
Lin Tan
Ding Yuan

Gopal Krishna
Yuanyuan (YY) Zhou

OPERA group
University of Illinois

at Urbana-Champaign

/* iComment:
Bugs or Bad Comments? */

Lin Tan iComment

Motivation
• Software bugs affect reliability.

• Many due to mismatches between code and programmers’
assumptions.

Assumption: Caller of
reset_hardware

acquires the lock.

static int reset_hardware(…) {...

No lock
acquisition
=> A bug!

 //access shared data.
 ...
}
...

2

linux/drivers/scsi/in2000.c:

static int in2000_bus_reset(…)
{...

reset_hardware(…);
...

}

Lin Tan iComment

Prevalence of Comments
• Program comments express assumptions.

linux/drivers/scsi/in2000.c:
 /* Caller must hold instance lock!*/
 static int reset_hardware(…) {…}

3

Software Linux Mozilla

Lines of code
(excluding copyright

notices and blank lines)
5.0M 3.3M

Lines of Comment
(excluding copyright

notices and blank lines)
1.0M 0.51M

• Millions lines of comments exist in software.

• Comments are not fully utilized yet.

• Ignored by compilers and bug detection tools.

Lin Tan iComment

Code vs. Comments
Code Comment Implication
Precise Imprecise Comments are harder to analyze.

Can be tested Can NOT be tested Comments may become less reliable
as software evolves.

Harder to understand Easier to understand
Likely to read comments. Wrong
comments mislead programmers.

4

• Many assumptions are difficult to infer from source code alone.

• Inferring from source code alone may fail

• for cases that no (or only a few) places of the code follow
the assumption.

• Use comment-code redundancy to detect comment-code
mismatches.

Lin Tan iComment

Possibility (1): Bugs

 linux/drivers/ata/libata-core.c:
 /* LOCKING: caller. */
 void ata_dev_select(…) {…}

 …
 int ata_dev_read_id(…) {

…
ata_dev_select(…);
…

 }

Assumption in
Comment.

No lock is held
before calling

ata_dev_select.

}

Mismatch!
The bug is

already
confirmed by

Linux
developers
after we

reported it.

5

• Mismatches indicate:

• Possibility (1): Bugs

• Due to time-constraints or other reasons.

• Old code is not updated according to a new assumption.

A bug automatically detected by iComment:

Lin Tan iComment

Possibility (2): Bad Comments

6

mozilla/security/nss/lib/ssl/sslsnce.c:
/* Caller must hold cache lock when calling
this. */
static sslSessionID * ConvertToSID(…) {…}
…
static sslSessionID *ServerSessionIDLookup(…)
{ …

UnlockSet(cache, set);
…
sid = ConvertToSID(…);
…

}

Assumption
in Comment.

Cache lock is
released before

calling
ConvertToSID().

}

Mismatch!
The bad

comment is
already

confirmed by
Mozilla

developers
after we

reported it.

• Possibility (2): Bad comments - can cause new bugs

• Comments are not updated accordingly.

A bad comment automatically detected by iComment:

• Our paper contains bad comment examples that
already caused new bugs.

Lin Tan iComment

Challenges
• Goal: Detect comment-code inconsistencies.

• Challenges of understanding comments written in
natural language

• Various ways to paraphrase natural language

• /* We need to acquire the write IRQ lock before calling ep_unlink(). */

• /* Lock must be acquired on entry to this function. */

• /* Caller must hold instance lock! */

• Use Natural Language Processing (NLP) techniques?

7

Lin Tan iComment

NLP alone is not enough.

• NLP is far from “understanding” natural language text.

8

Noun ... Verb Noun...

Caller must hold instance lock

1. POS Tagging (acc: 97%)

3. Semantic Role Labeling (acc: 70%)
2. Chunking (acc: 90%)

Subject ObjectVerb

• Almost impossible to automatically analyze any arbitrary
comments.

• NLP only analyzes sentence structures.

• Many comments are not even grammatically correct.

Lin Tan iComment

Idea & Contributions
• Took the first step to automatically analyze comments

written in natural language to check for mismatches

• Combine Natural Language Processing (NLP), Machine
Learning, Statistics, and Program Analysis

• Automatically extracted 1832 rules and detected 60
new bugs and bad comments (19 confirmed by
developers)

• 2 topics, lock-related and call-related.

• Latest versions of 4 large software projects, Linux, Mozilla,
Apache and Wine.

9

Lin Tan iComment

Outline

• Motivation, Challenges & Contributions

• Our Approach

• Analyze comments written in natural language

• Detect comment-code inconsistencies

• Methodology & Results

• Related work

• Conclusions

10

Lin Tan iComment

What to Analyze?

• What information is useful to extract?

• What information can be checked against
code?

11

Lin Tan iComment

What is useful to extract?

• Two types of comments (examples from Linux):

• Explain code segment: /* Set the clock rate */

• Express assumptions/rules: /* Caller must hold instance lock! */

• We focus on rule-containing comments.

• Likely to be inconsistent with code.

• Likely to mislead programmers to introduce bugs.

12

Lin Tan iComment

What can be checked?

• Not everything in comments can be checked.

• Checking can only be done topic by topic.

• Race detectors - race bugs

• Purify, Valgrind, etc - memory bugs

• So our comment analysis is topic by topic.

• A general framework allowing users to choose the
topic, such as lock and call-from.

13

Lin Tan iComment

Rule Template Examples

14

ID Rule Template Examples

1 <Lock L> must be held before entering <Function F>.

1 <Lock L> must NOT be held before entering <Function F>.

2 <Lock L> must be held in <Function F>.

2 <Lock L> must NOT be held in <Function F>.

3 <Function A> must be called from <Function B>

3 <Function A> must NOT be called from <Function B>

... ...

• L, F, A and B are rule parameters.

• See our paper for many other templates supported.

• Many other templates can be added.

}lock related

}
call related

Lin Tan iComment

Extracting Target Comments

15

#A: /* return -EBUSY if a lock is held. */
#B: /* Lock must be held on entry to this function. */
#C: /* Caller must acquire instance lock! */
#D: /* Mutex locked flags */
...

• Statistics & NLP

• Correlated word filtering - automatic
• Topic keyword filtering - automatic

Take lock as the topic:

1. Sentence

Separation

2. Word

Splitting

3. POS

Tagging

/* The caller must hold the hardware lock.

* Returns NULL if function failed */

The caller must hold the hardware lock.
Returns NULL if

function failed

The lockcaller must hold the hardware

…NN
! "

MD
! "

VB
! "

DT
! "

NN
! "

NN
! "

DT
! "

Figure 5: iComment Parser Process. The output of step 4, chunking

and semantic role labeling (SRL), are not shown in this figure as they

are already presented in Figure 3.

19, 32, 33] to tell whether each word in a sentence is a verb, a noun,

etc., whether a clause is a main clause or a subclause, and what is

the subject and the object, etc.

5.2 Topic Miner
To find hot topics in program comments, we provide two topic

miners, hot word miner and hot cluster miner, that use NLP, clus-

tering and simple statistics to automatically discover hot, popular

topics from program comments. Both miners first use the NLP’s

POS tagging technique to filter out noisy words since words such

as “we”, “your” and “have” can prevent meaningful topic keywords

from being mined. Words from subclauses also introduce noise. In

addition, we need to filter explanation-based comments and con-

centrate on specification-based comments. Therefore, we consider

only comment sentences with imperative words such as “should”,

“must”, “need”, “ought to”, “have to”, “remember”, “make sure”,

and “be sure” and their variants.

After noisy words are filtered, the hot word miner uses simple

word counting, i.e., counting the number of comments in which a

word appears, to find popular nouns and verbs, which the user can

use to determine hot topics.

The hot cluster miner is more sophisticated. Specifically, since

many words are correlated with each other and are about the same

topic, the hot cluster miner clusters correlated words together in-

stead of using simple word count. For example, “lock”, “acquire”,

“release”, etc. are correlated words and are all about the same topic.

For this purpose, we use mixture model clustering [45] that builds

generative probabilistic mixture model to perform clustering be-

cause mixture model clustering is more expandable than k-mean

based clustering techniques. Section 7.5 briefly summarizes the hot

topics mined from the four evaluated open source software projects.

5.3 TR-Comment Extractor
Given a topic keyword (e.g., lock), the TR-comment extractor

identifies all comments related to the selected topic, which will later

be fed to the rule trainer and the rule generator. As mentioned ear-

lier in Section 3, a comment that contains the topic keyword is not

necessarily related to the topic. Therefore, we identify comments

that contain not only the specified topic keyword (e.g., lock), but

also at least one of the other words (such as acquire, release, hold,

etc.) that are highly correlated to the topic keyword.

To achieve the functionality above, the TR-comment extractor

first finds all words that are correlated to the specified topic key-

word, i.e., words that appear frequently and mostly in the same

comment with the specified topic keyword. For every word that

has appeared in the same comment as the topic keyword at least

once, we compute its correlation to the topic keyword using the co-

sine metric that is commonly used in statistics and data mining to

measure the correlation of two items. The cosine of a topic wordA
and word B is calculated as

Linux Mozilla
Rank Verb Cosine Freq Verb Cosine Freq

1 hold 0.182 598 hold 0.161 236
2 acquire 0.084 110 acquire 0.097 55
3 call 0.076 535 unlock 0.071 35
4 unlock 0.067 108 protect 0.065 45
5 protect 0.052 90 call 0.047 163
6 drop 0.047 113 enter 0.044 29
7 release 0.041 140 scope 0.041 41
8 contend 0.034 9 contend 0.034 2
9 sleep 0.032 72 wait 0.033 39
10 grab 0.031 49 release 0.030 55

Table 3: The top 10 words correlated to the topic keyword “lock”.

An interesting observation from the result is that the correlated words

are very similar between two different programs, Linux and Mozilla.

This indicates that programmers use similar words in comments for

similar topics, providing a good evidence to explain the good results of

cross-software training experiments (shown in Section 7.3.2) and our

claim that our training process can be done in-house using representa-

tive software.

cosine(A, B) =
P (A, B)p
P (A)P (B)

where P (A, B) is the probability that word A and word B appear

in the same comment, P (A) and P (B) are, respectively, the prob-
abilities that word A and B appear in a comment sentence. We

also tried other correlation metrics such as simple frequency count,

LIFT, and Jaccard Coefficient, all of which are similar to or worse

than cosine in terms of accuracy.

In addition to selecting a good correlation measure, we need to

address another challenge— counting different tenses of a verb and

singular and plural forms of nouns as the same word. We address

this problem by automatically querying a dictionary.

After the above treatments, the TR-comment extractor selects

the top n (default value is 10) words correlated to the topic key-
word. Using these correlated words, we extract all comments that

contain the topic keyword (e.g., lock) and also at least one of the n
correlated words (e.g., hold, acquire, etc). Doing so allows us to fil-

ter out topic-unrelated comments such as a comment from Mozilla

“file locking error” because they do not contain any word corre-

lated to “lock”.

Table 3 shows the top 10 ranked correlated verbs for lock-related

comments in Linux and Mozilla. Compared to the simple word

frequency measure, the correlation metric, cosine, is much better

since some of the words are not frequently used but they are almost

always used in the same comment with word “lock”.

5.4 Rule Trainer
As described in Section 4, the goal of the rule trainer is to use

a small set of manually labeled (manually mapped to a rule tem-

plate) TR-Comments from some representative software to gener-

ate a model to analyze unlabeled TR-Comments from the same or

different software. We use a decision tree classifier as our model

to map a comment to a rule template. In data mining and machine

learning, a decision tree (also referred as a classification tree or a

reduction tree), is a predictive model; that is, a mapping from obser-

vations about an item to conclusions about its target value. In these

tree structures, leaves represent classifications and branches repre-

sent conjunctions of features that lead to those classifications [28].

The machine learning technique for inducing a decision tree from

training data is called decision tree learning.

We use a standard off-the-shelf decision tree learning algorithm

called C4.5 Revision 8 [34], implemented in the software package

See our paper for details.

Linux hold acquire call unlock protect

Mozilla hold acquire unlock protect call

Lin Tan iComment

Classifying Comments
• Machine Learning & NLP

• Automatically classify comments to different
templates (give each comment a unique label)

16

#A: /* return -EBUSY if a lock
is held. */
#B: /* Lock must be held on
entry to this function. */
#C: /* Caller must acquire
instance lock! */
...

• Core technique: Use learning classifier automatically
built from a small set of manually labeled comments

No lock-related
rule0

Template 11

Template 11

Lin Tan iComment

Decision Tree

Decision Tree Building Algorithm

• /* If no lock is held, zap it. */ - NO rule

• /* Called with the device lock held. */ -
Template 1

• ...

Training Data:

To be classified:

A: /* return -EBUSY if a
lock is held. */
B: /* Lock must be held on
entry to this function. */
C: /* Caller must acquire
instance lock! */

No lock-related rule0#A

Template 11#B

Template 11#C

Automatically generated
Decision Tree

Feature selection is important.

Lin Tan iComment

General-purpose Training

18

•The training is optional for the users

• Done by us before releasing iComment (only once per
topic).

• Feasible because:

• Programmers share wording and phrasing (confirmed by
our correlated word results)

• Cross-software training results show decision trees trained
on one software can classify comments from other
software with high accuracy (~89%)

• Took only about 2 hours to manually classify comments
of 2 topics for Linux, Mozilla, Apache and Wine

Lin Tan iComment

Generating Rules

• NLP & Program Analysis

• What are the parameters?

• The function name is right after the comment.

• The lock name is the object of the verb.

• Is the rule positive or negative?

• Positive if the verb is not modified by a negation word.

19

/* Caller must hold
instance lock! */

Lin Tan iComment

Rule Checker

• Use static analysis for checking

• Flow-sensitive, and context sensitive

• Simple point-to analysis

• Mismatch report ranking

• Support

• Violation

20

Lin Tan iComment

Outline

• Motivation, challenges & contributions

• Our Approach

• Analyze comments written in natural language

• Detect comment-code inconsistencies

• Methodology and Results

• Related work

• Conclusions

21

Lin Tan iComment

Methodology

• Latest versions of 4 large software projects

• 2 topics: lock-related and call-related

• 18% of comments are used for training on average.

• Our training sensitivity analysis provides guidance on how much training data
to use (find detailed results in our paper).

22

Software LOC LOM Language Description

Linux 5.0M 1.0M C OS

Mozilla 3.3M .51M C&C++ Browser Suite

Wine 1.5M .22M C Program to Run
WinApp on Unix

Apache .27M .057M C Web Server

Lin Tan iComment

Overall Results

• Automatically detected 60 new bugs and bad
comments

• 19 new bugs and bad comments already confirmed by
the corresponding developers.

• Major causes of false positives

• Mostly caused by inaccuracy from checking

• Incorrectly generated rules

23

Software Mismatches Bugs BadCom FP Rules

Linux 51 (14) 30 (11) 21 (3) 32 1209

Mozilla 6 (5) 2 (1) 4 (4) 3 410

Wine 2 1 1 3 149

Apache 1 0 1 0 64

Total 60 (19) 33 (12) 27 (7) 38 1832

Lin Tan iComment

Training Accuracy

• Cross-software training accuracy (lock-related)

24

• Training can be done by us before releasing iComment
to analyze users’ software.

• Accuracy = the percentage of correctly labeled
comments

• Software-specific training accuracy (lock-related)

Linux Mozilla Wine Apache
90.8% 91.3% 96.4% 100%

Training SW Mozilla Wine Apache

Linux 81.5% 78.6% 83.3%

Linux+Mozilla / 89.3% 88.9%

Other measures, such as Kappa and Macro-F score, show similar results.
Accuracies for call-related comments are similar.

Lin Tan iComment

Related Work
• Extracting rules from source code and execution

behaviors [SOSP01 & OSDI06 Engler et. al., Daikon, ...]:

• Our approach complements these techniques.

• Annotation Language [Microsoft SAL, Java annotations, Splint, SafeDrive,
Sparse, ...]:

• Not as expressive: usability

• Not widely adopted vs. millions lines of comments already
exist.

• Automatic document generation from comments
[C# XML comments, JavaDoc, Doxygen, RDoc, ...]:

• Do NOT analyze the natural language part

• Share similar challenges of analyzing unstructured comments.

25

Lin Tan iComment

Conclusions

• Comment-code inconsistencies hurt software
quality and reliability.

• First work to automatically analyze comments
written in natural language for mismatch detection

• iComment automatically extracted 1832 rules on 2
topics and detected 60 new bugs and bad comments
(19 confirmed by developers)

• More work in this direction!

• Analyze other system documents in natural language

26

Acknowledgments

Professor Stefan Savage (Shepherd)
Anonymous Reviewers
NSF Research Grants
DOE Research Grants
Microsoft Gift Grants

Intel Gift Grants
NSF Student Travel Scholarship

Lin Tan
Ding Yuan

Gopal Krishna
Yuanyuan (YY) Zhou

OPERA group
University of Illinois

at Urbana-Champaign

Thank you! Questions?

