study. Our results and lessons of this case
study are discussed in the following section.

VII. LESSONS LEARNED

a) Developers need to be convinced and prediction re-
sults need to be actionable: One open challenge is to convince
developers to use defect prediction results. Developers are
more likely to use prediction results if they believe the results
and can act on the results, i.e., the results are actionable.
Through our interaction with developers, we identified three
possible directions to address this challenge: 1) presenting an
explanation so that developers can understand and believe the
prediction, 2) showing the prediction precision on historical
data and how it could have helped developers find the bugs
they missed not having had the prediction, and 3) integrating
prediction results with test suites to prioritize test cases, e.g.,
upon the prediction of a buggy change, test cases related to the
change are executed automatically. We have experimented with
1) in our case study, and the experience and lessons learned
are in the following two subsections. In the future we would
like to explore 2) and 3), and combinations of them.

In addition, we would also like to explore other approaches
of integrating change classification, e.g., for risk management,
quality control, process improvement, and project planning,
where the prediction results are presented to other stakeholders
such as managers and QAs.

b) Interpretable and accurate models are needed: Both
previous work [17] and our experiments show that ADTree
generally outperforms other classification algorithms such as
the traditional decision tree (J48) and Naive Bayes. The
ADTree algorithm assigns each feature a weight and adds up
the weights of all features that a change satisfies. If this sum
of weights is over a threshold, a change is predicted buggy.
However, the weights are typically non-integers. For example,
if a change contains a module operator (%), then it may receive
a weight of 0.13 according to an ADTree model. Developers
would find such numbers confusing and unjustified. On the
other hand, J48 models are more interpretable. A J48 model
may show that 50 out of the 50 changes in the past that
contain a module operator are buggy. Developers find this J48
explanation more understandable in our case study.

Since ADTree achieves a higher precision, we use the
predictions from ADTree. For explanation, we obtain the X-
out-of-Y numbers from ADTree models. Since this is not
part of the ADTree implementation in Weka, we extend
the implementation with this interpretation functionality. An
example of our prediction results is:

This change is predicted buggy with a
confidence of 100%. The possible reasons are:
> The change contains 1 or fewer "len".
> The change contains 1 or fewer "error".
> The change contains 1 or more "function-name".
> The change contains 1 or more semicolons(;).
>> 35 out of 35 changes satisfying the above
conditions contain bugs.
> The change contains 3 or fewer "char".
> The change contains 1 or more "variable-name".
>> 320 out of 407 changes satisfying the above
conditions contain bugs.

The function and variable names are kept anonymous for
confidentiality. The bug in this change has been fixed, and
this explanation points directly to the bug causes: the variable
“variable-name” and function “function-name”. The
developers misused the function “function-name”, which
is a library function widely used outside the studied proprietary
project. The variable suggests that the program misbehaves
under the context “variable-name”. The variable name is
specific to the target project, indicating that cross-project pre-
diction models may have difficulty producing this explanation
or predicting this buggy change, and project-specific prediction
models are needed. Since the function name is generic, a cross-
project prediction model may be able to identify a bug pattern
across projects to predict this buggy change.

The results and experience suggest that interpretable models
are crucial for the adoption of change classification. There
is little work on building accurate and interpretable models
for software defect prediction. New and improved techniques
that are both interpretable and accurate for software defect
prediction are needed.

c) Explanations need to be filtered and refined: The
classification algorithms use a statistical approach to build
models. These algorithms are unaware whether a feature or
an explanation from its model makes sense to developers. For



example, the explanation that “the change contains 1.5 or more
module operators (%)” makes little sense since the number
of module operators must be an integer. A better explanation
is needed. Therefore, we change such numbers to integers in
our explanation. The refined explanation becomes “the change
contains 2 or more module operators (%)”.

In addition, many explanations are non-code metrics, which
are unactionable. Assume every Friday is an internal release
deadline and developers code under more pressure, thus
introducing more bugs. However, the explanation that “the
change was committed on Friday” does not help developers:
it provides little for developers to act on the change. In
contrast, code metric related explanations are more actionable.
For example,the explanation “the change contains a module
operator” allows developers to double check whether the
module operator has been used properly.

Complex features are less useful for explanation because
they may be difficult for developers who are non-conversant
with the features to understand. For example, we do not
present characteristic vectors to developers. We would like to
explore more approaches to make complex features easier for
developers to understand in the future.

d) Imbalanced defect data requires new solutions to
improve prediction precision and recall: Software typically
has imbalanced data for defect prediction. Although we can
achieve reasonable precisions for selected developers, the
overall precision is still low. Therefore, we need new solutions
including new algorithms and new features to improve the
precision and recall of change classification.

VIII. THREATS TO VALIDITY

a) Evaluated Projects: We evaluate the change classi-
fication models on seven projects, which may not represent
all software. We mitigate this threat by selecting projects of
different functionalities (operating systems, servers, and desk-
top applications) that are developed in different programming
languages (C and Java) with different development paradigms
(proprietary and open source).

b) Labeling: Following previous work [21], the labeling
process is automatically completed with the annotating or
blaming function in VCS. It is known that this process can
introduce noise [14], [17], [27]. Manually inspection of the
process shows reasonable precision and recall on open source
projects [17]. The precision and recall of the proprietary
software are much higher. Previous work [14] shows that this
noise level is acceptable.

c) Data Selection: Our experiments use parameters and
thresholds to choose a better model. Different parameter and
threshold values may produce different results. We would like
to study the impact of these design choices in the future.

d) Case Study: We only select developers with 100%
precision for the case study. We choose the models with a
high precision, because too many false positives would be
counter-productive for adoption. This limits the possibility for
more developers to participate in the field trial. Therefore,
the feedback from the developers may not be representative.

Extending our case study to more developers and reducing the
impact of confirmation bias [41] remain as our future work.

IX. RELATED WORK

Several studies examine how well file-level defect prediction
performs in practice and what developer-desired characteristics
for prediction tools are [16], [19], [42], [43]. In a short pa-
per [44], Weyuker, Ostrand, and Bell reflect on how to measure
the impact of file level prediction in practice and suggest
possible approaches. This paper applies change classification
instead of file classification in practice. In addition, we provide
developers an explanation of the prediction, which was lacking
in these studies. In this way, we not only help the testing
process, but also try to help accelerate the detection after
presenting the prediction results.

Time sensitive and online machine learning [45] has been
used to predict the evolution size of software [9]. Previous
work [19] uses models built from previous software releases
to predict on later releases. BugCache [12] uses the online
concept to build a cache for predicting software defects. This
paper applies the online machine learning concept to build
models to predict buggy changes.

Software defect prediction uses a variety of machine learn-
ing algorithms, such as code base ensemble learning [46],
Naive Bayes [17], compressed C4.5 [47], ADTree [17],
cost-sensitive boosting neural network [48], dictionary learn-
ing [49]. This paper applies ADTree, resampling, and updat-
able classification techniques to address the specific challenges
of applying change classification in pratcice. To the best of our
knowledge, we are the first to apply resampling and updatable
classification techniques to change classification.

Many techniques are proposed to address the imbalanced
data challenge, i.e., oversampling [50], undersampling [38],
SMOTE [30], SMOTEBoost [51], negative correlation learn-
ing [52], cost-sensitive learning [48], data cleansing [53], and
coding based ensemble learning [46]. We apply four of the
resampling techniques to address the data imbalance issue.
More novel resampling techniques remain the future work.

X. CONCLUSION

We apply and adapt online change classification to address
the incorrect evaluation presented by cross-validation, and
apply the resampling techniques and updatable classification
to improve the performance. Our evaluation on one proprietary
and six open source projects shows that both resampling tech-
niques and updatable classification improve the precision by
12.2-89.5% or 6.4–34.8 percentage points. Our case study and
experiments show that new approaches to convince developers
to use prediction results are needed. In addition, interpretable
prediction models are needed for software defect prediction,
and new techniques are needed to improve the prediction
precision for wider adoption in industry.

In the future, we would like to study the impact of our
data selection, conduct a larger study on more developers, and
propose new techniques to improve the precision of change
classification, e.g., using features from BTS. Furthermore,



we would like to explore other approaches of integrating
change classification, e.g., for test case prioritization, risk man-
agement, quality control, process improvement, and project
planning, where the prediction results are presented to various
stakeholders such as developers, managers and QAs.
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