
Exposing Numerical Bugs in Deep Learning via Gradient
Back-Propagation

Ming Yan
College of Intelligence and

Computing, Tianjin University
China

yanming@tju.edu.cn

Junjie Chen∗
College of Intelligence and

Computing, Tianjin University
China

junjiechen@tju.edu.cn

Xiangyu Zhang
Purdue University

USA
xyzhang@cs.purdue.edu

Lin Tan
Purdue University

USA
lintan@purdue.edu

Gan Wang
College of Intelligence and

Computing, Tianjin University
China

acmer.wg@gmail.com

Zan Wang
College of Intelligence and

Computing, Tianjin University
China

wangzan@tju.edu.cn

ABSTRACT
Numerical computation is dominant in deep learning (DL) programs.
Consequently, numerical bugs are one of the most prominent kinds
of defects in DL programs. Numerical bugs can lead to exceptional
values such as NaN (Not-a-Number) and INF (In�nite), which can be
propagated and eventually cause crashes or invalid outputs. They
occur when special inputs cause invalid parameter values at internal
mathematical operations such as log(). In this paper, we propose
the �rst dynamic technique, called GRIST, which automatically
generates a small input that can expose numerical bugs in DL
programs. GRIST piggy-backs on the built-in gradient computation
functionalities of DL infrastructures. Our evaluation on 63 real-
world DL programs shows that GRIST detects 78 bugs including
56 unknown bugs. By submitting them to the corresponding issue
repositories, eight bugs have been con�rmed and three bugs have
been �xed. Moreover, GRIST can save 8.79X execution time to
expose numerical bugs compared to running original programs
with its provided inputs. Compared to the state-of-the-art technique
DEBAR (which is a static technique), DEBAR produces 12 false
positives and misses 31 true bugs (of which 30 bugs can be found by
GRIST), while GRIST only misses one known bug in those programs
and no false positive. The results demonstrate the e�ectiveness of
GRIST.

CCS CONCEPTS
• Software and its engineering ! Software testing and de-
bugging; • Computing methodologies! Machine learning.

∗Junjie Chen is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’21, August 23–28, 2021, Athens, Greece
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8562-6/21/08. . . $15.00
https://doi.org/10.1145/3468264.3468612

KEYWORDS
Deep Learning Testing, Numerical Bug, Gradient Back-propagation,
Search-based Software Testing

ACM Reference Format:
Ming Yan, Junjie Chen, Xiangyu Zhang, Lin Tan, Gan Wang, and Zan
Wang. 2021. Exposing Numerical Bugs in Deep Learning via Gradient Back-
Propagation. In Proceedings of the 29th ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineer-
ing (ESEC/FSE ’21), August 23–28, 2021, Athens, Greece. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3468264.3468612

1 INTRODUCTION
In recent years, DL systems have become one of the most popular
kinds of software systems and are widely used in various domains,
e.g., face recognition [44], autonomous driving [10], and software
engineering [11, 12, 14, 52]. A DL system consists of three levels as
shown in Figure 1, including the production level (i.e., DL models),
program level (i.e., DL programs that are used for building DL
models), and infrastructure level (e.g., DL libraries). Bugs in any
level could a�ect the overall quality of the DL system. Therefore,
it is necessary to guarantee the quality of DL systems at all the
three levels. Currently, a great deal of research has been conducted
on the production level by proposing various adversarial input
generation methods [9, 21, 30, 38, 49] or designing various testing
metrics [29, 34, 39], but there is relatively little attention on the other
two levels. Actually, both the program level and the infrastructure
level are the basis of the production level since DL models are built
based on DL programs by invoking DL libraries, and thus bugs in
the former two levels could directly a�ect the performance of DL
models [47, 56]. Therefore, it is critical to guarantee the quality at
these two levels. In this paper, we target the program level.

Di�erent from traditional programs, the life-cycle of a DL pro-
gram consists of not only the traditional coding phase, but also the
expensive training phase, in which a large corpus of data is used to
train the DL model parameters, and the validation phase, which is
analogous to the testing and debugging phase in traditional soft-
ware development and aims to provide feedback to change training
inputs or hyper-parameters to achieve better accuracy. Their erro-
neous behaviors may have consequences in both the cyber space

627

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Ming Yan, Junjie Chen, Xiangyu Zhang, Lin Tan, Gan Wang, and Zan Wang

/TLXGYZX[IZ[XK�2K\KR

6XUMXGS�2K\KR 6XUJ[IZOUT�2K\KR

)UJOTM

:XGOTOTM

<GROJGZOUT
*2�VXUMXGSY

*2�SUJKRY

Figure 1: The architecture of DL systems

and the physical space, some even life-threatening, depending on
the application scenarios. Therefore, detecting bugs in DL programs
is indeed critical. Following the existing work [56], our work also
focuses on numerical bugs in DL programs, since they are one
of the most prominent categories of DL program bugs due to the
very heavy presence of numerical computation in DL programs.
Moreover, numerical bugs could occur at various stages of DL pro-
grams, including the data preprocessing stage, training stage, and
validation stage.

Numerical bugs in DL programs manifest themselves in the form
of “NaN” (meaning that the value is not a number), “INF” (meaning
that the value is an in�nite number), or crash during the process
of training or validation [56]. They are typically caused by mathe-
matical property violations or �oating-point representation errors.
Once a numerical bug is triggered in computation, it will continue
to propagate and eventually lead to invalid outputs. Figure 2a shows
an example bug in a TensorFlow program [1], in which NaN appears
in the return value of a function normalize_frames() at Line 2
when the divisor np.std(v) is zero. This bug was not discovered
until the program was released. Figure 2b also shows another nu-
merical bug that is not easy to expose in a PyTorch program [4].
Speci�cally, a PyTorch user reported that she/he encountered NaN
when training the DL model, even though she/he had specially
added a small value self.eps to the denominator at Line 8 to avoid
division by zero. However, NaN was still thrown out after running
for a period of time. Later, it was found that the program tried to
access the derivative of sigma.sqrt()when sigmawas zero. Since
sqrt(x) has no derivative when x=0, an NaN is produced.

Although numerical bugs are prevalent in DL programs, many
are very di�cult to �nd, reproduce, and �x. Unlike traditional
programs, DL programs require lengthy training (maybe on the
scale of days or even months) with a large scale of data in order
to achieve good accuracy. The process is dominated by numerical
computation. That is, numerical bugs may not be triggered until
several hours, days, or even weeks into the training process. These
bugs hence may cost developers a high price since the expensive
training may have to be redone. Furthermore, these bugs may be
non-deterministic, which means that they may or may not manifest
themselves during a particular training step. This is because ran-
dom values are heavily used in DL programs, e.g., in initialization,

GHI�QRUPDOL]HBIUDPHV�P��
����UHWXUQ�>�Y���QS�PHDQ�Y�����QS�VWG�Y��IRU�Y�LQ�P@
����

GHI�IRUZDUG�VHOI�[�
����1��&��+��:� �[�VL]H��
����[� �[�WUDQVSRVH������FRQWLJXRXV���YLHZ�&����
����PX� �[�PHDQ����NHHSGLP 7UXH�
����VLJPD� �[�YDU����NHHSGLP 7UXH�
������������
����[� �[���PX
����[� �[����VLJPD�VTUW�����VHOI�HSV�
����[� �[��VHOI�ZHLJKW���VHOI�ELDV
����[� �[�YLHZ�&��1��+��:��WUDQVSRVH������
����UHWXUQ�[

�
�

�
�
�
�
�
�
�
�
�

��
��

7HQVRU)ORZ�([DPSOH

3\7RUFK�([DPSOH

(a) TensorFlow program bug example from GitHub[1]

GHI�QRUPDOL]HBIUDPHV�P��
����UHWXUQ�>�Y���QS�PHDQ�Y�����QS�VWG�Y��IRU�Y�LQ�P@
����

GHI�IRUZDUG�VHOI�[�
����1��&��+��:� �[�VL]H��
����[� �[�WUDQVSRVH������FRQWLJXRXV���YLHZ�&����
����PX� �[�PHDQ����NHHSGLP 7UXH�
����VLJPD� �[�YDU����NHHSGLP 7UXH�
������������
����[� �[���PX
����[� �[����VLJPD�VTUW�����VHOI�HSV�
����[� �[��VHOI�ZHLJKW���VHOI�ELDV
����[� �[�YLHZ�&��1��+��:��WUDQVSRVH������
����UHWXUQ�[

�
�

�
�
�
�
�
�
�
�
�

��
��

7HQVRU)ORZ�([DPSOH

3\7RUFK�([DPSOH(b) PyTorch program bug example from PyTorch Forums[4]

Figure 2: Examples of numerical bugs in DL programs

regularization, and optimization. As such, these bugs may be di�-
cult to reproduce, even though reproduction is the necessary �rst
step for understanding the root cause and �xing it. Therefore, it is
very meaningful to expose numerical bugs, con�rm them through
deterministic reproduction with failure-inducing inputs, and reduce
such inputs to minimize debugging e�orts.

Recently, Zhang et al. [56] proposed the �rst static technique,
called DEBAR, to detect numerical bugs in TensorFlow programs.
Speci�cally, DEBAR incorporates abstract interpretation to stati-
cally analyze whether the value of a variable can violate its valid
range in mathematical calculation. Although it has been demon-
strated to be e�ective to some degree, DEBAR su�ers from false
positives like many static techniques in other domains [6, 17, 24, 46].
Also, like all other static techniques, DEBAR requires manually cre-
ating models for third-party libraries that are in other languages
or do not have source code. Besides, DEBAR relies on the static
computation graph of a DL program, and thus cannot be applicable
to DL programs with dynamic computation graphs such as PyTorch
programs, which account for a large portion of DL programs in
practice. To further guarantee the quality of DL programs, we pro-
pose the �rst dynamic technique, called GRIST (GRadIent Search
based Numerical Bug Triggering), to expose numerical bugs. GRIST
gets rid of false positives, does not require modeling third-party
libraries, and can be applied to both DL programs with static com-
putation graphs and those with dynamic computation graphs. In
particular, GRIST not only points out where a numerical bug is,
but also provides a small concrete input that can deterministically
trigger the bug within short execution time.

Speci�cally, we observe that if a numerical bug is not determin-
istic (meaning that it may or may not be triggered depending on
the input and the particular run), it must be directly or transitively
related to some external values, which could be training input sam-
ples or values generated by random functions (e.g., random initial
weights). These external values induce invalid operands at numeri-
cal operations (such as division) or invalid parameters to mathemat-
ical functions (such as log()), causing NaN/INF.While the data�ow
from external inputs to the failure points may be highly complex
(e.g., through many layers of matrix multiplications, ReLUs, and
max-pooling), the underlying infrastructures such as TensorFlow
and PyTorch have a powerful mechanism to compute the gradients
of arbitrary operands and function parameters regarding external

628

Exposing Numerical Bugs in Deep Learning via Gradient Back-Propagation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

inputs. As such, we do not need to derive the explicit symbolic
form of data �ow like in [56]. Instead, we leverage the gradients
(through back-propagation) to understand how we should change
the external values to induce an exception. To realize the idea, we
overcome a number of practical challenges. For example, a DL pro-
gram by default only computes gradients between a loss function
and the model weight values (during training) or between a loss
function and the input (during adversarial sample generation [35]).
In contrast, we need to compute gradients between an arbitrary
external value and a parameter of some internal mathematical op-
eration in GRIST. Furthermore, DL program training is di�erent
from normal software execution. It takes in a large corpus of inputs
through multiple iterations in a random fashion. We need to have a
way to supply the mutated inputs (generated by back-propagation)
to the training process so that GRIST can induce the failure.

We conducted an experimental study to evaluate the e�ective-
ness of GRIST in exposing numerical bugs and accelerating failure
triggering, based on 63 real-world DL programs that are collected
from GitHub according to the descending order of GitHub search
relevancewith operations vulnerable to numerical bugs (e.g., log())
and existing studies [37, 55, 56]. Our results show that GRIST de-
tects 78 bugs within the given time limit (i.e., 30 minutes), among
which 56 are unknown bugs (i.e., the latest commit for the corre-
sponding DL program still contains the bug). It only misses one
known bug in those programs. Through submitting them to the
corresponding GitHub issue repositories, eight bugs have been con-
�rmed and three bugs have been �xed by developers. Also, GRIST
can save 8.79X execution time to expose numerical bugs compared
to running the original programs with their provided inputs, and
expose bugs in a much more stable fashion (76 bugs can always
be triggered by GRIST in all 10 repeated runs while only 37 bugs
can always be triggered by running the original programs with
their provided inputs in all 10 repeated runs). Compared to the
state-of-the-art technique DEBAR (which is a static technique) on
the same set of DL programs, DEBAR produces 12 false positives
and misses 31 true bugs (of which 30 bugs can be found by GRIST),
while GRIST only misses one bug and has no false positive. The
results demonstrate the superiority of GRIST.

In summary, the contributions of this work are as follows:

• We propose GRIST, the �rst dynamic technique to expose
numerical bugs in DL programs, based on gradient back-
propagation.

• We conduct an experimental study based on 63 real-world
DL programs. GRIST �nds 78 bugs from these programs and
misses only one known bug. It outperforms a simple strategy
of running these programs with their provided inputs (and
hoping to trigger numerical exceptions) and a state-of-the-
art static technique DEBAR.

• We release our tool and dataset containing 79 real-world
numerical bugs in DL programs, which can be found at:
https://github.com/Jacob-yen/GRIST.

)USV[ZGZOUT��-XGVN� *KXO\GZO\K�)USV[ZGZOUT

)USV[ZGZOUT��-XGVN� *KXO\GZO\K�)USV[ZGZOUT

Figure 3: Computation graph and derivatives computation
for 5 (G1, G2) = G1G2 + B8=(G1) using Automatic Di�erentiation

2 BACKGROUND AND CHALLENGES
2.1 Gradient Computation in Deep Learning

via Automatic Di�erentiation
Automatic di�erentiation (AD) [42] is a technique that can compute
the derivative of a runtime value (during program execution) over a
given (input) variable, denoting the level of sensitivity of the value
to the variable. Assume the runtime value is a function 5 (G) of
the input variable G . Mathematically, the derivative is de�ned as
follows.

5 0(G) = lim
n!0

5 (G + n) � 5 (G)
n

Directly computing derivatives based on the above formula is
di�cult for a program, which is discrete by nature. AD decomposes
the function into a sequence of elementary arithmetic operations
such as +, �, ⇥, ÷, ;>6, 2>B , and B8=, which can be automatically
done by tracking the runtime data �ow of individual statements
in the program. By repeatedly applying the chain rule of derivative
computation [31] to these operations, the derivative of the whole
function can be automatically calculated. Figure 3 shows a simple
computation graph for a function 5 (G1, G2) = G1G2+B8=(G1) and the
corresponding derivative computation m5 (G1,G2)

mG1
. Observe that AD

decomposes the function into simple operations and computes the
derivative in a forward fashion (following the data-�ow direction
of the computation graph). DL frameworks such as TensorFlow
and PyTorch have built-in AD support, which is used to compute
gradients. Please note that in AD, we need to inform about the
variable(s) over which the derivatives are computed. In DL, if we
need to compute gradients/derivatives regarding a variable, we need
to set the property require_grad=True for that variable to make it
to be trainable. As such, the framework automatically computes the
gradients for each value encountered at runtime over the trainable
variables. While in DL training, model weight values are by-default
set to trainable and the runtime value for which gradients are
queried is the cross-entropy loss value, the mechanism is general,
meaning that we can declare any variable to trainable and query
the gradient of any runtime value regarding a trainable variable.

2.2 Challenges
Due to the characteristics of DL programs, exposing numerical bugs
in DL programs faces the following main challenges:

629

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Ming Yan, Junjie Chen, Xiangyu Zhang, Lin Tan, Gan Wang, and Zan Wang

l1 = tf.nn.softplus(tf.add(tf.matmul(z, w1), b1))
l2 = tf.nn.softplus(tf.add(tf.matmul(l1, w2), b2))
x_reconstr_mean = tf.nn.sigmoid(tf.add(tf.matmul(l2, w3), b3))

reconstr_loss = -tf.reduce_sum(
 x * tf.log(x_reconstr_mean + 1e-10) +
 (1 - x) * tf.log(1e-10 + 1 - x_reconstr_mean), 1)

1
2
3
4
5
6
7

1
1
1
2

Figure 4: Example of failing to avoid the numerical bug by
adding a perturbation (ID: 35a in Table 2)

Non-determinism: The computation in DL programs has substan-
tial non-determinism due to the natural randomness in (training)
inputs, the heavy use of random numbers, and computation envi-
ronment uncertainty. The natural variations in training data are
inevitable. Depending on the training inputs, a numerical bug may
ormay notmanifest itself. Random values are heavily used in the nu-
merical computation of DL programs such as initialization, regular-
ization, and optimization, leading to substantial non-determinism.
While DL program developers may reduce randomness by �xing
random seeds, this may lead to degradation of model accuracy and
robustness. In fact, a popular way to improve robustness is to in-
troduce more randomness during training [32, 50]. In addition, the
exposure of numerical bugs may also be a�ected by runtime envi-
ronment such as GPU [5]. Due to the inherent non-determinism,
numerical bugs may not be exposed before release, which could
amplify the damage. On one hand, other users may adopt the buggy
DL program to build DL models based on their own training data,
and then the numerical bugs maymanifest themselves. On the other
hand, the numerical bugs that manifest in real system usage tend
to be more devastating since it could cause unexpected system be-
haviors, even crash the system. Moreover, due to non-determinism,
it is challenging to reproduce numerical bugs, which could largely
aggravate debugging di�culty. In fact, we have found in many
TensorFlow GitHub issues and PyTorch Forum posts, developers
complained that they cannot reproduce the numerical bugs reported
by users.
Lengthy Training: DL programs typically require lengthy train-
ing (which is dominated by numerical computation) with a large
amount of data, in order to achieve highmodel accuracy. The typical
training time of DL programs ranges from a few minutes to several
days. As such, a numerical bug may only manifest itself after hours
or even days into the training process. Since it is often necessary to
repeat the training process of a DL program several times during
the process of identifying the root cause of a numerical bug and
validating �x(es), debugging may be prohibitively expensive and
quick failure induction is critical.
Complexity: Due to the heavy and complex numerical computa-
tion in DL programs, numerical exceptions may have lengthy and
subtle failure-inducing chains, making diagnosis di�cult. Speci�-
cally, numerical bugs are di�cult to �nd during code review since
they are often caused by complex component interactions [56].
Even though simple checks/perturbations can be added to opera-
tions with the goal of avoiding numerical bugs, e.g., adding a small
value n to a non-negative variable G in ;>6(G) operations (to avoid
;>6(0) exceptions), they may change program semantics and de-
grade readability. In many cases, such checks are redundant in a

-XGJOKTZ
(GIQ�VXUVGMGZOUT

;VJGZK�/TV[Z�H_
(GIQ�VXUVUMGZOUT

9ZGZOI�'TGR_YOY

4UXSGR
:XGOTOTM�

(GZIN

,GOR[XK
�)NKIQKX

*XO\KX

*2�6XUMXGS

([M�8KVUXZ

3GXQ�<GXOGHRK�:XGOTGHRK

/JKTZOL_�<[RTKXGHRK�5VKXGZOUT

Figure 5: Overview of GRIST

broader view because the preconditions may already preclude the
invalid values. Even worse, these safety checks and perturbations
may be implemented incorrectly. For example, as shown in Figure 4,
1e-10 is added to the parameters in the ;>6 operations in order to
avoid the occurrences of ;>6(0), which is a common trick by DL
developers. However, in this case, due to the speci�c �oating-point
precision of the host machine, 1 derived from �oating-point com-
putation is represented as a number that is larger than 1 + 1e-8
but smaller than 1 + 1e-7. Thus, when x_reconstr_mean holds the
representation of value 1, 1e(�10) + 1 � x_reconstr_mean yields
a value smaller than zero in the second ;>6() operation, leading to
an NaN. Another PyTorch example is shown in Figure 2b presented
in Section 1. Although a small value self.eps has been added to
the denominator at Line 8, a numerical bug still occurs since the
derivative of sigma.sqrt() is accessed when sigma is zero and
sqrt has no derivative at zero.

3 APPROACH
3.1 Overview
To e�ciently and e�ectively expose numerical bugs in DL programs,
we develop an automated technique called GRIST. It aims to help DL-
program developers or users to generate failure-inducing inputs,
which include training samples and external values (e.g., those
produced by randomnumber generators). Bugs triggered by random
values are as important as those triggered by training samples since
if there exist certain random values that could trigger numerical
bugs (e.g., NaN or INF), even though such bugs may not manifest
themselves most of the time, they are latent and could be triggered
some time in the future. In particular, a numerical bug manifested
after system release is even more devastating since it could cause
unexpected behaviors during real system usage [56].

As shown in Figure 5, our technique GRIST consists of three
main components: ¿ static analysis component, ¡ gradient back-
propagation component, and¬ driver. Given a DL program, the static
analysis component analyzes the program to identify: (1) the oper-
ations that are susceptible to numerical exceptions such as log(x)

630

Exposing Numerical Bugs in Deep Learning via Gradient Back-Propagation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

operation that is not guarded by a (>0) range check (note that an
operation without such check may not be a real bug, indicating
that identifying this condition alone is not accurate enough for bug
�nding) and (2) the external values. As such, we mark the variables
denoting external values as trainable such that TensorFlow and
PyTorch will track gradients of these variables at runtime. A loss
function called suspect loss is then constructed for each vulnerable
operation. Intuitively, the loss function describes the distance (from
the current variable value) to an invalid value that can expose a
speci�c numerical bug. Minimizing the loss function by changing
the external values through gradient back-propagation is essential
to push the value at the suspect operation to become invalid.

The gradient back-propagation component updates external val-
ues based on two strategies. Please note that in the remainder of the
paper, we use the terms external values and inputs interchangeably.
The �rst one is for iterative inputs, which are inputs that impact
program states through multiple iterations. Training samples and
random weight perturbations are iterative inputs as they a�ect
the model execution states cumulatively through many steps. In
particular, for each suspect (operation), GRIST identi�es all the
external values whose gradients with respect to the suspect loss
of the operation are non-zero, suggesting that these values have
data �ow reaching the suspect. GRIST updates their values along
the opposite direction of the gradient sign with a constant delta.
Intuitively, this is similar to how inputs are mutated in adversarial
sample generation [35]. The di�erence lies in that adversarial sample
generation updates a single sample input based on a cross-entropy
loss or a logits loss of the output, while GRIST updates any external
values that are related to some internal operation susceptible to
numerical bugs.

The second kind of inputs is non-iterative, meaning that they con-
tribute to the program state once (when they are loaded). Random
initializations that do not happen iteratively belong to this category.
For these inputs, GRIST does not update them iteratively. Instead,
GRIST approximates the relation between the suspect operation
and an external value with a linear function that can be derived
from the gradient, and then directly infers a new value that can in-
duce an invalid value at the suspect operation. Intuitively, since the
complexity of the correlation between the external value and the
suspect operation is not growing with the iteration number, there
is a good chance we can approximate it with a relatively simple
function and directly derive the failure-inducing value, achieving
cost-e�ectiveness. The two kinds of inputs are distinguished by
their loading places.

The driver component is responsible to update the training batch
and/or restart the execution if needed so that the external value
changes (made by the gradient back-propagation component) can
take e�ect. Intuitively, at the end of each training iteration, it up-
dates the training batch by replacing only a small number of samples
that are not important (for inducing bugs at the suspect operation)
with new samples. In other words, it retains those that are impor-
tant (and hence must have gone through non-trivial changes by
gradient back-propagation). Fresh samples are needed to prevent
the failure-inducing input generation process from being trapped
in some local optima (that cannot trigger the numerical bug).

If a numerical bug can be triggered within a time limit, the buggy
operation and the corresponding failure-inducing external value(s)

Table 1: Vulnerable operations

Operation Valid Range Error Type

Division(~, G) G < 0

Invalid value

Exp(G) G < 88
Expm1(G) G < 88
Log1p(G) G + 1 > 0
Log(G) G > 0
Sqrt(G) G >= 0

Lgamma(G) G < :
: 2 {0,�1,�2,�3, ... � 8=5 }

Sqrt(G) G > 0 Invalid derivativeAcos(G) �1 < G < 1

are reported. In the following, we will explain the details of each
individual component.

3.2 Static Analysis to Identify Vulnerable
Operations and External Values

Intuitively, the essence of GRIST is no di�erent from that of the
large body of existing software testing techniques, which is to iden-
tify and model causality between some inputs and a possible failure
program point, and then derive the input values that can trigger the
failure. While existing techniques leverage static, dynamic, and/or
symbolic analysis to derive such causality, GRIST piggy-backs on
the underlying gradient computation mechanism of DL develop-
ment infrastructures. As mentioned in Section 2.1, when a variable
is declared trainable, the underlying infrastructure will compute its
gradient for any runtime value, denoting how sensitive the runtime
value is to the variable’s value change. If there are multiple trainable
variables, a matrix of gradients is computed for any runtime value
regarding all these variables. If there is no data �ow between a
runtime value and a trainable variable, the corresponding gradient
must be 0. As such, the static analysis essentially identi�es all the
possible starting points (i.e., external values) and all the possible end
points of causality (i.e., operations vulnerable to numerical bugs).
GRIST then marks the starting points as trainable and observes at
an end point if any of the trainable variables have non-zero gradient
at this point. If so, GRIST will use gradient back-propagation to
change the variable(s), trying to induce failure. Examples can be
found later in the section.

Vulnerable Operations. Following the existing work [56], we
consider a list of vulnerable operations shown in Table 1 in our
work. This is because as investigated by the existing work [56],
these operations are the most frequent and have a high possibility
to cause numerical bugs. For example, exp()may cause NaN or INF
when its input is greater than 88 because of over�ow. Please note
that some operations may implicitly trigger numerical bugs and
their invalid ranges are not very obvious. That is, there are several
operations that trigger numerical bugs due to unde�ned derivatives
as shown in Table 1. For example, although -1 and 1 are valid for
acos(), numerical bugs still happen when the DL program tries
to obtain the derivative of acos() at -1 or 1. GRIST identi�es all

631

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Ming Yan, Junjie Chen, Xiangyu Zhang, Lin Tan, Gan Wang, and Zan Wang

the occurrences of these operations in the DL program that do not
have explicit range checks as those shown in Table 1.
De�ning Suspect Loss. For a vulnerable operation) (G), GRIST con-
structs its suspect loss automatically according to its valid ranges.

In the simplest scenario, let) (G) have a valid input range G > 2 ,
GRIST constructs its suspect loss 5 (8) = G8 � 2 . Here 8 denotes the
external input (and hence the loss is a function of the input) and G8
denotes that the operand/parameter G at operation) is a function
of 8 . As such, any update to the external value 8 that reduces 5 (8) is
heading towards inducing a failure at the operation. For) (G) with
multiple valid ranges, denoted as (;1,D1) [(;2,D2) [... [(;: ,D:)
without losing generality, GRIST constructs a loss function for each
of the boundary values as follows.

5;C (8) = G8 � ;C

5DC (8) = DC � G8 ,with C 2 [1,:]
At runtime, let G8 2 (;C ,DC), GRIST uses 5;C (8) if G8 � ;C < DC � G8 ,

5DC (8) otherwise. Take Lgamma() as an example (the logarithm of
the absolute value of gamma function). In the implementation of
TensorFlow and PyTorch, its valid range is that G < : , with : 2
{0,�1,�2,�3, ...�8=5 }. Assume G8 belongs to (-5,-4) and G8� (�5) <
�4 � G8 , we use 5 (8) = G8 � (�5).

Currently, GRIST considers one vulnerable operation at a time.
In other words, it uses the suspect loss function for one operation in
input mutation. Since the average number of vulnerable operations
in a program is usually not large, our design is reasonable. Consid-
ering multiple vulnerable operations at the same time entails using
multiple suspect loss functions, whose optimization directions may
be contradictory, rendering ine�ectiveness.
External Values.We currently consider the following two kinds
of external values: training inputs and values generated by random
number generators. GRIST marks them as trainable in order to com-
pute gradients. For training inputs, similar to adversarial sample
generation, GRIST marks the input vectors after being loaded from
the input �le and preprocessed as trainable. For random values,
GRIST marks the variables that hold the return values of random
number generators as trainable.
Example. Figure 6a presents a simpli�ed buggy code snippet from a
GitHub DL program for MNIST [2]. The training loop is in Lines 13-
16, in which a cross_entropy loss is computed. Lines 1-2 specify
the input and output vectors. Line 6 denotes the computation of a
hidden layer, followed by max-pooling at Line 7. Softmax is applied
at Line 10 and cross_entropy is computed at Line 11. Our static
analysis identi�es that the log() operation at Line 11 is a vulnerable
operation (as it does not have any range check), and Lines 1-2 denote
iterative inputs as they are repeatedly loaded in the training loop.
Please note that the ground truth label vector y_ is also input in our
context as it is loaded from some external �le. As such, vectors x
and y_ at Lines 1 and 2 are possible starting point (of a failure causal
path) and marked trainable; and y_conv at Line 11 is a possible
end point from which GRIST constructs the suspect loss. Please
note that some statements between Line 7 and Line 8 were omitted
due to the space limit and the complete code (including complete
data/control dependency between x and y_conv) can be found at
[2]. In this case, since the parameter of a log operation ought to be
greater than 0, the suspect loss is 5 (G) = ~_2>=E � 0 regarding the

1
2
3
4
5
6
7

8
9
10
11

12
13
14
15
16
17
20
24
25
26
27
28
29
30
31
32
33

x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1)+b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
omit some internal statements

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
omit some internal statements

mnist = input_data.read_data_sets("data",one_hot=True)
for i in range(20000):
 batch = mnist.train.next_batch(50)
 feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}
 loss,_ = sess.run([cross_entropy, train_step],feed_dict)

�狢� �狣� �狤� �狥� �狦�

�狧� �狨� �狫�

�狣狢� �狣狣�

�狩� �狪�

�狣狤� �狣狥� �狣狦�

��IRKGT�OSGMK�

(a) Simpli�ed buggy code snippet

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])

W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

......

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))

optimizer definition
......

load dataset
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

for i in range(20000):
 batch = mnist.train.next_batch(50)
 loss,_ = sess.run([cross_entropy, train_step], feed_dict={
 x: batch[0], y_: batch[1], keep_prob: 1.0})

�狢� �狣� �狤� �狥� �狦�

�狧� �狨� �狫�

�狣狢� �狣狣�

�狩� �狪�

�狣狤� �狣狥� �狣狦�

��IRKGT�OSGMK�

(b) Mutated images

Figure 6: Example of gradient back-propagation for iterative
inputs from [2]

starting point of x. Our goal is hence to change x such that y_conv
becomes smaller-than or equal-to 0.

3.3 Gradient Back-Propagation
Back-propagation for Iterative Inputs.Assume the suspect loss
at a vulnerable operation is 5 (8) with 8 a vector of external inputs.
GRIST updates 8 at the end of the CC⌘ iteration as follows, with 8C
denoting the 8 value at C .

�8 = n ⇥ B86=(r5 (8C)) (1)

8C+1 = 2;8? (8C � �8,<8=,<0G) (2)
In the formula, B86= returns the sign of a real number and n is a
hyperparameter that determines how fast GRIST updates the input.
The formula means that GRIST acquires the gradient sign of the
suspect loss and updates the input by n along the opposite direction
of gradient sign. The updated input value needs to be clipped to its
legal range.
Example. Consider the example in Figure 6a again. Although our
static analysis marks both x and y_ in Lines 1 and 2 to trainable
respectively, at runtime GRIST observes that the gradient of y_ is 0
at y_conv at Line 11, indicating y_ does not a�ect the parameter of

632

Exposing Numerical Bugs in Deep Learning via Gradient Back-Propagation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

define inputs and weights above
gain = tf.get_variable(name="G_matmul_1",

 initializer=tf.random_uniform([n_hidden],
 minval=0, maxval=16))

skip intermediate calculation
#....

curr_scale = tf.multiply(max_scale, S)
new_scale = tf.div(curr_scale, gain)

3
4
5
6
7
8
9

10
11
12

Figure 7: Example of gradient back-propagation for non-
iterative inputs from [3]

the log() operation. As such, it focuses on changing the value of x.
Since it is a vector and the individual elements of the vector denote
image pixels and may have di�erent gradients, these pixels undergo
di�erent scales of mutation. The images in Figure 6b demonstrate
these mutations. Observe that unlike adversarial sample generation,
we do not need to bound the mutation to some norm.

Back-propagation for Non-iterative Inputs. Assume the sus-
pect loss is 5 (8) at some operation with 8 a vector of non-iterative
inputs. We approximate 5 (8) with a linear function, particularly
5 (8) = 68 ⇥ 8 + 1, with 68 = r5 (8) the gradient of the suspect loss
over input 8 computed by the infrastructure. Assume g is an invalid
value we want to reach at the suspect operation. GRIST can directly
update the input 8 as follows.

�8 =
5 (8) � g

r5 (8) (3)

8 0 = 2;8? (8 � �8,<8=,<0G) (4)

Intuitively, it solves the aforementioned linear function tomake it
achieve the invalid value g . Please note that g can be easily derived
from the valid range of the operation parameter (Table 1). This
strategy is very e�ective in practice as non-iterative inputs tend
to be used in low complexity computation that can be su�ciently
approximated by a linear function. Note that a simple non-linear
functions can be easily approximated by multiple linear functions.
For cases where linear updates cannot trigger a bug within a small
number of rounds, GRIST resorts to gradient sign based mutations
like for iterative inputs.

Example. Consider another example in Figure 7. It is from a Sto-
chastic Computing Deep Neural Network (SCDNN) program for
MNIST in GitHub [3]. In this case, the static analysis identi�es the
div() operation at Line 12 is vulnerable to an invalid divisor value
of 0 and variable gain at Line 4 is a non-iterative input as it is used
in the initialization phase. The variable is marked trainable. At run-
time, GRIST identi�es that the input variable gain has a non-zero
gradient (i.e., gradient is equal to 1) at the divisor at Line 12 as
the variable is directly used as the divisor. GRIST approximates
the relation between gain and the divisor with a linear function
5 (608=) = 1 ⇥ 608=. According to Formula (3), �gain= gain and
the variable is updated to 0 in the next execution according to
Formula (4), triggering an NaN value.

3.4 Driver
The driver is responsible to include the mutated inputs in model
execution so that the mutation can take e�ect and lead to failures.
If the inputs being updated are non-iterative, the driver simply
restarts the execution with the updated inputs. In the following, we
focus on discussing how the driver handles iterative input updates.
We cannot directly use the default training batching algorithm,
which tends to use di�erent inputs for each iteration. As such, the
mutated inputs have no impact. A simple strategy would be to
restart every time after update. However, the boot-up process is
very expensive. As such, our driver tends to retain all the important
inputs (i.e., the inputs that have strong causality with the numerical
bug to trigger) and replaces the non-important ones with fresh
samples, in order to avoid being stuck in local optima. In particular,
we compute an importance score for each input 8 at the end of CC⌘
iteration as follows.

scoreC =
updateC � clipC + 1

< + 10�7
(5)

In this formula,< refers to the number of iterations that input 8
has been updated among C iterations. Please note that< should be
less than C as input 8 may be added during training. And updateC =Õ<
1 D: where D: refers to the ratio of the number of elements (e.g.,

pixels of an image) of input 8 updated in the :C⌘ iteration to the total
number of elements in the input, clipC =

Õ<
1 2: where 2: refers to

the ratio of the number of elements beyond its legal range after
input 8 is updated in the :C⌘ iteration to the number of elements.
A high score indicates that the input contributes more to expose
the numerical bug. At the end of each iteration, the driver replaces
5% (called the switch rate, a hyper-parameter in GRIST) inputs that
have the lowest scores with fresh ones. Please note that updateC ,
clipC , and< are 0 for newly added inputs, which hence have the
highest scores among all the inputs.
Termination Condition. Termination condition determines when
GRIST should give up on a suspect. We currently have a simple
termination condition. We use both a �xed time limit (timeout) and
the trend of loss function[36, 41].

4 EVALUATION
In this section, we aim to address the following research questions:

• RQ1: Is GRIST e�ective for exposing numerical bugs in DL
programs?

• RQ2: How does GRIST perform compared with the state-of-
the-art technique DEBAR?

• RQ3: Does our data replacement strategy in the driver im-
prove the e�ectiveness of GRIST?

Experimental Datasets: In our study, we consider both Tensor-
Flow programs and PyTorch programs since they are two most
widely-used DL frameworks and involve both static computation
graphs and dynamic computation graphs. In total, we collected 63
DL programs with 79 numerical bugs (each DL program contains
at least one numerical bugs) as subjects from the following two
sources: (1) Known bugs from existing studies and GitHub: We used
17 subjects containing 23 known bugs from existing studies and
GitHub. Speci�cally, we used eight subjects from the existing empir-
ical study on TensorFlow program bugs [55] and one subject from

633

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Ming Yan, Junjie Chen, Xiangyu Zhang, Lin Tan, Gan Wang, and Zan Wang

TensorFuzz [37] following the existing work [56]. Regarding known
bugs from GitHub, we adopted bug-relevant keywords (including
NaN, INF, and the operations listed in Table 1) to search a set of
candidate programs from GitHub according to the descending order
of GitHub searching relevance and then conducted manual �lter-
ing. Since di�erent DL programs tend to require di�erent runtime
experiments, dependencies, and datasets, it is non-trivial to run
a DL program and reproduce its bugs successfully. Therefore, we
used eight subjects whose 10 bugs can be reproduced conveniently
and successfully in our runtime experiment. (2) Unknown bugs from
GitHub: We applied GRIST and the state-of-the-art technique DE-
BAR to fuzz GitHub DL programs and �nally identi�ed 46 subjects
with 56 unknown numerical bugs to developers. Speci�cally, we
�rst collected a set of GitHub DL programs, each of which contains
at least one operation listed in Table 1 and can run successfully
in our runtime experiment, according to the descending order of
GitHub searching relevance with the considered vulnerable opera-
tions. Then, we applied GRIST and the state-of-the-art technique
DEBAR to the latest commit of each program, respectively. If at
least one technique can detect a numerical bug within 60 minutes
in a DL program, we regarded this DL program as a subject.

In particular, we consider the diversity of our subjects. Besides
di�erent DL frameworks and di�erent types of computation graphs,
our subjects also include di�erent neural network architectures
(e.g., CNN, RNN, and GAN) and di�erent datasets (e.g., MNIST,
Fashion-MNIST, and User-de�ned Data).
Experimental Settings: To answer RQ1, we ran each subject with
and without GRIST using its default dataset and hyperparameters.
GRIST has 3 hyperparameters: timeout (the time limit for running
GRIST), n that de�nes the input update rate, and switch rate that
speci�es the fraction of samples that are replaced at each batch for
iterative inputs. Speci�cally, timeout is set to 30 minutes; n is set
to 0.15; and switch rate is set to 5%. We have investigated the in�u-
ence of main parameters in Section 5.1. Note that with GRIST, the
inputs are mutated during execution. To mitigate non-determinism
(e.g., numerical exceptions being randomly triggered), we repeated
each run 10 times and reported the aggregated results. To answer
RQ2, we applied DEBAR with its default hyperparameters to each
subject and also set its time limit to 30 minutes for fair comparison.
To answer RQ3, we ran each subject through GRIST without its
data replacement strategy, while the other two hyperparameters in
GRIST remain the same.
Hardware and Runtime Environments: Our experiment was
conducted on the Intel Xeon Silver 4214 machine with 128GB RAM,
Ubuntu 16.04.6 LTS, and two GTX 2080 Ti GPUs. We used the
Anaconda environments to switch di�erent versions of PyTorch
and TensorFlow.

4.1 RQ1: Overall E�ectiveness of GRIST
Setup. We ran 63 subjects containing 79 bugs 10 times with and

without GRIST, respectively. Table 2 shows the comparison results
between with and without GRIST, in which C is the total number
of times that a bug is exposed in 10 repeated runs, T refers to
the average execution time for exposing a bug. Please noted that
if a numerical bug is exposed in 3 out of the 10 runs, only the
time in these 3 times are used to calculate the average result. We

calculated the average improvement achieved by GRIST in terms of
the execution time for each bug (denoted as *)). We also calculated
the average results for the overall 79 bugs as shown in the last row
in Table 2. For those bugs that were not triggered within the given
time limit, we used the time limit (i.e., 30 minutes) to calculate the
overall average time. Due to the space limit, we use ID to replace
the subject name, and the complete information about our subjects
can be found at our project homepage1.

Results. Table 2 shows the e�ectiveness of GRIST in exposing
numerical bugs and accelerating failure triggering. Overall, GRIST
is able to successfully detect 78 (out of 79) bugs within 30 min-
utes, among which 56 are unknown bugs (i.e., the latest commit
for the corresponding subject still contains the bug). In particular,
26 of 56 unknown bugs cannot be detected by the state-of-the-art
technique DEBAR, demonstrating the unique superiority of GRIST
(more detailed comparison with DEBAR can be found in Section 4.2).
Through submitting them to the corresponding issue repositories
and communicating with developers, eight bugs have been con-
�rmed and three bugs have been �xed. We further analyzed the
bug that was not exposed by GRIST (i.e., ID: 17, which cannot be
triggered by running the original program with the default inputs
either) and found that GRIST indeed pushes the parameter value of
the vulnerable operation (i.e., exp) very close to the boundary but
cannot go beyond (to trigger the failure). By relaxing the time limit
to one hour, GRIST is able to trigger the bug (with average time of
58 minutes).

From Table 2, there are 34 bugs, which were never be exposed
in the 10 runs of using the default inputs. In contrast, GRIST can al-
ways trigger 76 numerical bugs in all the 10 runs and the remaining
two bugs in some of the 10 runs (due to inherent non-determinism).
Regarding the 45 bugs that can be exposed by both GRIST and de-
fault inputs, GRIST can trigger them in a much more stable fashion.
Speci�cally, GRIST can trigger them in all the 10 runs whereas us-
ing the default inputs triggers eight of them in some of the 10 runs
(even less than 5 times for the subject with ID-24). Also observe
from Table 2 that GRIST can substantially reduce the time spent
on triggering bugs. Overall, GRIST can save 8.79X time cost on
average. In particular, for the bug (ID-37), using the default input
took 1,586.53 seconds to trigger it while GRIST took only 0.69 sec-
onds, saving 2,299.32X time cost. There is only one bug (i.e., ID:
2a) that GRIST spends longer average time on triggering it than
the original program with the default input. We analyzed that for
this bug, using the default input alone took only 0.40 seconds to
trigger it. For such a bug, GRIST cannot accelerate the process that
is already extremely fast.

4.2 RQ2: Comparison with the State-of-the-Art
Technique DEBAR

Setup. For comparison with the state-of-the-art technique DE-
BAR, we applied it to each subject and used 3/7 to mark whether
DEBAR can detect the bug or not in Table 2. As DEBAR does not
need to run programs, we do not need to run it 10 times.

Results. As expected, the execution time of the static technique
DEBAR is only 2 seconds on average across all the subjects, but
1https://github.com/Jacob-yen/GRIST.

634

Exposing Numerical Bugs in Deep Learning via Gradient Back-Propagation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 2: Results for using the default inputs,GRIST,GRIST#(and DEBAR

ID Default Input GRIST GRIST#(DEBAR ID Default Input GRIST GRIST#(DEBARC T C T *) C T *) C T C T *) C T *)
1 10 814.86 10 16.12 50.55 X 10 14.30 57.00 X 3 32 10 11.12 10 0.08 139.00 X 10 0.08 139.00 X 7
2a 10 0.40 10 16.70 -41.92 X 10 8.63 -21.66 X 3 33 10 11.74 10 0.28 41.93 X 10 0.28 41.93 X 7
2b 10 0.32 10 0.31 1.03 X 10 0.25 1.28 X 3 34 10 130.72 10 0.22 594.18 X 10 0.22 594.18 X 7
3 10 24.66 10 7.21 3.42 X 10 25.17 -1.02 X 3 35a 0 — 10 14.65 +1 10 12.00 +1 3
4 0 — 10 0.43 +1 10 0.41 +1 7 35b 0 — 10 308.64 +1 10 353.27 +1 7
5 0 — 10 0.34 +1 10 0.34 +1 7 36a 7 999.70 10 15.17 65.9 X 10 9.10 109.82 X 3
6 6 1,451.17 10 19.85 73.11 X 10 10.21 142.07 X 3 36b 0 — 10 306.53 +1 10 352.52 +1 7
7 8 1,464.85 10 19.84 73.83 X 10 10.25 142.91 X 3 37 10 1,586.53 10 0.69 2299.32 X 10 0.69 2299.32 X 7
8 8 1,461.66 10 19.76 73.98 X 10 10.27 142.34 X 3 38 0 — 10 0.28 +1 10 0.28 +1 7
9a 10 57.00 10 5.30 10.75 X 10 4.00 14.25 X 3 39a 8 718.60 10 12.02 59.78 X 10 8.35 86.01 X 3
9b 10 61.41 10 19.96 3.08 X 10 17.78 3.45 X 3 39b 0 — 10 309.12 +1 10 350.39 +1 7
10 10 383.03 10 43.86 8.73 X 10 220.84 1.73 X 3 40 10 547.80 10 87.30 6.27 X 10 155.40 3.53 X 7
11a 10 510.92 10 5.93 86.16 X 10 4.28 119.37 X 3 41 10 556.30 10 87.00 6.39 X 10 180.40 3.08 X 7
11b 10 556.37 10 5.37 103.61 X 10 3.95 140.85 X 3 42 10 548.90 10 85.90 6.39 X 10 120.50 4.56 X 7
11c 0 — 10 4.58 +1 10 4.97 +1 3 43a 0 — 10 13.25 +1 10 10.73 +1 3
12 9 220.25 10 52.06 4.23 X 10 133.12 1.65 X 7 43b 0 — 10 308.29 +1 10 353.90 +1 7
13 0 — 10 0.65 +1 10 0.52 +1 7 44 0 — 10 231.20 +1 10 208.72 +1 3
14 10 564.72 10 86.23 6.55 X 9 336.08 1.68 X 3 45a 10 262.36 10 90.86 2.89 X 0 — �1 3
15 10 700.90 10 14.96 46.86 X 10 13.00 53.91 X 3 45b 10 1,278.81 10 27.46 46.57 X 10 41.54 30.79 X 3
16a 0 — 10 3.30 +1 10 68.74 +1 3 46 0 — 10 0.21 +1 10 0.21 +1 7
16b 10 534.36 10 3.29 162.42 X 10 5.24 101.98 X 3 47 0 — 10 0.19 +1 10 0.19 +1 7
16c 0 — 10 4.43 +1 10 4.89 +1 3 48a 10 40.50 10 0.94 43.09 X 10 1.19 34.03 X 3
17 0 — 0 — — 0 — — 7 48b 10 440.12 10 0.84 523.95 X 10 1.00 440.12 X 3
18 10 343.66 10 25.49 13.48 X 5 549.64 -1.60 X 3 49a 0 — 10 13.39 +1 10 10.34 +1 3
19 10 855.71 10 137.31 6.23 X 0 — �1 3 49b 0 — 10 307.24 +1 10 351.98 +1 7
20 0 — 10 608.80 +1 0 — — 3 50 0 — 10 166.00 +1 0 — — 3
21 0 — 10 44.49 +1 0 — — 3 51 0 — 3 1,520.18 +1 0 — — 7
22 0 — 10 1,119.60 +1 0 — — 7 52 10 404.30 10 61.50 6.57 X 0 — �1 3
23 0 — 10 0.21 +1 10 0.21 +1 7 53 0 — 10 0.27 +1 10 0.27 +1 7
24 4 1,639.14 10 41.32 39.67 X 10 72.52 22.60 X 3 54 10 3.25 10 0.13 25.00 X 10 0.13 25.00 X 7
25 10 502.05 10 59.36 8.46 X 0 — �1 3 55 10 1,322.20 10 32.70 40.43 X 10 37.03 35.71 X 3
26 10 16.95 10 0.27 62.78 X 10 0.27 62.78 X 7 56 10 11.15 10 0.20 55.75 X 10 0.20 55.75 X 7
27 0 — 10 0.19 +1 10 0.19 +1 7 57 0 — 10 0.25 +1 10 0.25 +1 7
28a 0 — 10 1.11 +1 10 1.30 +1 3 58 10 1,283.60 10 40.70 31.54 X 10 15.26 84.12 X 3
28b 0 — 10 176.02 +1 10 176.02 +1 3 59 10 167.50 10 0.10 1675. X 10 0.09 1861.11 X 3
28c 0 — 10 176.02 +1 10 176.02 +1 3 60 10 131.10 10 41.80 3.14 X 0 — �1 3
28d 0 — 10 626.12 +1 10 626.12 +1 3 61 10 579.60 10 27.00 21.47 X 6 413.92 1.40 X 3
29 9 852.69 10 44.02 19.37 X 10 81.79 10.43 X 3 62 10 839.80 10 155.40 5.4 X 7 451.66 1.86 X 7
30 10 133.46 10 45.78 2.92 X 0 — �1 3 63 0 — 10 256.00 +1 7 1,207.52 +1 7

31 0 — 3 23.79 +1 1 18.82 +1 3 Total 429 1,091.47 766 124.11 8.79 645 365.19 2.99 48(3)/31(7)
* +1 means that the GRIST or GRIST#(based run(s) can expose numerical bugs in the 10 runs while the default inputs cannot; �1 means GRIST#(cannot �nd numerical bugs in the 10 runs while the default
inputs can; — indicates that the corresponding technique cannot expose the numerical bugs; 3/7 means that DEBAR can detect the bug or not.

indeed DEBAR reports 12 FPs (false positives), which have been
extensively explained in the work proposing DEBAR [56]. Also,
there are 31 (out of 79) bugs that were not detected by DEBAR, of
which 30 bugs were detected by GRIST. In fact, GRIST can detect a
superset of the bugs that DEBAR can detect. We manually analyzed
the 31 FNs (false negatives) of DEBAR and found that there are
three reasons: 1) As mentioned earlier, DEBAR cannot be applica-
ble to dynamic computation graphs, and thus it missed to detect
bugs based on dynamic computation graphs. It is remarkable that
the latest version of TensorFlow has also supported dynamic com-
putation graphs and takes it as the default usage, indicating that
supporting to detect bugs based on dynamic computation graphs
like GRIST will be an inevitable trend in the future to some degree.
23 of 31 FNs fall into this category. 2) DEBAR does not support the
error type of invalid derivative listed in Table 1 since the derivation
operation can be found only at runtime. 5 of 31 FNs fall into this
category. 3) DEBAR requires users to manually con�gure the range
of each primitive parameter in the program, but there are three
bugs, which DEBAR cannot detect when con�guring the correct
range (e.g., the range of the variable after normalization is [0,1])
but can detect when setting a more coarse range (e.g., [0,inf]). The

results demonstrate that GRIST outperforms DEBAR in terms of
both FPs and FNs.

4.3 RQ3: Contribution of the Data
Replacement Strategy in GRIST

Setup. To investigate the impact of replacing unimportant sam-
ples with fresh ones in GRIST, we prohibited GRIST from dropping
inputs with low scores or adding new inputs. In other words, it
continued to update the same set of samples iteratively. The settings
of n and C8<4>DC remain the same. We call this variant GRIST#(.

Results. Observe that replacing unimportant samples has a pos-
itive e�ect on the performance of GRIST. First of all, in terms of
the number of exposed bugs, GRIST exposes 78 bugs in 766 runs
in total while GRIST#((GRIST without data replacement) only
exposes 67 bugs in 645 runs. Also, there are six bugs that were not
detected by GRIST#(but were detected by the original programs
using default inputs. Second, in terms of time cost reduction in
exposing bugs, GRIST#(can save 2.99X time cost compared to the
original programs using default inputs, while that of GRIST is 8.79X.

635

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Ming Yan, Junjie Chen, Xiangyu Zhang, Lin Tan, Gan Wang, and Zan Wang

The results demonstrate the data replacement strategy is indeed
able to improve the performance of GRIST.

5 DISCUSSION
5.1 In�uence of Main Parameters in GRIST
We investigated the in�uence of two main parameters in GRIST,
i.e., n (the input update rate) and switch rate (the fraction of samples
being replaced at the end of each training iteration), by conducting
an experiment based on three randomly selected subjects (ID-3,
ID-18, ID-35). Regarding n , we studied 0.1, 0.15, 0.2, 0.25, and 0.3,
while regarding switch rate, we studied 0.01, 0.05, 0.1, 0.15, and 0.2,
whose average results are shown in Figure 9. In the experiment,
only one parameter is changed each time while others use our
default settings. We found that, in general GRIST is insensitive to
n or switch rate (except 0.01) within the studied range. Regarding
switch rate of 0.01, one subject has a small batch size such that the
number of replaced data is very small, making it nearly equivalent
to GRIST#(.

5.2 Generalizability of GRIST
On one hand, GRIST can work on both static computation graphs
and dynamic computation graphs, while DEBAR can only support
the former, indicating that GRIST is more general than the state-
of-the-art technique DEBAR for detecting numerical bugs in DL
programs. On the other hand, even though GRIST is designed to
expose numerical bugs in DL programs, it can be also generalized
to DL libraries to some degree. This is because DL libraries can
also utilize their gradient computation mechanisms that GRIST
piggy-backs on, through invocations from DL programs. We use
an example of the PyTorch library, shown in Figure 8, to illustrate
how GRIST is generalized to detect numerical bugs in DL libraries.
Figure 8a shows the function entropy in PyTorch, which could
produce an NaN when self.rate is 0 in log. GRIST can detect
this numerical bug by 1) �nding or creating a DL program that
invokes this function (shown in Figure 8b), 2) constructing sus-
pect loss by instrumenting PyTorch to return the parameter value
of log in entropy along with its original returned value (Lines 3
in Figure 8b), and 3) updating the argument value of entropy in
the DL program via gradient computation (utilizing the gradient
computation mechanism in PyTorch) between suspect loss and the
argument rate of entropy (Lines 14-18 in Figure 8b). In this way,
rate becomes zero eventually and the numerical bug in PyTorch is
exposed. Compared with DL programs, the main di�erence of de-
tecting numerical bugs in DL libraries is that the logical relationship
between suspect loss and input of the library function under test lies
in DL libraries rather than DL programs, and thus the parameters
of the buggy operations have to be returned to DL programs from
DL libraries for gradient computation.

5.3 Threats to Validity
The internal threat to validity mainly lies in the implementation of
GRIST. To reduce this threat, two authors have carefully examined
the implementation of GRIST, including reviewing and testing the
code. Speci�cally, they cross-reviewed each function and wrote unit
tests. Also, regarding the integrated tool, they used the debug mode

��,Q�WRUFK�GLVWULEXWLRQV�H[SRQHQWLDO�([SRQHQWLDO
GHI�HQWURS\�VHOI��
����UHWXUQ�������WRUFK�ORJ�VHOI�UDWH�

��,Q�,QVWUXPHQWHG�([SRQHQWLDO
GHI�HQWURS\�VHOI��
����UHWXUQ�������WRUFK�ORJ�VHOI�UDWH��VHOI�UDWH
��������
��,Q�'ULYHU�RI�*5,67
UDWH� �LQLWLDOL]HBUDWH��
UDWH� �FODPS�UDWH�
H[SRQHQWLDO� �([SRQHQWLDO�UDWH�

ZKLOH�1RW7HUPLQDWH���
����H[SRQHQWLDO� �([SRQHQWLDO�UDWH�
����DFWXDOBUHVXOWV�PRQLWRUHGBYDU� �H[SRQHQWLDO�HQWURS\��
����VXVSHFWBORVV� �GHILQHBVXVSHFWBORVV�PRQLWRUHGBYDU�
����JUDGV� �FDOFXODWHBJUDGLHQWV�VXVSHFWBORVV�UDWH�
����1D1B&KHFN�DFWXDOBUHVXOWV�
����
����UDWH� �XSGDWHBUDWHBE\BJUDGV�JUDGV�
����UDWH� �FODPS�UDWH�
����
����

�
�
�

�
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��
��

(a) Function in the PyTorch library

��,Q�WRUFK�GLVWULEXWLRQV�H[SRQHQWLDO�([SRQHQWLDO
GHI�HQWURS\�VHOI��
����UHWXUQ�������WRUFK�ORJ�VHOI�UDWH�

��,Q�,QVWUXPHQWHG�([SRQHQWLDO
GHI�HQWURS\�VHOI��
����UHWXUQ�������WRUFK�ORJ�VHOI�UDWH��VHOI�UDWH
��������
��,Q�'ULYHU�RI�*5,67
UDWH� �LQLWLDOL]HBUDWH��
UDWH� �FODPS�UDWH�
H[SRQHQWLDO� �([SRQHQWLDO�UDWH�

ZKLOH�1RW7HUPLQDWH���
����H[SRQHQWLDO� �([SRQHQWLDO�UDWH�
����DFWXDOBUHVXOWV�PRQLWRUHGBYDU� �H[SRQHQWLDO�HQWURS\��
����VXVSHFWBORVV� �GHILQHBVXVSHFWBORVV�PRQLWRUHGBYDU�
����JUDGV� �FDOFXODWHBJUDGLHQWV�VXVSHFWBORVV�UDWH�
����1D1B&KHFN�DFWXDOBUHVXOWV�
����
����UDWH� �XSGDWHBUDWHBE\BJUDGV�JUDGV�
����UDWH� �FODPS�UDWH�
����
����

�
�
�

�
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��
��

(b) Pytorch program invoking the function (driver of GRIST)

Figure 8: Example of applying GRIST to detect a numerical
bug in the PyTorch library

in the PyCharm IDE to ensure the correctness of the intermediate
states and the �nal output for a program.

The external threat to validity mainly lies in the subjects used
in our study. To reduce this threat, we collected 63 real-world DL
programs containing 79 bugs from two sources as subjects in our
study, including 23 known bugs from existing studies and GitHub,
and 56 unknown bugs from GitHub that can be detected by either
GRIST or DEBAR. Section 4 presents the subject collection process
in detail. In the future, wewill evaluate GRIST onmore DL programs
based on more DL libraries.

6 RELATEDWORK
DL Program Bugs. The most related work to ours is DEBAR [56],
which has been discussed and compared in Sections 2.2 and 4.2.
Besides, there are a number of empirical studies on DL program
bugs [8, 26–28, 53–55]. For example, Zhang et al.[55] analyzed
the root causes and symptoms of 175 TensorFlow program bugs
from GitHub issues and Stack Over�ow posts. Humbatova et al.[26]
provided a taxonomy of DL program bugs through manual analysis
and interviews based on GitHub issues and Stack Over�ow posts.
Islam et al.[27, 28] analyzed the types, root causes, impact, and �x
patterns of DL program bugs based on �ve popular DL libraries.
Zhang et al. [54] inspected 715 questions on Stack Over�ow about
DL and summarized many common challenges in developing DL
programs. Di�erent from them, we focus on proposing the �rst
dynamic technique to expose numerical bugs in DL programs.
Numerical Bugs in Traditional Software. There is some work
on numerical bugs in traditional software. For example, Franco
et al.[18] conducted a comprehensive study on numerical bugs
in traditional software. Dietz et al.[15] developed IOC, a dynamic
checking tool for integer over�ow and conducted the �rst empirical
study on integer over�ow in C and C++ code. Tang et al.[45] pro-
posed a toolchain that can detect potential numerical instability and
diagnose the reasons for such instability. Guo et al.[22] proposed

636

Exposing Numerical Bugs in Deep Learning via Gradient Back-Propagation ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

(a) n (b) BF8C2⌘_A0C4

Figure 9: Results for di�erent settings of n and BF8C2⌘_A0C4

an approach based on symbolic execution to e�ciently generating
�oating-point inputs to trigger program errors. Di�erent from them,
our work targets at numerical bugs in DL programs, which are very
di�erent from traditional software as presented in Section 1.

Furthermore, Fu et al. [19, 20] adopted gradient optimization to
analyze �oat-point code in traditional software, aiming at generat-
ing tests for high coverage. Even though they also utilized gradients,
di�erent from them, our contribution lies in handling bugs in DL
programs. Speci�cally, DL training is extremely expensive and de-
mands many processes, whereas the execution model of traditional
numerical programs is simple. GRIST piggy-backs on existing gradi-
ent back-propagation mechanism, which makes it easily deployable.
It requires solving new challenges as well such as interacting with
DL primitives (e.g., automatically marking selected variables as
trainable) and handling data loading.
DL Testing. Over the years, a large amount of work focus on DL
testing [13, 16, 23, 29, 33, 34, 37, 39, 43, 48, 51]. However, they aim
to either test DL models by proposing various input generation
techniques [7, 23, 51] or designing various test criteria [25, 29, 33, 34,
39], or test DL libraries and DL compilers [40, 43, 47] Di�erent from
them, our work aims to detect DL program bugs, i.e., numerical
bugs in DL programs.

7 CONCLUSION
In this paper, we propose the �rst dynamic technique to generate in-
puts to expose numerical bugs in DL programs and implement it in
a tool named GRIST. The technique piggy-backs on the built-in gra-
dient computation of the underlying deep learning framework. Our
results on 63 real-world DL programs with 79 numerical bugs show
that GRIST can expose unknown numerical bugs and substantially
reduce the execution time needed to trigger bugs.

ACKNOWLEDGEMENT
We thank all the anonymous reviewers for their valuable comments.
This work has been supported by the National Natural Science
Foundation of China 62002256, 61872263, Intelligent Manufactur-
ing Special Fund of Tianjin 20193155, IARPA TrojAI W911NF-19-
S-0012, NSF 1901242, 2006688, 1910300, and ONR N000141712045,
N000141410468, N000141712947. Any opinions, �ndings, and con-
clusions in this paper are those of the authors only and do not
necessarily re�ect the views of our sponsors.

REFERENCES
[1] Accessed: 2020. GitHub. https://github.com/philipperemy/deep-speaker/issues/5.
[2] Accessed: 2020. GitHub. https://github.com/ForeverZyh/TensorFlow-Program-

Bugs/blob/master/StackOver�ow/IPS-2/33699174-buggy/mnist.py.
[3] Accessed: 2020. GitHub. https://github.com/adamsolomou/SC-DNN/blob/

a9169c6b7a0d456c1d2f229913e2d8c042c40aab/src/training/sc_train_creg.py.

[4] Accessed: 2020. PyTorch Forums. https://discuss.pytorch.org/t/my-self-
implemented-batchnorm-relu-gives-nan/42294.

[5] Accessed: 2020. PyTorch Forums. https://discuss.pytorch.org/t/di�erent-losses-
on-2-di�erent-machines/36446/5.

[6] Nathaniel Ayewah, David Hovemeyer, J. David Morgenthaler, John Penix, and
William Pugh. 2008. Using Static Analysis to Find Bugs. IEEE Softw. 25, 5 (2008),
22–29.

[7] Houssem Ben Braiek and Foutse Khomh. 2019. DeepEvolution: A Search-Based
Testing Approach for Deep Neural Networks. In ICSME. IEEE, 454–458.

[8] Houssem Ben Braiek and Foutse Khomh. 2019. TFCheck : A TensorFlow Library
for Detecting Training Issues in Neural Network Programs. In 19th IEEE Interna-
tional Conference on Software Quality, Reliability and Security, QRS 2019, So�a,
Bulgaria, July 22-26, 2019. IEEE, 426–433.

[9] Nicholas Carlini and David A. Wagner. 2017. Towards Evaluating the Robustness
of Neural Networks. In IEEE Symposium on Security and Privacy. IEEE Computer
Society, 39–57.

[10] Chenyi Chen, Ari Se�, Alain Kornhauser, and Jianxiong Xiao. 2015. Deepdriving:
Learning a�ordance for direct perception in autonomous driving. In Proceedings
of the IEEE International Conference on Computer Vision. 2722–2730.

[11] Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao, Feng Gao,
Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2019. Continuous Incident
Triage for Large-Scale Online Service Systems. In 34th IEEE/ACM International
Conference on Automated Software Engineering. 364–375.

[12] Junjie Chen, Haoyang Ma, and Lingming Zhang. 2020. Enhanced Compiler Bug
Isolation via Memoized Search. In 35th IEEE/ACM International Conference on
Automated Software Engineering. 78–89.

[13] Junjie Chen, Zhuo Wu, Zan Wang, Hanmo You, Lingming Zhang, and Ming Yan.
2020. Practical Accuracy Estimation for E�cient Deep Neural Network Testing.
ACM Trans. Softw. Eng. Methodol. 29, 4 (2020), 30:1–30:35.

[14] Junjie Chen, Shu Zhang, Xiaoting He, Qingwei Lin, Hongyu Zhang, Dan Hao,
Yu Kang, Feng Gao, Zhangwei Xu, Yingnong Dang, and Dongmei Zhang. 2020.
How Incidental are the Incidents? Characterizing and Prioritizing Incidents for
Large-Scale Online Service Systems. In 35th IEEE/ACM International Conference
on Automated Software Engineering. 373–384.

[15] Will Dietz, Peng Li, John Regehr, and Vikram S. Adve. 2012. Understanding integer
over�ow in C/C++. In 34th International Conference on Software Engineering, ICSE
2012, June 2-9, 2012, Zurich, Switzerland. IEEE Computer Society, 760–770.

[16] Xiaoning Du, Xiaofei Xie, Yi Li, Lei Ma, Yang Liu, and Jianjun Zhao. 2019. A
Quantitative Analysis Framework for Recurrent Neural Network. In ASE. IEEE,
1062–1065.

[17] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B.
Saxe, and Raymie Stata. 2013. PLDI 2002: Extended static checking for Java. ACM
SIGPLAN Notices 48, 4S (2013), 22–33.

[18] Anthony Di Franco, Hui Guo, and Cindy Rubio-González. 2017. A comprehensive
study of real-world numerical bug characteristics. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering, ASE 2017,
Urbana, IL, USA, October 30 - November 03, 2017. IEEE Computer Society, 509–519.

[19] Zhoulai Fu and Zhendong Su. 2017. Achieving high coverage for �oating-point
code via unconstrained programming. In PLDI. ACM, 306–319.

[20] Zhoulai Fu and Zhendong Su. 2019. E�ective �oating-point analysis via weak-
distance minimization. In PLDI. ACM, 439–452.

[21] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and
Harnessing Adversarial Examples. In ICLR (Poster).

[22] Hui Guo and Cindy Rubio-González. 2020. E�cient generation of error-inducing
�oating-point inputs via symbolic execution. In ICSE. ACM, 1261–1272.

[23] Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. DLFuzz:
di�erential fuzzing testing of deep learning systems. In Proceedings of the 2018
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 04-09, 2018. ACM, 739–743.

[24] Andrew Habib and Michael Pradel. 2018. How many of all bugs do we �nd? a
study of static bug detectors. In ASE. ACM, 317–328.

[25] Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quanquan Gu,
and Miryung Kim. 2020. Is neuron coverage a meaningful measure for testing
deep neural networks?. In ESEC/SIGSOFT FSE. ACM, 851–862.

[26] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea
Stocco, and Paolo Tonella. 2019. Taxonomy of Real Faults in Deep Learning
Systems. CoRR abs/1910.11015 (2019).

[27] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Alessandra Russo Hridesh Ra-
jan. 2019. A comprehensive study on deep learning bug characteristics. In Pro-
ceedings of the ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE
2019, Tallinn, Estonia, August 26-30, 2019. ACM, 510–520.

[28] Md Johirul Islam, Rangeet Pan, Giang Nguyen, andHridesh Rajan. 2020. Repairing
Deep Neural Networks: Fix Patterns and Challenges. CoRR abs/2005.00972 (2020).

[29] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system
testing using surprise adequacy. In Proceedings of the 41st International Conference

637

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Ming Yan, Junjie Chen, Xiangyu Zhang, Lin Tan, Gan Wang, and Zan Wang

on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. IEEE
/ ACM, 1039–1049.

[30] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2017. Adversarial examples
in the physical world. In ICLR (Workshop). OpenReview.net.

[31] Ron Larson and Bruce H Edwards. 2016. Calculus of a single variable. Nelson
Education.

[32] Xuanqing Liu, Minhao Cheng, Huan Zhang, and Cho-Jui Hsieh. 2018. Towards
Robust Neural Networks via Random Self-ensemble. In ECCV (7) (Lecture Notes
in Computer Science, Vol. 11211). Springer, 381–397.

[33] Lei Ma, Felix Juefei-Xu, Minhui Xue, Bo Li, Li Li, Yang Liu, and Jianjun Zhao. 2019.
DeepCT: Tomographic Combinatorial Testing for Deep Learning Systems. In 26th
IEEE International Conference on Software Analysis, Evolution and Reengineering,
SANER 2019, Hangzhou, China, February 24-27, 2019. IEEE, 614–618.

[34] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and YadongWang. 2018. DeepGauge:
multi-granularity testing criteria for deep learning systems. In Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering, ASE
2018, Montpellier, France, September 3-7, 2018. ACM, 120–131.

[35] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards Deep Learning Models Resistant to Adversarial
Attacks. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net.

[36] Maren Mahsereci, Lukas Balles, Christoph Lassner, and Philipp Hennig. 2017.
Early stopping without a validation set. arXiv preprint arXiv:1703.09580 (2017).

[37] Augustus Odena, Catherine Olsson, David Andersen, and Ian J. Goodfellow. 2019.
TensorFuzz: Debugging Neural Networks with Coverage-Guided Fuzzing. In
Proceedings of the 36th International Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA (Proceedings of Machine Learning
Research, Vol. 97). PMLR, 4901–4911.

[38] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay
Celik, and Ananthram Swami. 2016. The Limitations of Deep Learning in Adver-
sarial Settings. In EuroS&P. IEEE, 372–387.

[39] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-
mated Whitebox Testing of Deep Learning Systems. In Proceedings of the 26th
Symposium on Operating Systems Principles, Shanghai, China, October 28-31, 2017.
ACM, 1–18.

[40] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE:
cross-backend validation to detect and localize bugs in deep learning libraries.
In Proceedings of the 41st International Conference on Software Engineering, ICSE
2019, Montreal, QC, Canada, May 25-31, 2019. IEEE / ACM, 1027–1038.

[41] Lutz Prechelt. 1998. Early stopping-but when? In Neural Networks: Tricks of the
trade. Springer, 55–69.

[42] Louis B. Rall. 1981. Automatic Di�erentiation: Techniques and Applications. Lecture
Notes in Computer Science, Vol. 120. Springer. https://doi.org/10.1007/3-540-
10861-0

[43] Qingchao Shen, Haoyang Ma, Junjie Chen, Yongqiang Tian, Shing-Chi Cheung,
and Xiang Chen. 2021. A Comprehensive Study of Deep Learning Compiler Bugs.

In ESEC/FSE. to appear.
[44] Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang. 2014. Deep learning

face representation by joint identi�cation-veri�cation. In Advances in neural
information processing systems. 1988–1996.

[45] Enyi Tang, Xiangyu Zhang, Norbert Th. Müller, Zhenyu Chen, and Xuandong
Li. 2017. Software Numerical Instability Detection and Diagnosis by Combining
Stochastic and In�nite-Precision Testing. IEEE Trans. Software Eng. 43, 10 (2017),
975–994.

[46] Ferdian Thung, Lucia, David Lo, Lingxiao Jiang, Foyzur Rahman, and Premku-
mar T. Devanbu. 2012. To what extent could we detect �eld defects? an empirical
study of false negatives in static bug �nding tools. In ASE. ACM, 50–59.

[47] Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020. Deep
learning library testing via e�ective model generation. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 788–799.

[48] Zan Wang, Hanmo You, Junjie Chen, Yingyi Zhang, Xuyuan Dong, and Wenbin
Zhang. 2021. Prioritizing Test Inputs for Deep Neural Networks via Mutation
Analysis. In 43rd IEEE/ACM International Conference on Software Engineering.
397–409.

[49] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song.
2018. Spatially Transformed Adversarial Examples. In ICLR (Poster). OpenRe-
view.net.

[50] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan L. Yuille. 2018.
Mitigating Adversarial E�ects Through Randomization. In ICLR (Poster). Open-
Review.net.

[51] Xiaofei Xie, Lei Ma, Felix Juefei-Xu, Minhui Xue, Hongxu Chen, Yang Liu, Jianjun
Zhao, Bo Li, Jianxiong Yin, and Simon See. 2019. DeepHunter: a coverage-guided
fuzz testing framework for deep neural networks. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2019,
Beijing, China, July 15-19, 2019. ACM, 146–157.

[52] Lin Yang, Junjie Chen, Zan Wang, Weijing Wang, Jiajun Jiang, Xuyuan Dong,
and Wenbin Zhang. 2021. Semi-supervised Log-based Anomaly Detection via
Probabilistic Label Estimation. In 43rd IEEE/ACM International Conference on
Software Engineering. 1448–1460.

[53] Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu, Haoxiang Lin, and Mao Yang.
[n.d.]. An Empirical Study on Program Failures of Deep Learning Jobs. ([n. d.]).

[54] Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael R. Lyu, and Miryung Kim. 2019. An
Empirical Study of Common Challenges in Developing Deep Learning Applica-
tions. In 30th IEEE International Symposium on Software Reliability Engineering,
ISSRE 2019, Berlin, Germany, October 28-31, 2019. IEEE, 104–115.

[55] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018.
An empirical study on TensorFlow program bugs. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2018,
Amsterdam, The Netherlands, July 16-21, 2018. ACM, 129–140.

[56] Yuhao Zhang, Luyao Ren, Liqian Chen, Yingfei Xiong, Shing-Chi Cheung, and
Tao Xie. 2020. Detecting numerical bugs in neural network architectures. In
ESEC/SIGSOFT FSE. ACM, 826–837.

638

