
/* iComment: Bugs or Bad Comments? */

Lin Tan†, Ding Yuan†, Gopal Krishna†, and Yuanyuan Zhou†‡

†University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
‡CleanMake Co., Urbana, Illinois, USA

{lintan2, dyuan3, gkrishn2, yyzhou}@cs.uiuc.edu

ABSTRACT
Commenting source code has long been a common practice in soft-
ware development. Compared to source code, comments are more
direct, descriptiveandeasy-to-understand. Comments and source
code provide relatively redundant and independent information re-
garding a program’s semantic behavior. As software evolves, they
can easily grow out-of-sync, indicating two problems: (1) bugs -
the source code does not follow the assumptions and requirements
specified by correct program comments; (2) bad comments - com-
ments that are inconsistent with correct code, which can confuse
and mislead programmers to introduce bugs in subsequent versions.
Unfortunately, as most comments are written in natural language,
no solution has been proposed to automatically analyze comments
and detect inconsistencies between comments and source code.

This paper takes thefirst step in automatically analyzing com-
ments written in natural language to extract implicit program rules
and use these rules to automatically detect inconsistencies between
comments and source code, indicating either bugs or bad com-
ments. Our solution,iComment,combines Natural Language Pro-
cessing (NLP), Machine Learning, Statistics and Program Analysis
techniques to achieve these goals.

We evaluate iComment on four large code bases: Linux, Mozilla,
Wine and Apache. Our experimental results show that iComment
automatically extracts 1832 rules from comments with 90.8-100%
accuracy and detects 60 comment-code inconsistencies, 33 new
bugs and 27 bad comments, in the latest versions of the four pro-
grams. Nineteen of them (12 bugs and 7 bad comments) have al-
ready been confirmed by the corresponding developers while the
others are currently being analyzed by the developers.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability; D.2.4 [Software Engi-
neering]: Software/Program Verification—Reliability; D.2.7 [Sof-
tware Engineering]: Distribution, Maintenance, and Enhancement
—Documentation

General Terms
Algorithms, Documentation, Experimentation, Reliability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSP’07,October 14–17, 2007, Stevenson, Washington, USA.
Copyright 2007 ACM 978-1-59593-591-5/07/0010 ...$5.00.

Keywords
comment analysis, natural language processing for software engi-
neering, programming rules, and static analysis

1. INTRODUCTION

1.1 Motivation
Despite costly efforts to improve software-development method-

ologies, software bugs in deployed code continue to thrive and con-
tribute to a significant percentage of system failures and security
vulnerabilities. Many software bugs are caused by a mismatch
between programmers’ intention and code’s implementation. A
mismatch would be developed due to miscommunication between
programmers, misunderstanding of software components, and care-
less programming. For example, one programmer who implements
function Foo() may assume that the caller ofFoo holds a lock
or allocates a buffer. However, if such assumption is not specified
clearly, other programmers can easily violate this assumption and
introduce bugs. The problem above is further worsened by soft-
ware evolution and growth, with programmers frequently joining
and departing from the software development process.

To address the problem, comments became standard practice in
software development to increase the readability of code and to ex-
press programmers’ intention in a more explicit but less rigorous
manner than source code. Comments are written by programmers
in natural language to explain code segments and data structures, to
specify assumptions, to record reminders, etc. that are often not ex-
pressed explicitly in source code. From our simple statistics, Linux
contains about 1.0 million lines of comments for 5.0 million lines
of source code, and Mozilla has 0.51 million lines of comments
for 3.3 million lines of code, excluding copyright notices and blank
lines. These results indicate the common usage of comments to
improve software reliability and maintainability in large software.

Even though comments are less formal and precise than source
code, comments have a unique advantage: comments are much
moredirect, descriptive and easy-to-understandthan source code.
In other words, many assumptions are specified directly and clearly
in comments but are usually difficult to infer from source code.
For example, the following comment from the latest Linux Kernel
(kernel/irq/manage.c) clearly specifies that functionfree_irq()
must not be called from interrupt context.

drivers/scsi/in2000.c:
/* Caller must hold instance lock! */
static int reset_hardware(…) { ... }

…
static int in2000_bus_reset(…) {

…
reset_hardware(…);
…

}

Assumption
in Comment.

No lock is held
before calling
reset_hardware().

Mismatch!
A confirmed

and fixed bug!

Quote from Bug Report
172131 in Mozilla Bugzilla:

“nsCRT.h's comment
suggests the wrong De-
allocator.

nsComponentManager.cpp
actually uses the wrong
De-allocator.”

nsCRT.h:
//must use delete[] to free the memory
static PRUnichar* PR_strdup(…...);

nsComponentManager.cpp:
nsresult nsComponentManagerImpl:: \\
GetClassObject(...) { …

buf = PR_strdup(…);
...
delete [] buf;
…

}

Bad command!
Should use
PR_free()
instead of
delete [].Bug!

Mislead by the bad
comment above.

security/nss/lib/ssl/sslsnce.c:
/* Caller must hold cache lock when calling this.*/
static sslSessionID * ConvertToSID(…) { … }
…
static sslSessionID *ServerSessionIDLookup(…) {...

UnlockSet(cache, set);
...
sid = ConvertToSID(…);
...

}

Cache lock is
released
before calling
ConvertToSID()

Assumption
in Comment.

Mismatch!
Confirmed

by developers
as a bad
comment
after we

reported it.

kernel/irq/manage.c:
/* This function must not be called from interrupt context */
void free_irq(…) { … }

It is hard to infer this assumption from the source code, even with
advanced techniques such as code mining or probabilistic rule in-
ference [16, 24, 26] (more discussion in Section 8.2).

drivers/scsi/in2000.c:
/* Caller must hold instance lock! */
static int reset_hardware(…) { ... }

…
static int in2000_bus_reset(…) {

…
reset_hardware(…);
…

}

Assumption
in Comment.

No lock is held
before calling
reset_hardware().

Mismatch!
A confirmed

and fixed bug!

Quote from Bug Report
172131 in Mozilla Bugzilla:

“nsCRT.h's comment
suggests the wrong De-
allocator.

nsComponentManager.cpp
actually uses the wrong
De-allocator.”

nsCRT.h:
//must use delete[] to free the memory
static PRUnichar* PR_strdup(…...);

nsComponentManager.cpp:
nsresult nsComponentManagerImpl:: \\
GetClassObject(...) { …

buf = PR_strdup(…);
...
delete [] buf;
…

}

Bad command!
Should use
PR_free()
instead of
delete [].Bug!

Mislead by the bad
comment above.

security/nss/lib/ssl/sslsnce.c:
/* Caller must hold cache lock when calling this.*/
static sslSessionID * ConvertToSID(…) { … }
…
static sslSessionID *ServerSessionIDLookup(…) {...

UnlockSet(cache, set);
...
sid = ConvertToSID(…);
...

}

Cache lock is
released
before calling
ConvertToSID()

Assumption
in Comment.

Mismatch!
Confirmed

by developers
as a bad
comment
after we

reported it.

Figure 1: A new bug detected by our tool in the latest version of Linux,
which has been confirmed and fixed by the Linux developers.

drivers/scsi/in2000.c:
/* Caller must hold instance lock! */
static int reset_hardware(…) { ... }

…
static int in2000_bus_reset(…) {

…
reset_hardware(…);
…

}

Assumption
in Comment.

No lock is held
before calling
reset_hardware().

Mismatch!
A confirmed

and fixed bug!

Quote from Bug Report
172131 in Mozilla Bugzilla:

“nsCRT.h's comment
suggests the wrong De-
allocator.

nsComponentManager.cpp
actually uses the wrong
De-allocator.”

nsCRT.h:
//must use delete[] to free the memory
static PRUnichar* PR_strdup(…...);

nsComponentManager.cpp:
nsresult nsComponentManagerImpl:: \\
GetClassObject(...) { …

buf = PR_strdup(…);
...
delete [] buf;
…

}

Bad command!
Should use
PR_free()
instead of
delete [].Bug!

Mislead by the bad
comment above.

security/nss/lib/ssl/sslsnce.c:
/* Caller must hold cache lock when calling this.*/
static sslSessionID * ConvertToSID(…) { … }
…
static sslSessionID *ServerSessionIDLookup(…) {...

UnlockSet(cache, set);
...
sid = ConvertToSID(…);
...

}

Cache lock is
released
before calling
ConvertToSID()

Assumption
in Comment.

Mismatch!
Confirmed

by developers
as a bad
comment
after we

reported it.

Figure 2: A new misleading bad comment detected by our tool in
the latestversion of Mozilla. It has been confirmed by the Mozilla de-
velopers, who replied us “I should have removed that comment about
needing to hold the lock when calling ConvertToSID”.

Comments and source code provide relativelyredundant and
independentinformation about a program’s semantic behavior, cre-
ating a unique opportunity to compare the two to check for incon-
sistencies. As pointed out by a recent study [22] of the evolution of
comments, when software evolves, it is common for comments and
source code to be out-of-sync. An inconsistency between the two
indicates either a bug or a bad comment, both of which have severe
implication on software robustness and productivity:

(1) Bugs—source code does not follow correct comments.Such
cases may be caused by time-constraints or other reasons, but a
very likely reason is that some code and its associated comments
are updated with a different assumption, whilesome old code is not
updated accordingly and still follows the old assumption.

Figure 1 shows such a real world bug example from Linux Ker-
nel 2.6.11. The comment above the implementation of function
reset_hardware() explicitly states the requirement that the
caller of this functionmusthold the instance lock. However, in
the in2000_bus_reset() function body, the lock is not ac-
quired before callingreset_hardware() , introducing a bug (it
has been confirmed by the Linux developer as a true bug and has
been fixed). In Section 7, we will show morenewbug examples that
our tool detected in thelatest versionsof large software including
Linux.

(2) Bad comments that can later lead to bugs.It is common for
developers to change code without updating comments accordingly
as developers may not be motivated, may not have time or simply
forget to do so. Furthermore, as opposed to source code that always
goes through a series of software testing before release,comments
cannot be tested to see if they are still valid. As a result, many com-
ments can be out-of-date and incorrect. We refer to such comments
asbad comments. Note that we donot consider comments with
simple typographical errors or grammar errors as bad comments.

Figure 2 shows a bad comment example, automatically detected
by our tool in thelatestversion of Mozilla and confirmed by the
developers based on our report. The outdated comment, the caller
musthold cache lock when calling functionConvertToSID() ,

does not match with the code that releases the lock before call-
ing ConvertToSID() . Although such out-of-date or incorrect
bad comments do not affect Mozilla’s correctness, they can eas-
ily mislead programmers to introduce bugs later, as also acknowl-
edged by several Mozilla developers after we reported such bad
comments. In Section 7.2, we will show two real world bad com-
ments in Mozilla thathave causednew bugs in later versions.

The severity of bad comments is also realized by programmers to
some degree. Very often some software patches only fix bad com-
ments to avoid misleading programmers. We analyzed several bug
databases and found that at least 62 bug reports in FreeBSD [4]
are only about incorrect and confusing comments. For example,
FreeBSD patch “kern/700" only modifies a comment in the file
/sys/net/if.h. Similarly, the Mozilla patch for bug report 187257
in December 2002 only fixed a comment in file FixedTableLayout-
Strategy.h.

The bug and bad comment examples above indicate that it is
very important for programmers to maintain code-comment con-
sistency; and it is also highly desirable to automatically detect bad
comments so that they can be fixed before they mislead program-
mers and cause damages.

To the best of our knowledge,no tool has ever been proposed to
automatically analyze comments written in natural language and
detect inconsistencies between comments and source code. Almost
all compilers and static analysis tools simply skip comments as if
they do not exist, losing the opportunity to use comments to their
maximum potential as well as to detect bad comments.

1.2 Challenges in Analyzing Comments
The reason for the almost non-existent work in comment analy-

sis and comment-code inconsistency detection is that automatically
analyzing comments is extremely difficult [44]. As comments are
written in natural language, they are difficult to analyze and almost
impossible to “understand” automatically, even with the most ad-
vanced natural language processing (NLP) techniques [27], which
mostly focus on analyzing well written news articles from the Wall
Street Journal or other rigorous corpora. To make things worse,
unlike these news articles, comments are usually not well written
and many of them are not grammatically correct. Moreover, many
words in comments have different meanings from their real-world
meanings. For example, words “buffer”, “memory” and “lock”
have program domain specific meanings that cannot be found in
general dictionaries. Additionally, many comments are also mixed
with program identifiers (variables, functions, etc.) that do not exist
in any dictionary.

Despite the above fundamental challenges, it is highly desirable
for a comment analysis and comment-code inconsistency detection
tool to have the following properties: (1)accuracy: the analysis
and inconsistency results need to be reasonably accurate. Too many
false positives can greatly affect the usability of the tool; (2)prac-
ticality : the tool should be able to analyze real world comments
from existing software (such as Linux) without requiring program-
mers to rewrite all comments; (3)scalability: the tool should be
scalable to handle large software with multi-million lines of code
and comments; (4)generality: the tool cannot be “hard-coded”
to handle only a specific type of comments. (5)minimum man-
ual effort : while it might be extremely difficult to eliminate pro-
grammers’ involvement, the tool should operate as autonomously
as possible.

1.3 Our Contributions
This paper makes thefirst step in automatically analyzing pro-

gram comments written in natural language to extract program-

mers’ assumptions and requirements (referred to asrules) and to
automatically detect inconsistencies between comments and source
code—indication of bugs or bad comments, both of which affect
software quality now or later. Because it is virtually impossible
to understand any arbitrary comment, our tool, callediComment,
provides a general framework to analyze comments topic by topic,
and has demonstrated its effectiveness by automatically analyzing
lock-related and call-related comments to detect bugs and bad com-
ments in large software. Since using NLP techniques alone cannot
solve our problem, to address the fundamental challenges and pro-
vide the five desired properties listed earlier, iComment combines
techniques from several areas including:

• Natural language processing techniques to tag each word as “ve-
rb”, “noun”, etc., parse a comment into main clauses, sub-clauses,
etc., and label semantic roles such as subjects and objects so that
later steps can focus on important words and clauses. Addition-
ally, we use many language related features, such as “preposition
leading”, as features in our model deduction to extract rules from
comments.

• Statistics techniques, specifically clustering and correlation anal-
ysis, to single out hot topics and correlated words from com-
ments so that users can select hot comment topics and iComment
can automatically extract comments related to the topic keyword
specified by users.

• Machine learning techniques, specifically decision tree learn-
ing, to generate models from a small set of manually labeled
comments from one software code base to automatically analyze
other comments from the same or different software.

• Program analysis techniques to help filling rule parameters, de-
tect inconsistencies between code and comments, rank rules and
inconsistencies and prune false positives.

We have evaluated our iComment tool using four large open
source software projects: one operating system (Linux), one server
(Apache) and two desktop programs (Mozilla and Wine). With an
average of 18% training data from each program, our tool can auto-
matically extract a total of 1832 rules from comments in these four
programs, with an accuracy higher than 90.8%.

Interestingly, our experimental results show that models trained
from a small set of comments from one software system (Linux)
can be used to analyze other software such as Mozilla, Wine, and
Apache, with a reasonable (78.6-89.3%) accuracy. This result indi-
cates that the training requirement of our tool is not stringent since
we can always release our tool, together with the models trained
from representative software, to scan other open source and com-
mercial software with no further training required—reducing users’
manual effort to minimum.

More importantly, our tool detected 60 comment-code inconsis-
tencies, including 33 new bugs and 27 bad comments1 related to
the lock and call topics currently supported by iComment, from
the latest versions of Linux, Mozilla, Wine, and Apache. Nine-
teen of these inconsistencies (12 bugs and 7 bad comments) have
already been confirmed by the corresponding developers. From
Linux alone, we have detected 30 new bugs and 21 bad comments,
14 of which are confirmed by the Linux developers. The other
inconsistency errors are still being analyzed by them. Many of
the bad comments can lead to bugs in future versions since they

1Even though we use heuristics described in Section 4.4 to tell
whether a detected inconsistency indicates a bug or a bad comment,
we are not 100% sure, except for the 12 bugs and 7 bad comments
that have already been confirmed by the developers. But in either
case, there is an inconsistency between the code and the comment,
so one of them is wrong.

Chunking/Clause
Identification

The caller must hold the hardware lock

NN
()

MD
()

VB
()

DT
()

NN
()

NN
()

NP (Noun phrase)NP (Noun phrase)

VP (Verb phrase)

VP (Verb phrase)

S (Sentence)

Agent PatientVerb

POS tagging

Semantic Role
Labeling

DT
()

Figure 3: An example of POS tagging, chunking and clause identifi-
cation, and semantic role labeling. The leaf nodes of this tree forms a
sentence.

provide misleading information. iComment’s inconsistency detec-
tion is also reasonably accurate with only 38.8% false positive rate.
Section 7 shows more examples of detected new bugs and bad com-
ments from Linux.

In summary, our paper makes the following contributions:
• The first work that analyzes comments written in natural lan-

guage and extracts specifications automatically

• The first research effort that calls for attention on the damage
caused by bad comments and the first tool to detect bad com-
ments automatically

• The first work that uses comments written in natural language to
automatically check code for bugs

• A practical and scalable tool that has detected many (60) new
lock-related and call-related bugs and bad comments from the
latest versions of large open source software including Linux and
Mozilla without too much human involvement (especially since
the models trained from one software system can be used for
other software systems).

2. BACKGROUND
This section gives a brief background of natural language pro-

cessing (NLP) techniques used in our work and the special chal-
lenges to apply NLP techniques for comment analysis.

Current NLP Capabilities. While recent NLP research has made
impressive progress, it is still far from reaching its ultimate goal.
Most NLP is still at the “processing” stage instead of the “under-
standing” stage [27]. As natural language isambiguous, it is pro-
hibitively expensive, if ever possible, to turnarbitrary sentences
written in natural language to precise and unambiguous descrip-
tions that computers can use to answer questions [27].

So far, word tagging, phrase and clause parsing, and semantic
role labeling are three of the most mature NLP techniques, Figure 3
shows an example of these three techniques on a Linux comment.

(1) Word tagging: often called Part-Of-Speech (POS) tagging,
identifies the Part-Of-Speech (e.g., Noun, Verb, etc.) of each word
within the sentence. The basic approach is to train a classification
model from some manually labeled dataset. The current state of
the art can achieve labeling accuracy of more than 97% for similar
news articles [2].
(2) Phrase and clause parsing: often referred as chunking and
clause identification. Chunking is a technique to divide a text in
syntactically correlated parts of words, i.e.,phraseas in Noun phrase,
Verb phrase, etc. Clause identification recognizes clauses which
are word sequences with a subject and a predicate. These two tech-
niques form a coherent partial syntax of a sentence. The current

state of the art can achieve parsing precision and recall2 of more
than 90% for well written news articles [2].
(3) Semantic role labeling: it extracts all the semantic arguments
of all the verbs within a sentence. Typically the semantic arguments
include Agent, Patient, Instrument, etc. and also adjuncts such as
Locative, Temporal, Manner, Cause, etc. The current state of the
art can achieve labeling precision of more than 80% and recall of
more than 70% [2].

In our work, we use word POS tagging to single out important
words as well as to select features to help build classification mod-
els from training data to analyze comments. Phrase and clause
parsing are used to extract important features in order to filter out
noises. They are also used in combination with semantic role la-
beling to extract specific information (e.g., specific variable names)
from the object (typically called “patient” using semantic terminol-
ogy) of target verbs.

Special Challenges with Comment Analysis.As briefly discussed
in Introduction, using NLP to analyze comments has special chal-
lenges, namely, (1) grammar and spelling errors are very common
in program comments; (2) program identifiers are mixed with reg-
ular dictionary words; and (3) many words such as “buffer” and
“memory” in comments have programming-domain specific mean-
ings that are not reflected in any general dictionaries and synonym
databases.

3. LIMITATIONS OF A “GREP”-LIKE
METHOD

This section describes the limitations of an intuitive, “grep”-like
method, which was used in our initial feasibility study of automatic
comment analysis and motivated us to explore more advanced tech-
niques to analyze comments.

An intuitive method is to perform keyword searches just like
“grep-ing” over the source code repository for certain comments.
For example, a programmer can first grep for comments that con-
tain keyword “lock” to obtain all lock-containing comments. The
results can then be fed into another keyword search for action key-
words such as “acquire”, “hold”, or “release” or their variants like
“acquired”, “held” and “releasing”. To differentiate negative rules
from positive ones, the programmer can look for negation keywords
such as “not”, “n’t”, etc. to find comments that specify locking
rules (i.e., must acquire a lock before certain operations).

While the method above is simple and can help narrow down the
number of comments to examine, it heavily relies on programmers’
manual effort: (1) to provide all keywords and their synonyms and
variants (past tenses, plurals, abbreviations, etc.) in the search, (2)
to examine the comments returned from the keyword search, and
(3) to convert each comment to a rule manually. Moreover, when
a programmer wants to look for other types of comments, for ex-
ample, comments related to memory allocations, the programmer
needs to repeat all the manual effort above all over again.

Table 1 shows the number of comments left after we apply the
above series of keyword searches for lock-related comments in Linux
and Mozilla. 720-1826 comments remain for programmers to man-
ually examine and to convert to rules. While another round of
search using other keywords may further reduce the number of
comments, it can also filter out pertinent comments that contain
lock-related rules.

Additionally, this method can be very inaccurate because it con-
siders only the presence of a keyword, regardless of where in the
comment the keyword appears, which will introduce both false pos-

2Recall is a standard statistical measure explained in Section 6.

Line Of Comments Linux Mozilla
Only lock 3981 1673

lock with other keywords 1826 720

Table 1: Number of comments after using keyword search for “lock”,
“acquire”, “release”, “hold”, etc. and their variants.

itives and false negatives. For example, “returns -EBUSY if a lock
is held” does not specify a locking rule since “if a lock is held"
is a condition for the return value. Another comment from Linux
“ lockd_up is waiting for us to startup, so will be holding a refer-
ence to this module...", contains “lock" and “hold", but it does not
specify a locking rule. Finally, a comment containing a negation
keyword “not” does not necessarily imply the extracted rule is neg-
ative. “Lock L must be held before calling function F so that a data
race will not occur”, still expresses a positive rule.

4. iComment IDEA AND OVERVIEW
The goal of iComment is to automatically extract rules from

comments and use these rules to detect code-comment inconsis-
tencies. To achieve this goal, we need to address four main chal-
lenges: (1) What to extract? (2) How to extract? (3) How to check
for inconsistencies between comments and code? (4) How to rank
inconsistency results? This section presents our solutions to each
challenge. Section 5 will describe each step of the comment analy-
sis in more detail.

4.1 What to Extract?
Addressing this challenge requires considering two issues. The

first is what type of information is useful to extract from comments.
Typically there are two types of comments, one explains some code
segment, and the other specifies programmers’ assumptions and re-
quirements. For example, Linux’s comment “Find out where the
IO space is” belongs to the first type, whereas “Caller must hold
bond lock for write”, belongs to the second type.

Clearly, it is less useful checking the first type of comments since
they are usually consistent with the source code (since they are to-
gether). Even in the case of inconsistencies, they are less likely to
mislead programmers and introduce bugs later. The second type is
much more important—it clearly specifies certain assumptions and
requirements that other programmers need to follow. For example,
the second comment example given above requires all callers of
the function to hold a lock before calling it. If such a comment is
obsolete or incorrect, it can directly mislead programmers to intro-
duce bugs. Therefore, our work focuses on the second type—rule-
containing comments, comments that specify certain assumptions
and requirements (referred to asrules). As shown in the next sec-
tion, many important features are selected for this purpose, e.g.,
whether a comment contains any imperative words such as “must”,
“should”, “need”, “ought to”, and many others.

In addition, as current NLP techniques are still primitive, it is
prohibitively difficult to extract information from any arbitrary rule-
containing comments. Therefore, our study (as a first step in this
direction) targets for comments that are related to “hot” (common)
and important topics. To find hot topics from a software code base
or a set of them, we provide twohot topic minersthat combine
NLP’s POS tagging technique with statistics techniques (described
in detail in Section 5). Based on the hot topics or hot keywords
extracted, the user or we can select those important ones to start
comment analysis.

The second consideration in determining what to extract depends
on what information can be checked against source code. Although
both static and dynamic checking for software bugs have made im-
pressive advances in recent years [16, 37], not any arbitrary rule can

ID Rule Template
1/2 〈 R 〉 must (NOT) be claimed before entering〈 F 〉.
3/4 〈 R 〉 must (NOT) be claimed before leaving〈 F 〉.
5/6 〈 RA 〉 must (NOT) be claimed before〈 RB 〉.
7/8 〈 R 〉 must (NOT) be claimed in〈 F 〉.
9/10 〈 FA 〉 must (NOT) be called from〈 FB 〉.
11/12 〈 FA 〉 must (NOT) be called before〈 FB 〉.

Table 2: Examples of rule templates. R is a resource, e.g., a lock (or
a buffer and a file descriptor), that a system can claim and release. F
can be one function or a group of functions. Each row shows two rule
templates, one positive and one negative.

be automatically checked easily. Therefore, we focus on extracting
rules that can be checked against source code. Examples of such
rules include “hold a lock l before calling function A ”, “acquire
a lock l in the function A”, “allocate a buffer for b before entering
function A”, “call B before calling A”, etc. We refer each type as a
rule template, and refer lockl, functionA, etc. asrule parameters
to a rule template.

Since our work focuses more on comment analysis than on static
rule checking, we select representative rules to demonstrate the
idea, process and effects of our comment analysis. Currently, our
iComment prototype supports 12 types of rules related to locking
rules and calling rules as listed in Table 2. These rules are cho-
sen based on our hot topic extraction from program comments and
are so far not well addressed by previous work [16, 26] that can
only check general rules like “releasing a lock after acquiring a
lock” but not those software-specific rules as those listed in Ta-
ble 2. As discussed in Section 8, we are in the process of extending
our rule checkers to support other types of rules such as interrupt
enabling/disabling, memory allocation, etc.

4.2 How to Extract?
Similar to general NLP research, extracting information from

documents typically requires a model trained on a small set of man-
ually labeled documents from representative document collections.
The model can then analyzeotherdocuments in the same or other
collections [27]. Our comment analysis follows this approach.

For each hot topic selected, the comment extraction process is
divided into two stages (see Figure 4): (1) training stage; (2) com-
ment analysis (rule generation) stage. The former builds the rule
generation model and the latter uses the model to analyze com-
ments. Each stage is further divided into several steps. The tech-
niques used in each step are also listed in Figure 4.

By default, the training stage is donein-house by an iComment
builder (e.g., us)to train the rule generator, a decision tree classi-
fier, using a small set of randomly selected comments from repre-
sentative software. In other words, we, as the iComment builder,
first train iComment using a few manually-labeled (i.e., having the
contained rules manually extracted) comments from representative
software on some common topics such as lock-related, call-related,
memory allocation-related, etc. After a user obtains iComment
along with our trained rule generator, he/she can use it to analyze
comments of similar topics from his/her software without any train-
ing required.

This is similar to most NLP research projects such as the fa-
mous Penn Tree Bank project [35], which release their tagging
tools trained in-house with manually labeled sample datasets from
some popular newspapers. The rationale is that models trained
from some sample datasets should work reasonably well for docu-
ments of similar types.

Since developers share many common languages (wording, phras-
ing, etc.) about programming (After all, we are all trained from

almost the same set of standard programming textbooks), we be-
lieve that, in-house training with a sample comment set covering
a variety of developers will produce rule generators applicable to
other software.Interestingly, our correlation results on lock key-
words shown in Table 3 in Section 5.3 with two different software,
Linux and Mozilla, demonstrate that programmers do use similar
words for the same topic. Also our cross-software training results
(i.e., using models trained from one software to analyze comment
in another) further confirm this hypothesis.

Certainly, if a user desires higher analysis accuracy or wants to
analyze a topic that is not currently supported by our rule generator,
he/she can use iComment’s training components shown in Figure 4
to train a rule generator specifically for his/her software on the se-
lected topic.

The training stage consists of three steps: (i) TR-comment ex-
traction, which extracts all topic-related, rule-containing comments,
calledTR-Comments, for a given topic keyword such as “lock” us-
ing NLP and statistics techniques; (ii) comment sampling, which
provides a small set of randomly selected TR-comment samples for
manual labeling; (iii) rule training that uses the manually labeled
sample set to train the rule generator, which can then be used to
analyze unlabeled comments from the same or different software.

The rule generation stage is straightforward. Based on the topic
selected by the user, iComment uses the corresponding decision
tree model to analyze all TR-comments from the target software
by first mapping them torule templates, and then uses semantic
role labeling and program analysis to fill in therule parameters.
At the end, the rule generator produces all the rules whose confi-
dence, produced by the decision tree model, is higher than certain
a threshold so that the rule checker can use these rules to detect
code-comment inconsistencies. Details about each training and ex-
traction step are described in Section 5.

4.3 How to Check for Inconsistencies?
Based on rules extracted from comments, the rule checker of

iComment analyzes the source code for mismatches: is a rule sup-
ported in all related source code, or is it violated in some code lo-
cations or paths? To achieve this goal, the rule checker performs a
flow-sensitive and context-sensitive program analysis of the entire
source code in a way similar to previous work [20, 26]. Before the
checking process, for certain rules such as lock-related rules, sim-
ilar to many previous rule checkers [20], the user needs to specify
the actions (e.g., the lock function names) used in his/her software
to acquire or release a lock. For example, Linux uses functions such
asspin_lock andspin_unlock which can be easily found by
looking at related header files. For many other rules such as call-
related rules, no action specification is needed.

For each rule, the checker starts from every root node (e.g., main(),
and exported functions) in the call graph to conduct a path-sensitive
analysis to see if the rule is violated. For each path, a state machine
corresponding to the rule is used to detect rule violations. The path
analysis also traverses into function calls so it is context-sensitive.
The path exploration ends when a state machine terminates, either
reporting a pass or a violation. To examine the next path, instead
of starting a new state machine and traversing from a root, the state
machine and the path (both implemented using stacks) roll back
to an earlier branch point and examine another unchecked branch
edge just like a model checker [29]. This can avoid many redundant
traversal steps.

Since the number of paths to be examined is exponential, we
prune call graphs that are irrelevant to the parameters (e.g., func-
tion A, and lockl) specified in the rule. Similarly, we prune all
basic blocks that are not related to these parameters. These two

Rule Checker
(Program Analysis)

Rule Trainer
(NLP & Machine Learning)

TR-Comment
Sample

TR-Comments

Rules

Rules & Error Reports

Topic Keywords

Topic
Keywords

Comment Analysis
& Checking

Model

Manually Labeled Data

Training Model
Builder/User

TR-Comments

In-House Training /
Program-Specific Training

Comment Parser
(NLP & Program Analysis)

Topic Miner
(Statistics, Clustering

& NLP) Comments

Training Data Sampler
(Random Sampling)

TR-Comment Extractor
(NLP & Statistics)

Comment Parser
(NLP & Program Analysis)

Rule Generator
(NLP & Program Analysis)

TR-Comment Extractor
(NLP &Statistics)

Comments

Figure 4: Above we see the iComment analysis process that extracts rules from comments and detects inconsistencies between comments and source
code. Dashed lines and boxes indicateoptionalsteps and data flows. The techniques used in each step are listed in () of each box. The rule training
is donein-houseby default with representative software, and optionally by users themselves if higher accuracy is desired.TR-Commentis potential
Topic-related Rule-containing comments. The details of each step are presented in Section 5.

optimizations significantly reduce both the number of paths and
the average length of paths being explored. Additionally, when
the number of paths is still significantly high after the optimization
above, for branch edges that are already explored via another path,
we randomly sample some for further exploration.

To address the pointer aliasing problem, we combine flow in-
sensitive pointer aliasing analysis [38] with local pointer analysis
in the path currently being explored [13]. Currently, our alias-
ing analysis does not adequately handle items in arrays and pointer
fields in structures, which introduces a few false positives in our
inconsistency reporting (see Section 7).

Since this paper focuses more on comment analysis and the rule
checking is similar to previous work [20, 26] except the false posi-
tive pruning and error ranking described below, we do not describe
the details of the rule checking further.

4.4 How to Rank Results?
The goal of the rule checking process is not only to look for vi-

olations, but also to count the number of supports in source code
(cases where the rule holds) for each rule inferred from comments.
The numbers of rule violations and supports are used to calcu-
late four values: (1) absolute number of supports,numSupport,
(2) absolute number of violations,numV iolation, (3) conditional
support probability,SP = numSupport

(numSupport+numV iolation)
, (4) con-

ditional violation probability,V P = 1− SP .
These values are used for multiple purposes: determining whether

violations indicate a bug or a bad comment, rule ranking, error
ranking and false positive pruning. There can be many ways to
rank results; we select one that is simple, intuitively sound, and
also gives good empirical results.

In our result ranking,we are more biased toward “bad com-
ments” instead of bugs since code typically has gone through a
series of testing whereas comments cannot be tested. Therefore,
the result ranking is as follows: ifSP is above a certain threshold
(e.g., 80%), the rule and the corresponding comment are likely to
be correct. We use the number of support as the rule rank. In this
case, any violation to the rule is likely to be a bug, with a confidence
value ofSP . We rank bugs based on the confidence. For bugs with
the same confidence, those whose rules have highernumSupport
value are ranked higher.

For the remaining rules, theirSPs are not above the specified

threshold so we consider them as bad comment suspects. We rank
them based on theirV P . To avoid users examine all these suspects,
we also use a cut-off threshold on theV P : if V P is not greater
than a threshold (e.g., 75%), we do not report the comment as a
bad comment. Of course, since this threshold is tunable, users can
always set it lower (e.g.,1− SP) to get all bad comment suspects.
In addition, reports without enough support, e.g., rules that are not
practiced in the checked module, are automatically pruned by our
checker.

While we try our best to rank the results based on the metrics de-
scribed above, some reported bug suspects may be bad comments
and vice-versa, because in many cases, it is hard to be sure whether
a mismatch is a bug or a bad comment without developers’ con-
firmation. However,no matter whether they are bugs or bad com-
ments, they are surely inconsistencies, which hurt software quality
now or later.

5. COMMENT ANALYSIS DETAILS
This section describes the method used in each step of the com-

ment analysis, namely, the comment parser, the topic miner, the
TR-comment extractor, the rule trainer and the rule generator.

5.1 Comment Parser
The process of comment parsing is shown in Figure 5. It first ex-

tracts all comments from a program and then breaks comments into
sentences. This sentence separation task is non-trivial as it involves
correctly interpreting abbreviates, decimal points, etc. Moreover,
unique to program comments is that sentences can have “/” and “*”
symbols embedded in one sentence. In addition, dot is frequently
used between a structure and its member, e.g., Struct_A.Size, and
should not be considered as sentence boundary. Furthermore, some-
times a sentence can end without any delimiter. Therefore, besides
using regular delimiters, “!”, “?”, and “;”, we use “.” and spaces
together as sentence delimiters instead of using “.” alone. Addi-
tionally, we consider an empty line and end of comments as the
end of a sentence.

Next, we use word splitters [9] to split each comment into words.
We also break compound words such as interrupt_handler into two
words, interrupt and handler, so that they can be tagged correctly as
interrupt_handler is not in the dictionary. Afterward, we use Part-
of-Speech (POS) tagging and semantic role labeling techniques [9,

1. Sentence
Separation

2. Word
Splitting

3. POS
Tagging

/* The caller must hold the hardware lock.
* Returns NULL if function failed */

The caller must hold the hardware lock. Returns NULL if
function failed

The lockcaller must hold the hardware

…NN
()

MD
()

VB
()

DT
()

NN
()

NN
()

DT
()

Figure 5: iComment Parser Process. The output of step 4, chunking
and semantic role labeling (SRL), are not shown in this figure as they
are already presented in Figure 3.

19, 32, 33] to tell whether each word in a sentence is a verb, a noun,
etc., whether a clause is a main clause or a subclause, and what is
the subject and the object, etc.

5.2 Topic Miner
To find hot topics in program comments, we provide two topic

miners,hot word minerandhot cluster miner, that use NLP, clus-
tering and simple statistics to automatically discover hot, popular
topics from program comments. Both miners first use the NLP’s
POS tagging technique to filter out noisy words since words such
as “we”, “your” and “have” can prevent meaningful topic keywords
from being mined. Words from subclauses also introduce noise. In
addition, we need to filter explanation-based comments and con-
centrate on specification-based comments. Therefore, we consider
only comment sentences with imperative words such as “should”,
“must”, “need”, “ought to”, “have to”, “remember”, “make sure”,
and “be sure” and their variants.

After noisy words are filtered, the hot word miner uses simple
word counting, i.e., counting the number of comments in which a
word appears, to find popular nouns and verbs, which the user can
use to determine hot topics.

The hot cluster miner is more sophisticated. Specifically, since
many words are correlated with each other and are about the same
topic, the hot cluster miner clusters correlated words together in-
stead of using simple word count. For example, “lock”, “acquire”,
“release”, etc. are correlated words and are all about the same topic.
For this purpose, we use mixture model clustering [45] that builds
generative probabilistic mixture model to perform clustering be-
cause mixture model clustering is more expandable than k-mean
based clustering techniques. Section 7.5 briefly summarizes the hot
topics mined from the four evaluated open source software projects.

5.3 TR-Comment Extractor
Given a topic keyword (e.g., lock), the TR-comment extractor

identifies all comments related to the selected topic, which will later
be fed to the rule trainer and the rule generator. As mentioned ear-
lier in Section 3, a comment that contains the topic keyword is not
necessarily related to the topic. Therefore, we identify comments
that contain not only the specified topic keyword (e.g., lock), but
also at least one of the other words (such as acquire, release, hold,
etc.) that are highly correlated to the topic keyword.

To achieve the functionality above, the TR-comment extractor
first finds all words that are correlated to the specified topic key-
word, i.e., words that appear frequently and mostly in the same
comment with the specified topic keyword. For every word that
has appeared in the same comment as the topic keyword at least
once, we compute its correlation to the topic keyword using theco-
sinemetric that is commonly used in statistics and data mining to
measure the correlation of two items. Thecosineof a topic wordA
and wordB is calculated as

Linux Mozilla
Rank Verb Cosine Freq Verb Cosine Freq
1 hold 0.182 598 hold 0.161 236
2 acquire 0.084 110 acquire 0.097 55
3 call 0.076 535 unlock 0.071 35
4 unlock 0.067 108 protect 0.065 45
5 protect 0.052 90 call 0.047 163
6 drop 0.047 113 enter 0.044 29
7 release 0.041 140 scope 0.041 41
8 contend 0.034 9 contend 0.034 2
9 sleep 0.032 72 wait 0.033 39
10 grab 0.031 49 release 0.030 55

Table 3: The top 10 words correlated to the topic keyword “lock”.
An interesting observation from the result is that the correlated words
are very similar between two different programs, Linux and Mozilla.
This indicates that programmers use similar words in comments for
similar topics, providing a good evidence to explain the good results of
cross-software training experiments (shown in Section 7.3.2) and our
claim that our training process can be done in-house using representa-
tive software.

cosine(A, B) =
P (A, B)p
P (A)P (B)

whereP (A, B) is the probability that wordA and wordB appear
in the same comment,P (A) andP (B) are, respectively, the prob-
abilities that wordA andB appear in a comment sentence. We
also tried other correlation metrics such as simple frequency count,
LIFT, and Jaccard Coefficient, all of which are similar to or worse
than cosine in terms of accuracy.

In addition to selecting a good correlation measure, we need to
address another challenge — countingdifferent tensesof a verb and
singular and plural formsof nouns as the same word. We address
this problem by automatically querying a dictionary.

After the above treatments, the TR-comment extractor selects
the topn (default value is 10) words correlated to the topic key-
word. Using these correlated words, we extract all comments that
contain the topic keyword (e.g., lock) and also at least one of then
correlated words (e.g., hold, acquire, etc). Doing so allows us to fil-
ter out topic-unrelated comments such as a comment from Mozilla
“file locking error” because they do not contain any word corre-
lated to “lock”.

Table 3 shows the top 10 ranked correlated verbs for lock-related
comments in Linux and Mozilla. Compared to the simple word
frequency measure, the correlation metric, cosine, is much better
since some of the words are not frequently used but they are almost
always used in the same comment with word “lock”.

5.4 Rule Trainer
As described in Section 4, the goal of the rule trainer is to use

a small set of manually labeled (manually mapped to a rule tem-
plate) TR-Comments from some representative software to gener-
ate a model to analyze unlabeled TR-Comments from the same or
different software. We use a decision tree classifier as our model
to map a comment to a rule template. In data mining and machine
learning, adecision tree(also referred as a classification tree or a
reduction tree), is a predictive model; that is, a mapping from obser-
vations about an item to conclusions about its target value. In these
tree structures, leaves represent classifications and branches repre-
sent conjunctions of features that lead to those classifications [28].
The machine learning technique for inducing a decision tree from
training data is calleddecision tree learning.

We use a standard off-the-shelf decision tree learning algorithm
called C4.5 Revision 8 [34], implemented in the software package

Weka [41], that does over-fitting pruning to prevent the tree from
being over-fitted just for the training set.This technique makes the
tree general to unlabeled data and can tolerate mistakenly labeled
training data. Figure 6 shows the top of the decision tree model
trained from a small set of manually labeled lock-related Linux
comments.

Feature selection is an important factor for the accuracy of the
decision tree learning algorithm. Essentially, features are used in
a decision tree classifier to determine how to traverse the decision
tree for a given input. The feature pool used in iComment’s rule
trainer can be divided into two categories. The first feature cate-
gory is typical text classification features that are widely used in
text classification studies [40]. The second feature category con-
tains features that are unique to comment analysis but are general
to different comment topics, different rule templates and different
software.

In the following, we briefly describe the rationale for selecting
some of the important features.

(1) Comment Scope:In program analysis, variable and function
scopes are important concepts. Similarly, comment scope plays an
important role in our comment analysis. We define two types of
comment scopes, i.e., global scope and local scope. If a comment
is written outside a function, we define its scope as global. If a
comment is written within the body of a function, its scope is lo-
cal to that function. The rationale for choosing this feature is that
comments of global scope usually indicate rules related to the use
of the function, while comments of local scope usually imply rules
about the implementation of the function.

(2) Conditional Rules: Three conditional rules related features
(Preposition Leading, Contain Whether-Prep, W-Tagged) indicate
whether a comment contains any preposition or condition. These
three features help determine if a comment is conditional. The rule
templates supported by our rule checker currently do not support
conditional rules.

(3) Modal Word Class: This feature indicates whether a comment
contains a word in a Modal Word Class. There are three modal
word classes: (i)Imperative Class, containing “must”, “should”,
“will”, “ought”, “need”, etc. (ii) Possible Class,containing “can”,
“could”, “may”, “might”, etc. (iii) Other Class, not containing any
of the words above. The reason for choosing this feature is that
imperative modal words are more likely to imply rules, while words
like mayandcouldusually do not indicate rules.

(5) Application Scope:Application scope is decided by whether a
comment expresses a pre-condition, post-condition or an in-function-
condition of a routine: (i)Prior Routine: the condition should be
satisfied before calling a routine, just like a Linux’s comment “The

Local
Scope

Global
Scope

>15<=15

Yes

Comment
Scope

Conditional
rule

No Rule

Lock before
Function

No

Prior
Routine

Post
RoutineIn

Routine

Sentence
Length

Application
Scope

......

...

...

Figure 6: The top of the decision tree model built automatically by
iComment trainer from Linux’s lock-related comments.

queue lock with interrupts disabled must be held on entry to this
function”. (ii) Post Routine: the condition should be satisfied af-
ter a routine returns, e.g., a Linux’s comment “This function re-
turns with thechip- >mutex lock held” . (iii) In Routine: the
condition should be satisfied within a routine, as in a Linux’s com-
ment “As thekmap_lock is held here, no need for the wait-queue-
head’s lock”. Currently, we simply use keywords to determine the
application scope of a comment. Specifically, we use keyword set
(entry, call) for Prior Routine, (exit, complete, close, return)for
Post Routine, and comments without any word in these two sets are
considered having valueIn Routinefor this feature.

5.5 Rule Generator
The functionality of the rule generator is to generate a concrete

rule from an unlabeled TR-comment. Rule generation includes two
steps: first it uses the trained decision tree classifier to map the TR-
comment into a rule template, and then fills the parameters of the
rule template. The first step is straightforward: once the decision
tree is trained, it automatically “classifies” a comment to a rule
template.

The second step needs to find the function names, variable names,
etc. that are required to fit into the rule template. Specifically, the
rule generator obtains the following information using simple pro-
gram analysis and heuristics:

What is the function name?For function-related rules (such as
rule template 1, 2, 9 and 10 listed in Table 2), we need to extract
the function name for each rule. For a comment written outside any
function, the function name can be found right after the comment
by using a source code parser. For a comment written within a func-
tion, the function name can be found from the function declaration
before the comment using a source code parser. For templates 9
and 10, the second function name,FB usually can be found in the
comment itself after certain words such as “from”.

What is the variable name?The variable name (e.g., a lock
name) of a rule is usually the object/patient of the action verb in
the main clause of the corresponding comment. Therefore, we can
automatically extract it after applying NLP’s Semantic Role Label-
ing technique (described in Section 2).

Is a rule positive or negative?By identifying the action verb and
negation words, such as “not", in the main clause, we can determine
whether the rule is positive. By default, a rule is positive. We
consider a rule as a negative rule only if the comment sentence
contains a negation word, i.e.,barely, hardly, neither, no, none, not,
nothing, nobody, n’t, scarcely, andwithout, and the negation word
appears in the same clause as the action verb.

After the rules are generated and rule parameters are filled, rules
with high confidence (computed by the decision tree classifier) are
provided to the rule checker (described in Section 4.3) to check for
comment-code inconsistencies.

6. EXPERIMENTAL METHODOLOGY
Evaluated Software. To demonstrate the effectiveness of iCom-
ment, we analyze comments of two representative and important
topics, lock-related and call-related, infour large open source soft-
ware projects, Linux, Mozilla, Wine and Apache as listed in Ta-
ble 4.

We perform two types of experiments to examine the accuracy
of our rule generation from comments.

(1) Software-specific training. In this set of experiments, we use
models trained from each software system to analyze comments
from the samesoftware. Specifically, for large software such as
Linux and Mozilla, we randomly sample 20% TR-Comments and

Software LOC LOM Language Description
Linux 5.0M 1.0M C Operating System

Mozilla 3.3M .51M C&C++ Browser Suite
Wine 1.5M .22M C Program to Run

WinApp on Unix
Apache .27M .057M C Web Server

Table 4: Evaluated software. LOC is lines of code and LOM is lines of
comments. We count “lines of code” as the entire size of the program,
including comments. All numbers are counted with copyright notices
and blank lines excluded. WinApp means Windows applications. We
use the latest versions of these software systems.

Lock related Call related
Software Total #TR- Training Total #TR- Training

Comments # (%) Comments # (%)

Linux 2070 242 (12%) 812 119 (15%)
Mozilla 720 65 (9%) 284 40 (14)%
Wine 91 27 (30%) 92 22 (24%)

Apache 129 28 (22%) 22 –
Total 3010 362 (18%) 1210 181 (18%)

Table 5: Training data (randomly selected) sizes used in software-
specific training. TR-comments are extracted by using NLP and statis-
tics techniques as shown in Section 5.3. As there are only 22 call-related
TR-comments in Apache, we manually label all instead of using ma-
chine learning. The average training data percentage is computed as
the average of all percentages, not the percentage of the total (which is
actually smaller).

then manually label these comments. For small software such as
Wine and Apache, we manually label a higher percentage (20-30%)
of TR-Comments since they contain much fewer TR-Comments
(fewer than 150).

Similar to previous studies using machine learning techniques [28,
43], we divide manually labeled comments into two groups, one
used for training,the other used for testing to automatically mea-
sure the accuracy of our trained rule generators.The training data
size for each program is listed in Table 5, while the default test set
size is 5% of all TR-comments. To understand the sensitivity of
the training data set size, we also evaluate its effect on accuracy
by changing the training data set size from 2% to 15% of the total
TR-Comments.

Note that our rule generator is also applied on the remaining 80%
unlabeledTR-Comments to extract rules, all of which are then used
by the rule checker to detect comment-code inconsistencies. Actu-
ally as shown in the next sections, majority of the extracted rules
come from theunlabeledTR-comments that are not used in our
training.

(2) Cross-software training.To demonstrate that our rule genera-
tor trained with sample TR-Comments from one piece of software
can also be used to analyze comments in other software, we con-
duct a series of experiments using cross-software training. Specifi-
cally, we use the rule generator trained from Linux’s comment sam-
ples (the same size as listed in Table 5) to analyze comments in the
other three software systems, Mozilla, Wine and Apache. We also
combine Linux and Mozilla’s training data to build another rule
generator to analyze comments in Wine and Apache.

Evaluation Measures. To evaluate the accuracy of our rule gen-
eration, we use widely used standard measures. For the overall
measure, we use three metrics:Accuracy Percentage, Kappa, and
Macro-F Score. Accuracy Percentage (AP) measures the overall
percentage of our classification accuracy, it is simply defined as:

AP =
Total Number of Correctly Labeled Comments

Total Number of Comments Given for Labeling

Kappa (κ) is a statistical measure of inter-rater reliability. It mea-
sures the agreement between two raters each of which classifies N
items into C mutually exclusive categories. We use it to measure
the agreement between a rater produced by iComment and the or-
acle rater that labels all comments correctly. Kappa is defined as:
κ = pr(a)−pr(e)

1−pr(e)
, wherepr(a) is the percentage of correctly la-

beled comments, andpr(e) is the percentage of correctly labeled
comments due to pure chance.

Macro-F Score is the mean of theF-scoresof different cate-
gories, where F-score is a combination metric ofprecisionandre-
call. Precision is defined as (P =

T+
T++F+

), recall is defined as

(R =
T+

T++F−
), and F-score is defined as (F1 = 2PR

P+R
), whereT+,

T−, F+ and F− are, respectively, true positives, true negatives,
false positives and false negatives.

As shown earlier in this section, AP, as well as other measures, is
automatically measured on the manually labeled 5% test data set,
which are not used for training.

7. EXPERIMENTAL RESULTS

7.1 Overall Results
Table 6 shows the overall comment analysis and inconsistency

detection results of iComment. Our tool extracts a total of 1832
rules from comments in the four evaluated programs related to the
two topics: lock-related and call-related. The accuracy of our rule
extraction is reasonable (90.8-100%) (measured automatically on
the manually labeled test set). The detailed accuracy results will be
presented later in Section 7.3.1. As expected, the number of rules
extracted from each software is positively correlated to the software
size.

Using the rules automatically inferred from comments (without
any manual examination), iComment’s rule checker reported a total
of 98 comment-code inconsistencies, 60 of them are true inconsis-
tencies (bugs or bad comments), including 33 new bugs and 27 bad
comments from the latest versions of our evaluated software with
12 bugs and 7 bad comments already confirmed by the correspond-
ing developers. We count bugs based on their fixes. Therefore,
even if a piece of code violates multiple different comments, but if
it requires only one fix, we count it asonebug.

Many (at least 37) inconsistencies are very hard to detect by in-
ferring from source code alone (even with the most sophisticated
techniques) because different parts of the source code are actually
consistent with each other. But the code does not match with the
comments. A more detailed discussion can be found in Section 8.

The above results clearly indicate that comments provide use-
ful, redundant and independent information to check against source
code for bugs and bad comments, both of which affect programs’
robustness now or later.

We manually examine each reported inconsistency and the re-
lated source code to decide if the report is a true inconsistency,
which allows us to count the false positive rate (38.8%). Addition-
ally, we try our best to determine if a true inconsistency is a bug or
a bad comment, which is much more difficult. Therefore, we also
submit the reports to let the developers judge if an inconsistency is
a bug or a bad comment, which both hurt software quality.

Although iComment has a reasonable overall false positive rate
(38.8%), there is still space to further improve the accuracy. Many
of the false positives are caused by the following two reasons and
can be eliminated or reduced. First, since our rule checker does
not adequately handle aliasing for array elements, pointers in struc-
tures and function pointers, they introduce some false positives.
Reducing these false positives requires enhancing the pointer alias-

Total
Software Inconsistencies Bugs BadCom FP Rules

Linux 51 (14) 30 (11) 21 (3) 32 1209
Mozilla 6 (5) 2 (1) 4 (4) 3 410
Wine 2 1 1 3 149

Apache 1 0 1 0 64
Total 60 (19) 33 (12) 27 (7) 38 1832

Lock-Related Call-Related
Bugs BadCom Rules Bugs BadCom Rules

29(10) 10(2) 990 1(1) 11(1) 219
1(1) 2(2) 277 1 2(2) 133

1 0 80 0 1 69
0 0 62 0 1 2

31(11) 12(4) 1409 2(1) 15(3) 423

Table 6: Overall results. Inconsistencies is the total number of validated code-comments mismatches. BadCom is the number of bad comments. FP
is the number of false positives, which is not included in the number of inconsistencies. Numbers in “()” are the number of inconsistencies (bugs and
bad comments) confirmed by developers. The other 41 inconsistencies are reported, but still waiting for confirmation from developers.

drivers/ata/libata-core.c:
/* LOCKING: caller. */
void ata_dev_select(…) { … }
…

int ata_dev_read_id(…) {
...
ata_dev_select(…);
…

} Mismatch!

drivers/net/wan/z85230.c:
/ *The caller must hold the lock*/
static inline u8 read_zsreg(…) { ... } …
static void z8530_dma_status(…) { ...

status=read_zsreg(chan, R0);
...
spin_lock(chan->lock);
…

}

drivers/scsi/osst.c:
/* Caller must not hold os_scsi_tapes_lock */
static struct osst_buffer * new_tape_buffer(...)
{ … } …
static int osst_probe(…) { ...

write_lock(&os_scsi_tapes_lock);
...
buffer = new_tape_buffer(…);
...

} Mismatch!

fs/xfs/xfs_behavior.c:
/* acquire the lock before traversing the chain.*/
bhv_desc_t *bhv_base(bhv_head_t *bhp)
{

...
for (curdesc = bhp->bh_first; curdesc != NULL;

curdesc = curdesc->bd_next)
{ ... }

...
} Mismatch!

Mismatch!

drivers/pci/proc.c:
static void *pci_seq_start(…) { ...

/* surely we need some locking
* for traversing the list? */
while (n--) {

p = p->next;
…

}
...

}

(a) The comment
says a lock is needed
when the list is tra-
versed. But there is
no lock acquisition in
the code.

drivers/ata/libata-core.c:
/* LOCKING: caller. */
void ata_dev_select(…) { … } …

int ata_dev_read_id(…)
{

...
ata_dev_select(…);
…

} Mismatch!

drivers/net/wan/z85230.c:
/ *The caller must hold the lock*/
static inline u8 read_zsreg(…) { ... } …
static void z8530_dma_status(…) { ...

status=read_zsreg(chan, R0);
...
spin_lock(chan->lock);
…

}

drivers/scsi/osst.c:
/* Caller must not hold os_scsi_tapes_lock */
static struct osst_buffer * new_tape_buffer(...)
{ … } …
static int osst_probe(…) { ...

write_lock(&os_scsi_tapes_lock);
...
buffer = new_tape_buffer(…);
...

} Mismatch!

fs/xfs/xfs_behavior.c:
/* acquire the lock before traversing the chain.*/
bhv_desc_t *bhv_base(bhv_head_t *bhp)
{

...
for (curdesc = bhp->bh_first; curdesc != NULL;

curdesc = curdesc->bd_next)
{ ... }

...
} Mismatch!

Mismatch!

drivers/pci/proc.c:
static void *pci_seq_start(…) { ...

/* surely we need some locking
* for traversing the list? */
while (n--) {

p = p->next;
…

}
...

}

(b) Developers replied
to us “there is a race
there. The direct call to
ata_dev_select() in
ata_dev_read_id() is
there for mostly historical
reasons.”

drivers/ata/libata-core.c:
/* LOCKING: caller. */
void ata_dev_select(…) { … } …

int ata_dev_read_id(…)
{

...
ata_dev_select(…);
…

} Mismatch!

drivers/net/wan/z85230.c:
/ *The caller must hold the lock*/
static inline u8 read_zsreg(…) { ... } …
static void z8530_dma_status(…) { ...

status=read_zsreg(chan, R0);
...
spin_lock(chan->lock);
…

}

drivers/scsi/osst.c:
/* Caller must not hold os_scsi_tapes_lock */
static struct osst_buffer * new_tape_buffer(...)
{ … } …
static int osst_probe(…) { ...

write_lock(&os_scsi_tapes_lock);
...
buffer = new_tape_buffer(…);
...

} Mismatch!

fs/xfs/xfs_behavior.c:
/* acquire the lock before traversing the chain.*/
bhv_desc_t *bhv_base(bhv_head_t *bhp)
{

...
for (curdesc = bhp->bh_first; curdesc != NULL;

curdesc = curdesc->bd_next)
{ ... }

...
} Mismatch!

Mismatch!

drivers/pci/proc.c:
static void *pci_seq_start(…) { ...

/* surely we need some locking
* for traversing the list? */
while (n--) {

p = p->next;
…

}
...

}

(c) Developers confirmed“that
comment is a left over from the
original version ... It should
probably be removed as it is
mis-leading.”

drivers/ata/libata-core.c:
/* LOCKING: caller. */
void ata_dev_select(…) { … }
…

int ata_dev_read_id(…) {
...
ata_dev_select(…);
…

} Mismatch!

drivers/net/wan/z85230.c:
/ *The caller must hold the lock*/
static inline u8 read_zsreg(…) { ... } …
static void z8530_dma_status(…) { ...

status=read_zsreg(chan, R0);
...
spin_lock(chan->lock);
…

}

drivers/scsi/osst.c:
/* Caller must not hold os_scsi_tapes_lock */
static struct osst_buffer * new_tape_buffer(...)
{ … } …
static int osst_probe(…) { ...

write_lock(&os_scsi_tapes_lock);
...
buffer = new_tape_buffer(…);
...

} Mismatch!

fs/xfs/xfs_behavior.c:
/* acquire the lock before traversing the chain.*/
bhv_desc_t *bhv_base(bhv_head_t *bhp)
{

...
for (curdesc = bhp->bh_first; curdesc != NULL;

curdesc = curdesc->bd_next)
{ ... }

...
} Mismatch!

Mismatch!

drivers/pci/proc.c:
static void *pci_seq_start(…) { ...

/* surely we need some locking
* for traversing the list? */
while (n--) {

p = p->next;
…

}
...

}

(d) After we reported
this inconsistency, the
developers confirmed
that the comment above
new_tape_buffer() is
wrong.

Figure 7: Four detected inconsistency examples - twonewbugs and two bad comments in the latest version of Linux. All of them are recently
confirmed by Linux developers.

Quote from Bug Report 363114 in
Mozilla Bugzilla:

“These statements have led
numerous Mozilla developers to
conclude that the functions are
blocking, ... Some very wrong code
has been written in Mozilla due to
the mistaken belief ... These
statements need to be fixed ASAP.”

nsprpub/pr/include/prio.h:
/* The thread invoking this function BLOCKs until all
the data is written. */
PR_EXTERN(PRInt32) PR_Write(…);
...
/* The operation will BLOCK until ... */
PR_EXTERN(PRInt32) PR_Recv(…);

Bad comments!
Blocking is not a property of PR_Write or PR_Recv.
Instead, it depends on the mode of the socket.

Figure 8: Two bad comments in Mozilla that caused many new bugs,
including #355409 in Mozilla. Some wrong code was written because
the programmers were misled by these bad comments, as acknowl-
edged in Mozilla’s Bugzilla bug report shown on the right.

ing analysis in our rule checker. The other cause of false positives
is incorrect rules produced by the rule generator from comments.
More training data, better feature selection and a better classifica-
tion algorithm can reduce the number of such false positives.

7.2 Bugs and Bad Comments Examples
Besides the bugs and bad comment examples shown in Intro-

duction, here we show four more examples of the detected new
bugs and bad comments that are confirmed by the corresponding
developers, and two manually discovered bug-causing bad com-
ments (bad comments that have caused new bugs).

Bug Examples:Figure 7(a) presents a bug confirmed and currently
fixed by Linux developers. Before the while loop accessing a linked
list pointed byp, “surely we need some locking for traversing the
list", as specified by the comment. However, no locking is used in
function pci_seq_start() for accessing the list. iComment
can automatically convert this comment to rule “a lock must be
claimed inpci_seq_start() ”, which is an approximation of

the meaning of the comment. By comparing the code and the rule,
we can detect this bug.

Another bug detected in the latest Linux version and also re-
cently confirmed by the Linux developers is shown in Figure 7(b).
The comment indicates that the caller ofata_dev_select()
should be responsible for locking, but in the code no lock is ac-
quired before calling it. iComment automatically maps the com-
ment to the rule “a lock must be claimed before entering func-
tion ata_dev_select() ” and automatically compares the rule
against the code to detect the bug. After we reported this mismatch,
Linux developers confirmed this is a data race bug.

Bad Comment Examples:Figure 7(c) shows a bad comment ex-
ample detected by iComment in the latest version of Linux. The
comment says that the lock should be acquired in the function be-
fore accessing the chain. However, the code does not follow the
comment. After we reported this inconsistency,the Linux develop-
ers replied to us that the comment is a leftover from the original
version and this comment should be fixed or removed since it can
mislead other programmers to introduce bugs later.

Figure 7(d) shows another bad comment example detected by us.
According to the comment, lockos_scsi_tapes_lock must
not be acquired before calling functionnew_tape_buffer() .
However, the code calls the function with the lock held. After the
inconsistency was reported, Linux developers confirmed “the com-
ment overnew_tape_buffer() is wrong.”

Figure 8 presents two bad comments from a series of eight bad
comments in Mozilla that has caused many new bugs, including the
one in the bug report #355409 of Mozilla’s Bugzilla. As pointed out
by the developer in his/her post, although whetherPR_Write and
PR_Recv are blocking depends on the blocking property of the
sockets these two functions are used on, many developers mistak-
enly conclude the functions are always blocking after reading the
bad comments. These bad comments negatively affect software re-

liability and software development effectiveness, therefore it is im-
portant to detect them and fix them promptly. BesidesPR_Write
andPR_Recv, six other functions, namely,PR_Read, PR_Writev ,
PR_Send, PR_RecvFrom, PR_SendTo, andPR_AcceptRead ,
have similar false comments. We found these bad comments by
manually examining Mozilla’s Bugzilla database. Detecting them
automatically remains as our future work.

7.3 Rule Generation Accuracy and Sensitivity
This section presents our rule generation accuracy results and

training sensitivity results, for both software-specific training and
cross-software training.

7.3.1 Software-Specific Training
Table 7 shows the overall rule generation accuracy using Software-

specific training. We can achieve higher than 90% Accuracy Per-
centage (AP) and higher than 80%Kappa for all software. As
expected, the accuracy increases as the training data size increases.
Figure 9 shows the curves for analyzing lock-related comments in
Linux and Mozilla. The curves for the other software and call-
related comments are similar.

Measures Linux Mozilla Wine Apache
AP 90.8% 91.3% 96.4% 100%

Kappa 0.85 0.87 0.94 1
M-F 0.89 0.93 0.95 0.67

Table 7: Software-specific training accuracy for lock-related rules.
The results for call-related rules are similar. M-F is Macro-F score.

 1

 0.8

 0.6

 0.4

 0.2
14121086420

Training data percentage(%)
Linux, lock related

AP
K

M-F

 1

 0.8

 0.6

 0.4

 0.2
14121086420

Training data percentage(%)
Mozilla, lock related

AP
K

M-F

Figure 9: Training sensitivity. AP denotes Accuracy Percentage, K
denotes Kappa and M-F denotes Macro-F score.

7.3.2 Cross-Software Training
Table 8 shows that cross-software training can achieve reason-

able accuracy in comment analysis. Using Linux alone for train-
ing, we can achieve accuracy of 78.6% to 83.3% on the other three
applications. Adding Mozilla’s training data can increase the accu-
racy from 78.6-83.3% to 88.9-89.3%. Such results are not a big sur-
prise since programmers tend to use similar words to describe simi-
lar topics as demonstrated in our correlation analysis results shown
in Table 3 in Section 5.3. These results indicate that the training
task can be done in-house with representative software before re-
leasing iComment to users to analyze comments in their software.

Training Mozilla Wine Apache
Software AP M-F AP M-F AP M-F
Linux 81.5% 0.81 78.6% 0.78 83.3% 0.73
Linux+Mozilla - - 89.3% 0.87 88.9% 0.92

Table 8: Cross-software training accuracy (M-F is Micro-F score): We
use the model trained from sample comments in one or two software to
analyze the other software. The accuracy in other metrics is similar.

7.4 Comment Analysis Time
iComment can automatically analyze and extract rules from large

code bases with millions of lines of code and comments in about
one and half hours. Also as shown in Table 9, it takes about 59
minutes to analyze Linux lock-related comments and to check for
comments-code inconsistencies. For Mozilla, Wine and Apache,
the analysis times are 24 minutes, 12 minutes and 1 minute, re-
spectively.

To build the models for the four pieces of software, we manu-
ally labeled 362 lock-related comments, and 181 call-related com-
ments. It took us about 137 minutes to label all of them, which en-
abled iComment to automatically label 4220 comments and detect
60 inconsistencies. As we demonstrated in the previous section that
cross-software rule generation produces decent accuracies, models
built using these manually labeled comments can be used for label-
ing comments in other software.

All comments Lock-related comments
Software Parser Extractor Sampler Trainer Generator Checker

Linux 31m36s 2m1s 0.8s 0.17s 3.5s 56m51s
Mozilla 30m20s 1m37s 0.3s 0.03s 1.1s 22m28s
Wine 10m 29s 0.3s 0.02s 0.8s 12m24s

Apache 2m12s 8s 0.3s 0 0.2s 0.4s

Table 9: Time for analyzing and checking lock-related comments. The
analysis and checking time for call-related comments is in the same
order. The parser time is for analyzing all comments, regardless of
topics, in a piece of software. “m” stands for minute, and “s” denotes
second.

7.5 Hot Topics
Table 10 presents the hot keyword mining results of selected

Linux modules and Mozilla. Table 11 and Table 12 show the hot
cluster mining results of the Linux kernel module and Mozilla re-
spectively. In general, both lock and call rank high on the hot key-
word miner and the hot cluster miner on comments from all eval-
uated software. For example, our hot keyword miner shows that
“lock” is the most ranked word in the kernel module and is ranked
second in the memory management (mm) module. According to
our hot cluster miner, kernel module and Mozilla contain up to 5
(out of 10) clusters having “lock” in their topic keywords.

Rank kernel mm drivers Mozilla
1 lock page receiv call
2 call lock copi check
3 thread call gener set
4 task caller licens return
5 signal cach gnu file
6 held memori public data
7 copi check call function
8 timer list check case

Table 10: Hot keyword mining results. The parser uses stemming
techniques to use the root of words to represent a group of words that
share the root. For example, devic represents device, devices, etc.

Similarly, keywords related to function calls also appear in a sig-
nificant portion of comments. “Call” is the most ranked word in
Mozilla and among the top 7 for all three Linux modules. Our hot
cluster miner shows that the Linux kernel module and Mozilla have
at least one “call” cluster.

In addition to lock and call, many other topics are common and
can potentially be analyzed by iComment for inconsistency detec-
tion. While some of these topics are general to all software, such

as memory allocation and the two topics discussed above, differ-
ent programs have their specific hot topics. For example, inter-
rupt is a hot topic in comments from the Linux kernel module,
whereas “error”, “return”, and “check” are hot topics in Mozilla.
Moreover, a substantial percentage of comments in the kernel mod-
ule contain keywords “thread”, “task” or “signal”, whereas many
comments in the memory management module contain keywords
“page”, “cache”, or “memory”.

% Key 1 Key 2 Key 3 Key 4 Key 5
14.6% call held lock read sem
11.1% check runqueu alloc process sure
11.1% sure thread signal up wake
10.8% task caller set lock time
10.0% write swap lock save etc
9.7% interrupt lock out disabl list
9.2% lock releas return move tabl
8.9% copi gener receiv along licens
8.1% schedul clock thing restart timer
6.5% cpu timer structur handler irq

Table 11: Hot cluster mining results of the Linux kernel module. % is
the percentage of comments that belong to each cluster.

% Key 1 Key 2 Key 3 Key 4 Key 5
12.8% sure check return error chang
10.5% rememb function data kei type
10.3% call thread add lock match
9.8% up list string name end
9.7% out go note befor find
9.5% set frame content delet bit
9.5% file first into buffer line
9.5% case code new mai size
9.3% tabl same point select cach
9.2% creat window copi messag happen

Table 12: Hot cluster mining results of Mozilla. % is the percentage
of comments that belong to each cluster.

8. DISCUSSION

8.1 What other comment topics can iComment
analyze and check?

Besides the lock-related and call-related topics, there are def-
initely many other hot topics, some shown in Section 7.5, that
iComment can check in our future work. For example, interrupt
is a hot topic in Linux, accounting for 9.7% or more in different
modules. Many interrupt-related comments can be easily found in
Linux, such as “interrupts must be unmasked”, “this function must
not be called from interrupt or completion handler”, etc. The only
extra requirement to analyze this topic is to manually label some
comment samples and extend the rule checker to check these rules.
Another hot topic is memory allocation/deallocation such as “allo-
cating a certain buffer before calling some function”.

8.2 Can iComment detect inconsistencies that
cannot be detected by previous work?

Many bug detection tools [16, 17, 24, 26] have been proposed
to extract rules or invariants from source code or execution traces
to detect bugs. For example, recent work [24] uses probability and
logic to automatically infer specifications from source code to de-
tect bugs.

While previous work in rule extraction can automatically infer
some programming rules from source code and detect inconsisten-

cies among source code, our approach provides a complementary
capability in the following aspects.

First, in addition to bugs, our approach can be used to detect bad
comments that can mislead programmers to introduce new bugs in
subsequent versions. None of the previous work has such capabil-
ity. Therefore, none of the 27 bad comments detected by iCom-
ment, including the 3 examples shown in Figure 2, Figure 7(c), and
Figure 7(d), can be identified by previous work.

Second, previous work looks for inconsistencies among source
code whereas ours examines inconsistencies between code and com-
ments. As a result, if different parts of source code are consistent
with each other, but they do not match with the correct comment,
then iComment can detect such bugs, but it will be hard for previ-
ous work that uses source code alone to detect. For example, if the
callers of a function are supposed to acquire a lock, but all of the
callers do not acquire the lock, then all these callers are consistent
among themselves, which makes it extremely difficult for the pre-
vious work to detect the bugs. With the help of the comments that
documented the correct behavior, we can find that the comment is
not consistent with the code to detect these bugs.

Third, for many types of rules, including lock-related and call-
related, if the code does not have statistical support, it will be
very difficult for previous work to infer such rules. Several bugs
iComment detected belong to this category, including the two bugs
shown in Figure 1 and Figure 7(a). For example, the list is tra-
versed there in the function onlyonceas shown in Figure 7(a).
Figure 1 shows that a lock must be acquired before calling func-
tion reset_hardware() , but there are only 2 places in Linux
wherereset_hardware() is called. Therefore, it is very diffi-
cult to infer these rules from only the source code. But such rules
are usually specified by the programmer in comments, so they can
be extracted and compared against the source code for any incon-
sistency.

Fourth, many rules, such as “a function can only be called from
function A” virtually cannot be inferred from source code alone,
because if a function is called from A 1000 times, and is called
from B once, we cannot infer that the function must be called from
A only.

Therefore, many (at least 37) of the inconsistencies iComment
detected cannot or are very difficult to be detected by previous work
using only source code. These inconsistencies include all of the 27
bad comments and at least 10 of the bugs.

On the other hand, the bug example detected by iComment shown
in Figure 7(b) may potentially be detected by previous work be-
cause functionata_dev_select() is called from several places
in the program and many of the places acquire the lock before call-
ing ata_dev_select() .

8.3 How much manual effort is needed from
the user?

iComment requires the following three different levels of hu-
man involvement. First, by default (if the topic is already trained
in-house by us using representative software), iComment requires
minimalhuman involvement: the user only needs to select a topic
and provide the software-specific actions (e.g., the lock function
names) for the rule checker to detect code-comment inconsisten-
cies. The latter is common to most existing rule checkers [20],
and are not specific to iComment. Second, if the user would like
to improve the rule generation accuracy, he/she can manually la-
bel some sample TR-Comments from his/her program and then use
these samples to retrain our decision tree classifier. Third, if the
user wants to analyze comments on a topic currently not covered by
iComment, in addition to training, the user needs to define his/her

rule templates and then extend the rule checker in a way similar
to the Stanford Meta Compiler by Engler et al. [20] to check these
rules against the source code.

8.4 Can we use other rule checking methods?
Although iComment uses static checking to detect inconsisten-

cies, it is also quite conceivable that rules extracted from comments
can also be checked dynamically by running the program.

9. RELATED WORK
We briefly describe closely related work.

Extracting rules and invariants from source code and execution
behaviors. Previous work [16, 17, 24, 26] extracts rules or invari-
ants from source code or execution traces to detect bugs. Different
from these studies, our work is the first (to the best of our knowl-
edge) to extract program rules fromcomments. Our work well com-
plements these previous approaches because, compared to source
code, comments are much more explicit and descriptive, directly
reflecting programmers’ assumptions and intentions. Moreover,
our work can also detect bad comments, which can mislead pro-
grammers to introduce bugs later (more discussion in Section 8.2).

Empirical study of comments. Several empirical studies in the
software engineering field have studied the conventional usage of
comments, the evolution of comments and the challenges of auto-
matically understanding them. Woodfield, Dunsmore and Shen [42]
conducted a user study on forty-eight experienced programmers
and showed that code with comments is likely to be better under-
stood by programmers. Jiang and Hassan [22] studied the trend
of the percentage of commented functions in PostgreSQL. Recent
work from Ying, Wright and Abrams [44] shows that comments
are very challenging to analyze automatically because they have
ambiguous context and scope. None of them propose any solu-
tion to automatically analyze comments or to automatically detect
comment-code inconsistencies.

Annotation language. Annotation languages [5, 7, 8, 11, 14, 18,
21, 30, 31, 36, 39] are proposed for developers to comment source
code using a formal language to specify some special information
such as type safety [46], information flow [30], performance ex-
pectations [31], etc. Although these annotation languages can be
easily analyzed by compiler, they have their limitations. Compared
to natural language, these languages are not as expressive or as
flexible. They are mostly used to express only simple assumptions
such as buffer length, data types, etc. Additionally, as it requires
programmers to learn a new language to be able to use them, they
are so far not widely adopted. Furthermore, millions of lines of
comments written in natural language already exist in legacy code.
Therefore, while we should encourage programmers to use anno-
tation language, it is also highly desirable to seek alternative or
complimentary solutions that can automatically analyze comments
written in natural language. Our work well compliments the ap-
proach above and rules inferred by our iComment can be used to
automaticallyannotate programs to reduce programmers’ manual
effort.

Automatic document generation from comments.Many com-
ment style specification and tools are proposed and widely used to
automatically build documentation from comments, e.g., JavaDoc [6],
RDoc [10], Doxygen [3] and C#’s XML Comments [1]. Since they
restrict only the format but still allow programmers to use natu-
ral language for the content (i.e., they are semi-structured like web
pages), automatically “understanding” and analyzing these com-
ments still suffer from challenges similar to analyzing unstructured
comments.

Software debugging.Many debugging tools (for performance or
correctness) [12, 15, 23, 25, 37] are proposed to detect various
types of software bugs. iComment compliments research in this
direction since we extract rules from comments and then detect in-
consistencies between code and comments, indication of bugs or
bad comments, both of which affect software robustness now or
later.

10. CONCLUSIONS AND FUTURE WORK
This paper makes the first attempt to automatically analyze com-

ments written in natural language and detect comment-code incon-
sistencies. Our tool iComment has inferred 1832 rules with high
accuracy and also has detected 60 comment-code inconsistencies
(33 new bugs and 27 bad comments), with 19 of them confirmed
by the developers in thelatestversions of Linux, Mozilla, Wine and
Apache. These results demonstrate the effectiveness of iComment,
which is a first step with promising results to inspire and motivate
more research work in this direction.

Even though our work opens a brand new direction in automat-
ically analyzing comments and documents written in natural lan-
guage to improve software system robustness and reliability, there
is still much room for further improvement as we discussed in Sec-
tion 8, namely analyzing comments of other topics, using dynamic
checking to detect errors, improving comment analysis accuracy,
and evaluating other software. We hope that our work, in partic-
ular the problem of bad comments, can motivate ideas on design-
ing some easy-to-learn and flexible comment languages that can be
easily analyzed and checked against code for inconsistencies.

Finally, it also quite conceivable that some of our ideas and ex-
perience can be borrowed to automatically analyze other system
documents written in natural languages, such as user manuals and
user error reports, to extract information for many other purposes
such as automatically tuning system performance, trouble-shooting
system configurations and enhancing system security in addition to
software reliability.

11. ACKNOWLEDGMENTS
We greatly appreciate our shepherd, Stefan Savage, for his in-

valuable feedback, precious time, and the anonymous reviewers
for their insightful comments. We thank Dan Roth, Nick Rizzolo,
Mark Sammons, the Cognitive Computation Group, Chengxiang
Zhai, and Xuanhui Wang, for their tools, feedback and suggestions
on natural language processing and machine learning related is-
sues. We are also grateful to Tony Bergstrom, Matthew Yapchaian,
and Chengdu Huang for their help on proofreading our paper. This
research is supported by NSF CCF-0325603, NSF CNS-0347854
(NSF Career Award), NSF CNS-0615372 (NSF Delta Execution),
DOE DE-FG02-05ER25688 (DOE Early Career Award), Intel gift
grants, and Microsoft gift grants. Lin Tan was awarded an SOSP
student travel scholarship, supported by the National Science Foun-
dation, to present this paper at the conference. Any opinions, find-
ings, and conclusions or recommendations expressed in this pub-
lication are those of the authors and do not necessarily reflect the
views of NSF, DOE, Intel or Microsoft.

12. REFERENCES
[1] C# XML comments let you build documentation directly from your

Visual Studio .NET source files.
http://msdn.microsoft.com/msdnmag/issues/02/06/XMLC/.

[2] CoNLL-2000 shared task web page – with data, software and
systems’ outputs availble. http://www.cnts.ua.ac.be/conll/.

[3] Doxygen - source code documentation generator tool.
http://www.stack.nl/~dimitri/doxygen/.

[4] FreeBSD problem report database.
http://www.freebsd.org/support/bugreports.html.

[5] Java annotations.
http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html.

[6] Javadoc tool. http://java.sun.com/j2se/javadoc/.
[7] Lock_Lint - Static data race and deadlock detection tool for C.

http://developers.sun.com/sunstudio/articles/locklint.html.
[8] MSDN run-time library reference – SAL annotations.

http://msdn2.microsoft.com/en-us/library/ms235402.aspx.
[9] NLP tools. http://l2r.cs.uiuc.edu/~cogcomp/tools.php.

[10] RDoc - documentation from Ruby source files.
http://rdoc.sourceforge.net/.

[11] Sparse - A semantic parser for C.
http://www.kernel.org/pub/software/devel/sparse/.

[12] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen. Performance debugging for distributed systems
of black boxes. InProceedings of the 19th ACM Symposium on
Operating Systems Principles, 2003.

[13] J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and side
effects. InProceedings of the 20th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 1993.

[14] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Extended
static checking, SRC research report 159.
ftp://gatekeeper.research.compaq.com/pub/DEC/SRC/research-
reports/SRC-159.ps.

[15] D. R. Engler and K. Ashcraft. RacerX: Effective, static detection of
race conditions and deadlocks. InProceedings of the 19th ACM
Symposium on Operating Systems Principles, 2003.

[16] D. R. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as
deviant behavior: A general approach to inferring errors in systems
code. InProceedings of the 18th ACM Symposium on Operating
Systems Principles, 2001.

[17] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly
detecting relevant program invariants. InProceedings of the 22nd
International Conference on Software Engineering, 2000.

[18] D. Evans and D. Larochelle. Improving security using extensible
lightweight static analysis.IEEE Software, 2002.

[19] Y. Even-Zohar and D. Roth. A sequential model for multi class
classification. InProceedings of the Conference on Empirical
Methods for Natural Language Processing, 2001.

[20] S. Hallem, B. Chelf, Y. Xie, and D. R. Engler. A system and
language for building system-specific, static analyses. InProceedings
of the ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation.

[21] W. E. Howden. Comments analysis and programming errors.IEEE
Transactions on Software Engineering, 1990.

[22] Z. M. Jiang and A. E. Hassan. Examining the evolution of code
comments in PostgreSQL. InProceedings of the 2006 International
Workshop on Mining Software Repositories.

[23] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating
systems with time-traveling virtual machines. InUSENIX Annual
Technical Conference, 2005.

[24] T. Kremenek, P. Twohey, G. Back, A. Y. Ng, and D. R. Engler. From
uncertainty to belief: Inferring the specification within. In
Proceedings of the 7th USENIX Symposium on Operating System
Design and Implementation, 2006.

[25] T. Li, C. Ellis, A. Lebeck, and D. Sorin. On-demand and
semantic-free dynamic deadlock detection with speculative
execution. InUSENIX Annual Technical Conference, 2005.

[26] Z. Li and Y. Zhou. PR-Miner: Automatically extracting implicit
programming rules and detecting violations in large software code. In
Proceedings of the 13th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, 2005.

[27] C. D. Manning and H. Schütze.Foundations Of Statistical Natural
Language Processing. The MIT Press, 2001.

[28] T. Mitchell. Machine Learning. McGraw Hill, 1997.
[29] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L. Dill.

CMC: A pragmatic approach to model checking real code. In
Proceedingts of the 5th Symposium on Operating Systems Design
and Implementation, 2002.

[30] A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label model.ACM Trans. Softw. Eng. Methodol., 2000.

[31] S. E. Perl and W. E. Weihl. Performance assertion checking. In
Proceedings of the 14th ACM Symposium on Operating Systems
Principles, 1993.

[32] V. Punyakanok and D. Roth. The use of classifiers in sequential
inference. InProceedings of the Conference on Advances in Neural
Information Processing Systems, 2001.

[33] V. Punyakanok, D. Roth, and W. Yih. The necessity of syntactic
parsing for semantic role labeling. InProceedings of the
International Joint Conference on Artificial Intelligence, 2005.

[34] R. J. Quilan.C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[35] A. Ratnaparkhi. A maximum entropy model for part-of-speech
tagging. InProceedings of the Conference on Empirical Methods in
Natural Language Processing, 1996.

[36] K. Rustan, M. Leino, G. Nelson, and J. B. Saxe. ESC/Java user’s
manual, SRC technical note 2000-002.
http://gatekeeper.dec.com/pub/DEC/SRC/technical-
notes/abstracts/src-tn-2000-002.html.

[37] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACM Transactions on Computer Systems, 1997.

[38] B. Steensgaard. Points-to analysis in almost linear time. In
Proceedings of the 23rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 1996.

[39] N. Sterling. WARLOCK - A static data race analysis tool. InUSENIX
Winter Technical Conference, pages 97–106, 1993.

[40] S. Teufel and M. Moens. Summarizing scientific articles –
experiments with relevance and rhetorical status.Computational
Linguistics, 2002.

[41] I. H. Witten and E. Frank.Data Mining: Practical machine learning
tools and techniques (2nd Ed.).Morgan Kaufmann, 2005.

[42] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen. The effect of
modularization and comments on program comprehension. In
Proceedings of the 5th International Conference on Software
Engineering, 1981.

[43] A. Yaar, A. Perrig, and D. X. Song. Pi: A path identification
mechanism to defend against DDoS attack. InIEEE Symposium on
Security and Privacy, 2003.

[44] A. T. T. Ying, J. L. Wright, and S. Abrams. Source code that talks:
An exploration of eclipse task comments and their implication to
repository mining. InProceedings of the 2005 International
Workshop on Mining Software Repositories.

[45] C. Zhai, A. Velivelli, and B. Yu. A cross-collection mixture model for
comparative text mining. InProceedings of the 2004 ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining.

[46] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren,
G. Necula, and E. Brewer. SafeDrive: Safe and recoverable
extensions using language-based techniques. InProceedings of the
7th Symposium on Operating System Design and Implementation,
2006.

