
iKernel: Isolating Buggy and Malicious Device Drivers Using Hardware
Virtualization Support

Lin Tan, Ellick M. Chan, Reza Farivar, Nevedita Mallick
Jeffrey C. Carlyle, Francis M. David, Roy H. Campbell

University of Illinois at Urbana-Champaign
201 North Goodwin Ave, Urbana, IL 61801

{lintan2, emchan, farivar2, nmallic2, jcarlyle, fdavid, rhc}@uiuc.edu

Abstract

The users of today’s operating systems demand high re-
liability and security. However, faults introduced outside
of the core operating system by buggy and malicious de-
vice drivers can significantly impact these dependability
attributes. To help improve driver isolation, we propose
an approach that utilizes the latest hardware virtualization
support to efficiently sandbox each device driver in its own
minimal Virtual Machine (VM) so that the kernel is pro-
tected from faults in these drivers. We present our imple-
mentation of a low-overhead virtual-machine based frame-
work which allows reuse of existing drivers.

We have constructed a prototype to demonstrate that it
is feasible to utilize existing hardware virtualization tech-
niques to allow device drivers in a VM to communicate with
devices directly without frequent hardware traps into the
Virtual Machine Monitor (VMM). We have implemented a
prototype parallel port driver which interacts through iKer-
nel to communicate with a physical LED device.

1 Introduction

The users of today’s operating systems demand high re-
liability and security, however, software bugs and malicious
attacks can greatly impact these attributes. Despite exten-
sive testing and validation techniques, many bugs still es-
cape and remain in released software.

The primary cause of most operating system failures is
due to errors in the execution of extension code, such as
device drivers inside the kernel. Previous work [4, 16] has
shown that device drivers are responsible for a dispropor-
tionately large number of bugs. These faults are mainly
due to device driver code written by third party vendors.
Since typically 70% of an operating system consists of de-

vice drivers, the opportunity for faults in the driver subsys-
tem is significantly higher. A malicious device driver, oper-
ating in kernel mode, can crash the whole operating system
or compromise its integrity because of unrestricted access
to resources. Since drivers are the main source of operating
system failures, this paper focuses on how to make operat-
ing systems more tolerant to faults in drivers.

Various techniques to prevent operating system failures
caused by device drivers have been proposed [16, 12, 17,
7, 10, 9]. Many of these approaches [16, 17, 7, 14] do not
address driver code which is intentionally malicious. One
of these approaches is based on sandboxing device drivers,
which acts as a protection layer [16]. Some are based on
implementation using a type-safe language which will pre-
vent errors prior to code execution [17]. Another approach
is based on controlling the execution flow of driver code [7].

Microkernel and virtual machine-based approaches,
such as [12, 9] can provide security against malicious code,
but the communication between the driver and the applica-
tions in these approaches is done using a heavyweight mes-
sage passing approach which can have a large overhead in
terms of latency of request and response time.

Furthermore, previous approaches are chiefly based on
software techniques and none of them leverages current en-
hancements made by system architecture vendors to the
hardware, such as both Intel’s and AMD’s processor sup-
port for virtualization.

1.1 Contributions

We propose a secure and reliable architecture, called iK-
ernel1, which utilizes the latest hardware virtualization sup-
port to protect a kernel from both buggy and malicious de-
vice drivers. Our approach is based on the idea that a device
driver isolated in a separate virtual machine will minimally

1iKernel stands for isolation Kernel

affect the host operating system or drivers running on other
virtual machines. Even if a driver crashes, its effect will
be isolated to the virtual machine on which it is running.
The Virtual Machine Monitor can stop this virtual machine
and restart it to transparently recover without affecting the
host kernel or other virtual machines. Drivers running on
virtual machines communicate with the host kernel using
shared memory communication, which provides better per-
formance in comparison to message-passing based commu-
nications. With strong virtual machine isolation guarantees,
it is as safe and secure as message passing.

We are the first, to the best of our knowledge, to show
that it is feasible to utilize commodity hardware virtual-
ization support to allow device drivers in a Virtual Ma-
chine(VM) to communicate with devices directly, without
incurring significant trap overhead. We have implemented
direct communications between a Linux parallel port driver
in a VM and an LED peripheral connected to the parallel
port.

We believe that hardware-assisted virtualization can pro-
vide at least two advantages: (1) simplification of the iso-
lation mechanisms; and (2) the potential of providing per-
formance benefits over software-based virtualization tech-
niques. We present the remainder of the paper with ref-
erences to Intel’s virtualization technology, but the same
concepts apply to AMD’s or any other similar hardware-
assisted virtualization technologies.

2 Intel VT Background

Intel has recently launched Pentium-based processors
supporting the new Intel Virtualization Technology (IVT).
Formerly known as Vanderpool, this technology provides
hardware support for virtualization. A Virtual Machine
Monitor (VMM) is a very thin privileged “hypervisor”
which resides above the physical hardware. Virtual ma-
chines (VM), running on top of the VMM, all run at a re-
duced privilege level; code running inside a VM including
an operating system is said to be de-privileged. One or more
of these VMs can be allowed to access physical resources
and made responsible for I/O processing and sharing. In our
evaluation, we demonstrate and analyze the performance of
one VM running Linux with a virtual device driver which is
used by the host operating system. With this approach, we
can use the device drivers in their unmodified form and still
achieve sufficient driver isolation.

3 Overall System Architecture

The iKernel system is designed to provide strong isola-
tion mechanisms for device drivers using hardware-assisted
virtual machine technology.

In the iKernel system architecture, most device drivers
are designed to run in their own virtual machine. The host
kernel acts as the primary OS environment of the comput-
ing system which will run all of the user processes. Light-
weight communication stubs are placed in both host and
guest OSes, which can communicate with each other us-
ing shared memory mechanisms. Shared memory commu-
nication mechanisms are chosen so that communication be-
tween stubs incurs the least overhead. The host stub pro-
vides the same interface to the operating system as the orig-
inal driver. For example, a typical Linux driver provides
the open, close, read, write and ioctl functions, but instead
of executing the request, iKernel forwards the information
to the stub driver which runs in the guest virtual machine.
The guest stub driver will then relay the call to the real de-
vice driver functions, which also run in the guest virtual
machine.

If a device driver fails, all damage is isolated to the
driver’s guest virtual machine environment and cannot cor-
rupt the host kernel memory. Similarly, a malicious de-
vice driver cannot access the host kernel’s data structures.
Although there is a shared memory communication chan-
nel between the device driver virtual machine and the host
kernel, the interface can be well-defined and therefore the
chance of error propagation can be minimized.

Figure 1 depicts a schematic diagram of the iKernel sys-
tem architecture. The kernel to be protected resides in the
host. To prevent drivers from corrupting each other, each
driver can have its own VM instance. To conserve system
resources, a system designer may collocate several drivers
into a single VM. The VM driver stubs will accept inter-
cepted calls from the host driver stubs made by the host
kernel and invoke the actual driver code in the VMs. The
host driver stubs will process requests from the VM driver
stubs and invoke host kernel utilities. These stubs allow
the implementation of unmodified devices to be used in our
system.

Our system uses the KVM virtual machine built into
Linux 2.6.20 for the host OS and virtual machine monitor.
KVM affords us a lightweight virtual machine that operates
with the Intel VT-x technology. Our guest driver kernels are
also based on Linux 2.6.20.

There are two key requirements to the design of the iK-
ernel system:

• The ability to delegate direct control of a physical de-
vice to a device driver running in a guest virtual ma-
chine.

• An efficient communication channel between the host
and the guest virtual machine.

Raw Hardware with Virtualization Support

Shared Memory Communication
Linux Kernel Running KVM

Minimal
Linux

+
Drivers 1

Minimal
Linux

+
Drivers 2

Minimal
Linux

+
Drivers N

VM Driver
Stub

VM Driver
Stub

VM Driver
Stub

Host Driver
Stub

…

Figure 1. The iKernel Architecture

3.1 VM Direct Access to Devices

One feature of iKernel is the ability to assign a physical
device to a specific virtual machine. When virtualizing an
I/O device, it is necessary for the underlying virtualization
software to service several types of operations for that de-
vice. Interactions between software and physical devices
include the following:

• Device discovery: a mechanism for software to dis-
cover, query, and configure devices in the platform.

• Device control: a mechanism for software to commu-
nicate with the device and initiate I/O operations.

• Data transfers: a mechanism for the device to transfer
data to and from system memory. Most devices sup-
port DMA in order to efficiently transfer data.

• I/O interrupts: a mechanism for hardware to be able to
notify the software of events and state changes.

Current virtualization techniques can be divided into
three broad categories with regard to how they manage the
I/O devices of a system.

Emulation: The first category is device emulation, which
provides a set of virtual I/O devices for any guest virtual ma-
chine conforming to a specific hardware configuration; this
configuration may not necessarily be identical to that of the
host. Device drivers running in the guest virtual machine ac-
cess these virtual devices as if they were physically present.
Any device accesses are translated to the corresponding re-
sources on the host. For example, a virtual Ethernet device

might forward packets to an actual Ethernet device on the
host. The primary drawback of this approach is that it is un-
able to provide support for a variety of application-specific
devices. Device models chosen for virtual machines that
use this technique are generally based on a simple interface.
However, an unoptimized approach which attempts to di-
rectly mimic real hardware would have to conform to the
exact specifications of the device, including any hardware
bugs. This can result in reduced performance, as each oper-
ation usually entails a trap to some software which emulates
the specific behavior of the hardware device.

Para-virtualization: The second category is called para-
virtualization. This is the method used by Xen [6]. In this
model, the guest OS is aware that it is running in a virtu-
alized environment, and therefore doesn’t expect to inter-
act with physical hardware on the system. The drivers in
the guest OS are modified so that they communicate us-
ing higher level hypervisor abstractions. The VMM pro-
vides a simplified interface for the guest OS, for example,
instead of trying to directly access the control registers and
buffers of a network interface card, the guest OS will trans-
mit high-level requests of network packets to the VMM, and
the VMM subsequently directs the physical network inter-
face of the system to perform this request.

The merit of this method is evident in the reduced over-
head when compared to device emulation. However this
technique is not perfect, since the drivers for a guest OS in a
paravirtualized system may have to be partially re-written.
With thousands of device drivers available today, this ap-
proach requires significant effort to convert existing drivers
to use this technique.

Hybrid: In an effort to retain some of the security and
reliability benefits of hypervisor-style VMM architectures,
while simultaneously leveraging the facilities of an exist-
ing OS and its associated device drivers as in an OS-hosted
VMM, some VMMs adopt a hybrid driver model. In a hy-
brid VMM architecture, a small hypervisor kernel controls
core CPU and memory resources, but I/O resources are pro-
grammed by device drivers that run in a de-privileged ser-
vice OS. The service OS functions in a manner similar to
that of a host OS in that the VMM is able to leverage its
existing device drivers.

While a hybrid VMM architecture offers the promise of
retaining the best characteristics of hosted and hypervisor-
style VMMs, it does introduce new challenges, including
new performance overheads, due to frequent privilege-level
transitions between the guest and service OS through the
hypervisor. This technique is employed by LeVasseur et al.
[14], in which the device driver hosted on its native OS di-
rectly controls its device via a pass-through enhancement to
the virtual machine which permits it to access the device’s
register and ports and receive hardware interrupts. In or-
der to prevent an attack using DMA mechanisms, this pass-
through method needs to perform interpretation of DMA
requests for the device, which can be a significant source of
overhead.

3.1.1 Our Approach

Our approach is different from existing approaches in that
is not a pure software solution: we utilize hardware exten-
sions, specifically Intel VT-x technology, to assign control
of physical devices to drivers residing in virtual machines.
This allows us to use hardware enforced isolation to pro-
tect the core OS running in the VMM from device drivers
running on the virtual machines without the overhead of
VMexits. Using VT-x device drivers running virtual ma-
chines can directly access the I/O ports and registers of a
device.

While this works well for device drivers that only need
access to I/O ports and memory-mapped registers, the cur-
rent VT-x implementation does not currently support DMA
mapping or interrupt remapping. This is an important draw-
back because it means that complete control of a hardware
device cannot be completely delegated to a guest machine.
It is left to the host itself to route interrupts to the appro-
priate VM and to handle DMA transactions. DMA trans-
actions must be handled by the host so that a device driver
cannot use DMA to access memory outside of the memory
assigned to it in the virtual machine.

In order to achieve the desired performance and main-
tain the isolation, security, and reliability properties desired
from virtual machines efficient hardware mechanisms for
constrain all I/O operations, including DMA and interrupts,

are required. These necessary mechanisms are provided by
the recent Intel VT-d extensions; however, at the time of
this writing, hardware equipped with these extensions was
not available. Therefore, the experiments described in this
paper use only the Intel VT-x technology. A more detailed
discussion of this issue can be found at Section 4.2.

3.2 Shared Memory Communication be-
tween the Host and the VM

In the iKernel architecture, there are two roles: driver
kernel and host kernel. The host kernel is a standard Linux
environment where user applications may run. The driver
kernel is a minimal Linux kernel isolated in a KVM virtual
machine. The host kernel is protected from the driver kernel
by the virtualization hardware.

The host and driver kernels communicate with each other
to service driver requests. The communication channel we
chose to use was shared memory, since other techniques
such as message passing tend to have high overheads if
messages are frequently exchanged. In our shared mem-
ory implementation, the host and driver kernels define the
messaging format to be the most efficient representation for
the task. This might include batching requests to minimize
overhead costs.

The communication mechanism relies on a shared mem-
ory region between the host and driver kernels. This mem-
ory region is strictly isolated from the rest of the system, so
the host kernel is not directly affected if the driver kernel
fails. The negotiation for this shared memory area is per-
formed by the driver and host kernels. Typically, the driver
kernel will export a page within its memory space for the
host kernel to access. To protect the confidentiality and in-
tegrity of the host kernel, the shared page must be allocated
from the untrusted guest VM. This prevents an attack where
a malicious guest may attempt to flood the host with shared
page requests, which can exhaust the host of non-pageable
kernel memory.

The VM and the host driver stubs agree on a common
communication format to interoperate. For example, in the
parallel port driver that we have implemented, the first three
bytes of the shared region is used for the kernel to write the
data to be outputted on the device LED. Using the common
messaging protocol, the parallel port driver can then read
the three bytes periodically to process any pending requests
and perform the appropriate actions on the physical hard-
ware device.

The details of our shared memory implementation will
be discussed in Section 4.3.

Entity Size
Driver kernel size 2 mb
Root file system size 10 mb
Memory overhead of driver VM 8 mb
QEMU memory overhead 27 mb

Table 1. Size overhead of the driver VM

4 System Implementation

In this section, we discuss the implementation details of
iKernel. We demonstrate the feasibility of the iKernel ap-
proach by isolation of an unmodified Linux parallel port de-
vice driver operating in an unprivileged iKernel VM.

We run a minimal stripped down kernel with a small
root file system to reduce memory and performance over-
head of each driver VM. Table 1 shows the relative sizes
of the driver kernel, file system image and memory over-
head. This can be made very small to avoid the overhead
of a traditional virtual machine which may weigh in at hun-
dreds of megabytes of disk space, and dozens of megabytes
of memory overhead. Based on the cumulative overhead of
the QEMU emulator with 8 mb of guest memory, we ob-
served the total overhead to be around 27 mb per driver VM
instance. Given the size, we expect that this approach will
be feasible to run several device drivers on a modern ma-
chine with an average of 1gb of memory without significant
performance degradation.

Although we made an attempt to reduce the size of the
guest VM, there is still room to improve the memory over-
head of QEMU when used as a driver VM. For example, we
can disable the network, audio, video and disk emulation as
our system can run off a small kernel with a RAM disk.

4.1 System Setup

For our experiments, we used a Dell Precision 390 work-
station with Intel VT-x virtualization technology. We have
installed the most recent Ubuntu - version 7.04 built on
Linux kernel 2.6.20 with KVM and QEMU integrated as
a loadable driver module, which serves as our host OS run-
ning KVM.

KVM has two components:

• A device driver for managing the virtualization hard-
ware; this driver is represented as a character device,
/dev/kvm, which exposes a VM management interface
to user space. Opening this device using the kvm client
creates a new virtual machine which can then be ma-
nipulated with a set of ioctl() calls. Each virtual ma-
chine is represented as a process in the host OS.

• A user-space component based on QEMU for emulat-
ing PC hardware.

Effectively, the KVM driver adds a third execution mode,
guest mode, in addition to the traditional kernel and user
modes. Guest mode effectively acts as a separate isolation
sandbox, which has a separate memory map, I/O permis-
sions, and CPU state. Guest mode memory is accessible to
the host kernel, but the guest kernel cannot directly access
host memory in our architecture. By default, guest mode
has no access to any I/O devices; any such access is in-
tercepted and directed to user mode for emulation by the
helper QEMU process. We have modified guest mode for
iKernel so that hardware accesses are passed through to the
hardware directly.

4.2 VM Direct I/O Access

The Intel VT-x technology provides VMs with an op-
tional mechanism to communicate with the hardware de-
vices directly without trapping to the host kernel. However,
this feature is not enabled by default in KVM.

In the default configuration of KVM, the hardware gen-
erates a trap to the host kernel (a VMexit) when a VM tries
to perform an I/O operation, so the drivers in a VM will
not be able to communicate with the devices directly. This
is the case because the KVM initialization code sets the
VMX Unconditional I/O hardware bit to 0 for uncondi-
tional VMexits on VM I/O operations.

To enable direct communication between a VM and a
device, we need to set up two parameters by modifying the
Linux KVM implementation. These parameters, which pro-
vide access control to I/O ports, are located in the hardware
VM control structure. Since Linux KVM by default does
not initialize these structures, we have modified the kvm
driver to do so.

The first parameter we need to set is the activate I/O
bitmaps bit, which controls whether the hardware should
consult I/O bitmaps to restrict executions of VM I/O in-
structions. If this bit is set to 0, it will not use the I/O
bitmaps, but instead uses the Unconditional I/O bit to al-
low or disable VM I/O accesses to all I/O ports. This is not
desirable because we only want to enable direct VM I/O ac-
cesses for certain I/O ports. Therefore, we set the activate
I/O bitmaps bit to 1 so that the hardware will use the I/O
bitmaps for fine-grained access control.

The I/O bitmaps indicate which hardware accesses to I/O
ports should cause VMexits. There are two I/O bitmaps, A
and B. Each of them is 4KB in size. I/O bitmap A contains
one bit for each I/O port in the range 0x0000 to 0x7FFF, and
I/O bitmap B contains one bit for each I/O port in the range
0x8000 to 0xFFFF. If any of these bits are set to one, a VM
I/O access to that port will cause a VMexit to the monitor.

To set up the I/O bitmaps, we allocate two pages of
free memory (4KB each), and then fill these pages with
all bits set, and then clear bit 0x378, which is the ad-

dress of the parallel port. Then, we obtain the physical
addresses of these two bitmap pages, and send the phys-
ical addresses to the KVM function vmcs write64(),
which will set up the hardware bits. The core instruc-
tions are shown in Figure 2. The vmx io bitmap
contains the host virtual address of the first bitmap
page. The IO BITMAP A and IO BITMAP B values are
0x00002000 and 0x00002002 respectively, which are
the indices into the hardware VMCS field for the two bitmap
addresses.

While the VT-d techniques provide hardware protection
against attacks exploiting DMA capable devices, we did not
experiment with VT-d in our experiments, because VT-d
hardware was not available to us at the time this paper was
written. Without direct hardware support for DMA and in-
terrupt remapping (e.g. VT-d), it is conceivable to use pure
software protection mechanisms as in previous work [12]
to protect iKernel from DMA-based attacks. Additionally,
incorporating VT-d into iKernel remains as future work.

4.3 Shared Memory Communication

We chose to allocate the shared memory region as a stati-
cally allocated memory region into the guest VM driver stub
code. The shared memory area is loaded into memory when
the driver is installed.

Whenever the host requests to send data to the parallel
port, the host driver stub will write the data to the shared
structure with the given messaging format. The VM driver
stub will process the requests periodically, and when it de-
tects a new message, it will send the data directly to the
device without interrupting the host.

5 Observations and Discussions

Performance of Hardware Virtualization Support: We
found that KVM with hardware virtualization support runs
fairly well. However, there are still known bottlenecks in
the KVM implementation. A recently released patch [8]
claims that it can improve KVM performance by reducing
VMM trapping due to the 0x80 I/O delay operation. An-
other source of overhead is that the Intel Virtualization tech-
niques have not been perfectly tuned, and in some cases can
trap more frequently than desired, which may cause per-
formance problems as illustrated by the recent work from
VMWare [2].

We measured the performance of our approach and
found that the average latency of sending a request from
the host to the driver VM was 12 ms. This number is very
close to the time slice granularity of a Linux kernel. We
suspect that the host sends a message, then within a single
time slice (10 ms), the driver VM becomes scheduled, and
processes the request. Also, the Intel Core2Duo machine

we were using has multithreading support, so the other core
may have processed a request initiated from the first core.

Latency: We performed some rudimentary experimenta-
tion with lowering the latency of the request. One exper-
iment we performed was to raise the priority of the KVM
process into the real-time FIFO class. Given this priority,
we were hoping that the KVM process would receive more
CPU cycles. In order for this strategy to be successful, the
host must allow the KVM process to be scheduled as close
to the submission of the request as possible, and the guest
kernel running in the KVM virtual machine must schedule
the driver stub at the earliest opportunity. In practice, we
did not perceive any large performance gain. We suspect
that the real-time FIFO scheduling class on our setup was
still subject to the 10 ms scheduler timeslice. Another way
to decrease latency would be to change the system’s times-
lice to be smaller so that the driver VM can be scheduled
earlier. We did not try this experiment, as changing the sys-
tem timeslice can have adverse effects on other time-critical
processes. Finally, we could optimize the scheduler to favor
the KVM process when a request is pending. We did not get
the opportunity to try this approach either.

Ideally, the host kernel should give priority to the driver
VM when a request is pending. In order to efficiently do
this, the host must know which VM contains the appropri-
ate driver. This can be done in the host stub driver, which
has a linkage to the associated driver VM. The driver VM
must also be aware of the request and schedule it as early
as possible. When the guest VM is done, it must relinquish
the processor as early as possible to be able to service any
pending requests quickly. Currently, the guest relies on run-
ning out of timeslice, or scheduling of the idle loop to pass
control back to the host. It would be better if the guest stub
driver used VM hints to tell the KVM system to yield. Alter-
natively, gang scheduling of the driver VM and host driver
stub on a multicore system may also be a good approach
to reduce latency without too many changes to the host and
guest scheduling strategies.

6 Related Work

Research in system dependability is a relatively well-
studied topic. In this section, we summarize several pop-
ular dependability approaches such as: sandboxing, system
design, safe languages, and static analysis.

Microkernel and Virtual Machine Based Approaches:
LeVasseur et al. [12] proposed executing a device driver on
its native OS within a virtual machine in order to isolate the
device driver without modifying it. Their solution is aimed
at device driver reuse and improved system dependability

vmx_io_bitmap = (char *) __get_free_pages(GFP_KERNEL, 1);
// some error checking code
...
memset(vmx_io_bitmap, ˜0, 2 * PAGE_SIZE);
clear_bit(0x378, vmx_io_bitmap);
...
vmcs_write64(IO_BITMAP_A, (unsigned long) __pa(vmx_io_bitmap));
vmcs_write64(IO_BITMAP_B, (unsigned long) __pa(vmx_io_bitmap + PAGE_SIZE));

Figure 2. Core code segment to set up the two I/O bitmaps.

by driver isolation. The architecture consists of a hypervi-
sor (privileged kernel) which multiplexes the processor and
provides protection for memory and I/O ports. The VMM
allocates and manages the resources (devices) and imple-
ments the virtualization layer. The device driver hosted on
its native OS directly controls its device via a pass-through
enhancement to the virtual machine which permits it to ac-
cess the device’s register and ports and receive hardware
interrupts. To isolate device drivers from each other, the
drivers are executed in separate and co-existing virtual ma-
chines. Any client running on top of the virtual machine
can interface with a device driver via a translation module
added to the device drivers’ OS. This module maps client
requests into sequences of device driver/native OS primi-
tives for accessing the device, and converts completed re-
quests into responses to the client. Communication between
the client running on one virtual machine and device driver
running on another virtual machine is in the form of micro-
kernel message passing. The device driver isolation helps
to improve reliability by preventing fault propagation. This
approach does not leverage the hardware support for virtu-
alization provided by Intel and AMD.

The Microkernel [13] approach appears promising, but
it cannot be applied to existing legacy operating systems
(Windows, Linux) which do not have a microkernel-based
architecture. However, our approach can be applied to these
operating systems with no modifications needed for the de-
vice driver and guest operating systems and very slight
modification to the Kernel Virtual Machine (KVM).

New Operating System Design: Choices and Singular-
ity [3, 10, 5] aim to build a secure and reliable operating
system from scratch. Although the new OSs have many se-
curity, maintenance and performance advantages, they can
not improve the reliability and security of existing operating
systems, such as Linux.

Other Approaches: Nooks [16] is a reliability subsys-
tem that greatly improves OS reliability by isolating the
OS from driver failures. It achieves this by executing each
driver in a lightweight kernel protection domain, which is

a privileged kernel mode environment with restricted write
access to kernel memory. It creates a new OS reliability
layer that is inserted between the drivers and the OS kernel.
Nooks is a departure from the virtualization approach for
improving OS reliability and fault isolation. It can be per-
ceived as virtualizing only the interface between the kernel
and the driver (instead of virtualizing the underlying hard-
ware). The design tenet of Nooks was to provide resistance
against buggy drivers, not necessarily malicious drivers.
Since Nooks still operated in privileged mode, a driver was
still capable of defeating the memory protection by chang-
ing page tables to manipulate memory mappings. The extra
permissions were granted to retain compatibility with other
privileged operations such as enabling/disabling interrupts.
Our approach runs in privileged guest mode, which allows
drivers to operate with the same semantics, but VMX pro-
tects the host kernel memory. Experiments reported in the
paper show that in a large number of fault-injection tests,
Nooks recovered automatically from 98% of the faults that
caused the OS (Linux) to crash. However, it does not pro-
vide complete isolation or fault tolerance against all possi-
ble driver misbehaviors (especially malicious ones). Since
Nooks runs extensions in kernel mode, if an extension (de-
vice driver) is deliberately designed to corrupt the system,
Nooks will not be able to prevent it.

SafeDrive [17] is language-based approach to protect ex-
tensions from corrupting or crashing the kernel. The key
idea of SafeDrive is to prevent errors in driver code from
causing any damage outside the driver. The kernel and the
driver coexist in the same protection domain and isolation
is enforced through language mechanisms. SafeDrive can
detect type safety and memory related bugs. It works by
having developers add annotations to source code and auto-
matically translating them into runtime checks to guarantee
type safety and detect many memory related bugs, such as
buffer overflows and null pointer dereferences. All this is
done at the source code level and so the costs are reduced
when compared with other approaches [16, 12]. However, it
has its own limitations: the errors it can detect and recover
from are limited to memory related bugs and type safety vi-
olations; there is no special handling for memory leak bugs;

and more importantly, it is not designed to handle malicious
driver code.

XFI [7] is based on controlling the flow of the program
by placing software guards at strategic control points of a
program and having a predetermined control flow graph for
the program devised by static analysis of the code. The
guards work by ensuring that control can only transfer to
one of the predetermined locations in code. Any deviation
from this generates an error. But placing these guards in
an already existing legacy operating system with millions
of lines of code is an extremely time-consuming task and
the process of placing the guards might miss some critical
locations.

In a hardware-based approach [14] for driver isolation on
x86 under Linux, runtime loadable modules containing de-
vice drivers code are run in lower privilege x86 rings (rings
1 and 2), and memory isolation prevents drivers from ac-
cessing kernel data directly. If a driver attempts to access
kernel memory, this violation is detected in hardware and
the offending driver is unloaded by the kernel. A new API
wrapper layer facilitates control transfers between drivers
and the kernel using x86 call gates. This approach requires
existing drivers to be recompiled (without changes) to work
with the modified kernel. Also, similar to Nooks, it does not
completely solve the problem. Drivers can corrupt them-
selves or anything else running in their ring or any lower
ring. Also, because drivers are trusted with the interrupt en-
able flag, deadlocks can occur. Finally, malicious drivers
can still cause system crashes or open security holes.

None of the four approaches above can completely pro-
tect the kernel from malicious device drivers.

7 Conclusions and Future Work

In this paper we have described the design and imple-
mentation of iKernel, a framework which provides isolation
for device drivers to increase the reliability and security of a
commodity operating system. The iKernel approach allows
device drivers to run in a virtualized environment without
incurring significant trap and messaging overhead present
in other systems. To demonstrate the feasibility of our ap-
proach, we have implemented and analyzed a prototype par-
allel port driver residing in an isolated guest driver virtual
machine utilizing Intel VT-x technology. In the future, we
plan to extend the iKernel framework to support Intel VT-d
technology and extend the iKernel to other I/O devices such
as graphics cards. Another direction for future work is to
improve driver latencies.

Acknowledgments

We thank the anonymous reviewers and Robin Snader
for their invaluable comments and help. This project was

sponsored in part by NSF CNS-0347854 (A64421), grants
from the Motorola Communications Center (Project 34) and
Microsoft (434U5L).

References

[1] D. Abramson et. al., ”Intel Virtualization Technology
for Directed I/O.” Intel technology journal, Volume
10, Issue 3, 2006.

[2] Keith Adams and Ole Agesen. ”A comparison of soft-
ware and hardware techniques for x86 virtualization.”
In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2006.

[3] Roy H. Campbell, Nayeem Islam, Ralph John-
son, Panos Kougiouris, and Peter Madany. ”Choices,
Frameworks and Refinement.” In International Work-
shop on Object Orientation in Operating Systems,
1991.

[4] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth
Hallem, and Dawson Engler. ”An Empirical Study
of Operating Systems Errors.” In Proceedings of the
Eighteenth ACM Symposium on Operating Systems
Principles (SOSP), 2001.

[5] Francis M. David, Jeffrey C. Carlyle, Ellick M. Chan,
Philip A. Reames, Roy H. Campbell, ”Improving De-
pendability by Revisiting Operating System Design.”
In Workshop on Hot Topics in Dependability, 2007.

[6] B. Dragovic et. al. “Xen and the Art of Virtualization.”
In Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles (SOSP), 2003.

[7] U. Erlingsson, M. Abadi, M. Vrable ”XFI: Software
Guards for System Address Spaces.” In Proceedings
of the 7th Operating System Design and Implementa-
tion (OSDI) 2006.

[8] Qing He. ”VMX: enable io bitmaps to avoid IO port
0x80 VMEXITs.” http://article.gmane.org/
gmane.comp.emulators.kvm.devel/2621, 2007.

[9] J.N. Herder, H. Bos, P. Homburg, A.S. Tanenbaum.
”MINIX 3: A Highly Reliable, Self-Repairing Oper-
ating System” In Proceedings of the ACM SIGOPS
Operating Systems Review, 2006.

[10] G. Hunt et. al. ”An Overview of Singularity Project.”
Microsoft Research Technical Report 2005.

[11] A. Johansson, N. Suri, ”Error propagation profiling
of operating systems.” In Proceedings of the Interna-
tional Conference on Dependable Systems and Net-
works (DSN), 2005.

[12] J. LeVasseur, V. Uhlig, J. Stoess, S. Gotz. ”Unmodi-
fied Device Driver Reuse and Improved System De-
pendability via Virtual Machines.” In Proceedings of
the 6th Symposium on Opearting Systems Design and
Implementation (OSDI), 2004.

[13] J. Liedtke, ”On Microkernel Construction.” In Pro-
ceedings of the 15th ACM Symposium on Operating
System Principles (SOSP), 1995.

[14] D.A. Kaplan. ”RingCycle: A Hard-
ware based approach to driver isolation.”
http://www.acm.uiuc.edu/projects/RingCycle/
browser/RingCycle.pdf, 2006.

[15] M. Sullivan and R. Chillarege. ”Software Defects and
their Impact on System Availability A Study of Field
Failures in Operating Systems.” In Proceedings of the
21st International Symposium on Fault Tolerant Com-
puting (FTCS-21), 1991.

[16] M. M. Swift, B.N. Bershad, H.M. Levy. ”Improving
the Reliability of Commodity Operating Systems.” In
Proceedings of the Nineteenth ACM Symposium on
Operating Systems Principles (SOSP), 2003.

[17] F. Zhou, J. Condit, Z. Anderson, I. Bagrak ”SafeDrive:
Safe and Recoverable Extensions Using Language
Based Techniques.” In Proceedings of the 7th Operat-
ing System Design and Implementation (OSDI), 2006.

