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Abstract
Traditional compilers ignore processor specifications, thousands of
pages of which are available for modern processors. To bridge
this gap, em-SPADE analyzes processor specifications and cre-
ates processor-specific rules to reduce low-level programming er-
rors. This work shows the potential of automatically analyzing
processor- and other hardware specifications to detect low-level
programming errors at compile time.

em-SPADE is a compiler extension to automatically detect soft-
ware bugs in low-level programs. From processor specifications,
a preprocessor extracts target-specific rules such as register use
and read-only or reserved registers. A special LLVM pass then
uses these rules to detect incorrect register assignments. Our ex-
periments with em-SPADE have correctly extracted 652 rules from
15 specifications and consequently found 20 bugs in ten software
projects. The work is generalizable to other types of specifications
and shows the clear prospects of using hardware specifications to
enhance compilers.

Categories and Subject Descriptors D.2.5 [SOFTWARE ENGI-
NEERING]: Testing and Debugging; B.5.3 [REGISTER-TRANSFER-
LEVEL IMPLEMENTATION]: Reliability and Testing—Error-
checking

General Terms Bug Detection, Specification, Experimentation,
Performance

Keywords Embedded systems, LLVM, static analysis, compiler

1. Introduction
Building embedded systems is time-consuming and it is hard to fix
bugs in embedded systems after deployment. Therefore, helping
developers build such systems is key to the development process.
Because of this reason, automated techniques for bug detection are
of great use for embedded software.

Embedded system developers have to write software at low
level. This means that they directly program different types of hard-
ware, such as registers, memory, timers, interrupt controllers, I/O
controllers, and other peripheral controllers. Developers have to
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initialize hardware and have to work at the register level. Know-
ing what to do depends on the processor specification and varies
between processors. This variability between processors becomes
a likely source of bugs. Bugs might occur for a variety of reasons
such as—developers’ unawareness of such constraints, insufficient
knowledge, human errors, etc. Compiler will be unable to catch
these bugs, because they are not syntactical issues.

Embedded system devices possess specifications that state con-
straints and requirements for these devices. Developers should
strictly adhere to the rules and constraints mentioned in the specifi-
cation to use the device and the associated hardware. As mentioned
earlier, because of variability between devices, incorrectly modify-
ing registers is a likely scenario.

Thus, it is imperative to utilize specifications to detect inconsis-
tencies in embedded software. Our analysis demonstrates that it is
possible to extract such invariant rules from specifications and use
the rules to automatically check for bugs in embedded software.

Thousands of microcontrollers are currently available and each
microcontroller has its own specification. Specifications are large
and can extend over one thousand pages. Reading the specifica-
tion before programming a microcontroller is a laborious and tire-
some activity. Large volume of information in specifications can
cause unintentional mistakes. While analyzing 15 ATMEL AVR
specifications, we found 72 registers on average in each specifi-
cation. With these many registers, one can expect register-related
constraints to be many-folds the number of registers.

We manually studied processor specifications to understand
what rules are available in processor specifications and how to
extract these rules. The focus of this study was on the proces-
sor specifications for the AVR family of microcontrollers, which
are embedded devices manufactured by ATMEL corporation. To
understand the generality of extracting rules from processor spec-
ifications, we also studied a specification for NXP semiconduc-
tors qualitatively. This qualitatively study demonstrated that rules
across different line of devices remain generic to a good extent;
thus, it is possible to build a general rule extractor.

The main focus of this project was on extracting and verifying
two common types of constraints: (1) access (read/write only),
and (2) reserved bits. These rules are in the context of registers.
Register bits can be read-only, write-only, or read/write bits. Some
bits in registers can be reserved which requires that users do not set
reserved bits to one. The implemented rule extractor automatically
extracts such rules from processor specifications.

Our tool, em-SPADE, is a static analysis based checker which
compares the source code against the extracted rules to automati-
cally detect bugs. Currently em-SPADE checks the validity of reg-
ister assignments in underlying source code.

The novelty of this paper is that em-SPADE is able to automat-
ically make use of information present in specifications to perform



static analysis. This paper demonstrates that the large volume of the
information in specifications can be leveraged for bug detection.

The rule extractor of em-SPADE currently uses simple heuris-
tics to automatically deduce rules from specifications. In the future,
we plan to incorporate natural language processing techniques to
extract more complex rules from, for instance, English sentences.
This will increase the utility of em-SPADE.

We performed experiments for the family of AVR microcon-
trollers from ATMEL. To test em-SPADE, we collected code from
two sources: (1) application notes from ATMEL for their AVR mi-
crocontrollers, and (2) github repository. em-SPADE found incon-
sistencies for several AVR microcontrollers.

We evaluated em-SPADE on 15 specifications and ten open
source embedded software projects. em-SPADE extracted a total
of 409 read-write only rules with an accuracy of 99.20% and a
total of 243 reserved bit rules with an accuracy of 94.88%. We
used em-SPADE to check these rules against the source code of
the projects, and found 16 warnings related to read-only rules and
4 errors related to reserved bit rules. These bugs are important
because writing to a read-only bit or reserved bits might lead to
unintended side effects. While such actions might be fine with one
revision of the chip, future revisions might alter the use of, for
instance, the reserved bits and consequently introduce subtle bugs
in previously functionally correct code.

Organization of the rest of the paper is as follows. Section 2 de-
scribes the problem statement in detail. Section 3 discusses related
work. Section 4 describes the idea and approach of em-SPADE in
detail. Section 5 discusses experimental methods. Section 6 dis-
cusses the bugs detected by the LLVM [9] checker and the rules
extracted by the rule extractor. In Section 7, we describe the perfor-
mance of em-SPADE. Section 8 discusses some important points
about em-SPADE. Finally, in Section 9, we make concluding re-
marks and discuss future work.

2. Problem Statement
em-SPADE bridges the gap between device specifications and the
source code that executes on the device. As described in Section 1,
specifications detail requirements and constraints that developers
need to follow. However, since the volume of this information
is vast, it is probable that developers unknowingly violate some
constraints. For example, the specification for ATUC128L3U [27]
has 964 pages. If developers want to write some code for the
ATUC128L3U, they will need to read the entire document. This
tedious task creates a likely scenario of making mistakes.

The goal of em-SPADE is to provide reliability by doing cross-
validation of embedded software with the corresponding specifica-
tion. To demonstrate the usefulness of em-SPADE at a basic proto-
type level, we are only looking at two types of constraints specified
in documents. These constraints are related to value assignment to a
different register bits. The first type is about register bits designated
as read-only or write-only. If a register bit is read-only and develop-
ers write to it, then em-SPADE will issue a warning for this because
writing to a read-only register bit might change register behavior.
We will use RO-Writes to refer to writes to read-only register bits.

The other type is related to reserved bits in registers. If some
bit is designated as a reserved bit, developers should not write
one to it. If it is present in the source code, then em-SPADE will
report an error for this violation. Reserved bits might get some
functionality in future versions of the device, so incorrectly writing
to them might disrupt some intended future functionality. We will
use Reserved-Writes to refer to writes to reserved register bits.

In specifications, it is standard to use ‘:’ between two register
bits to represent a range. For example, “Bits 4:0” represents five
bits i.e., 4, 3, 2, 1 and 0. We will use this notation throughout the
paper.

Rule Extractor LLVM Checker
Errors

Warnings

Source Code

RulesSpecification

Figure 1. General framework of em-SPADE

In the following, we present one example of each type of rule
for the ATmega640/V microcontroller:

1. “TCCR5C—Timer/Counter 5 Control Register C
Bit 4:0—Reserved Bits
These bits are reserved for future use. For ensuring compatibil-
ity with future devices, these bits must be written to zero when
TCCRnC is written.” [24]

2. Bits 7, 6, 4 are read-only bits in the Timer/Counter 1 Interrupt
Mask Register (TIMSK1). [24]

Therefore, em-SPADE is addressing the problem of improper
value assignment to register bits. The goal of em-SPADE is to pro-
vide reliability with respect to two types of probable issues: (1)
RO-Writes, and (2) Reserved-Writes. RO-Writes and Reserved-
Writes are likely scenarios in the context of microcontroller code.
em-SPADE achieves this goal by cross-checking microcontroller
code with corresponding rules in the specification. Since specifica-
tions are proses in English language, em-SPADE needs to employ
heuristics to automatically extract rules of interest. We discuss the
heuristics in detail in Section 4. Our aim is to automate the en-
tire toolchain including the rule extractor. Though, several natural
language processing techniques are available for extracting rules,
em-SPADE is using simple heuristics for now.

3. Related Work
To the best of our knowledge, em-SPADE is the first to automati-
cally analyze processor specifications for automatic bug detection.

Our work consists of two parts: (1) extracting invariants from
device specifications, and (2) applying the invariant rules to find
bugs in embedded software. Therefore, we discuss work related to
rule extraction from natural language documents, and work related
to static analysis based bug detection in embedded software.

Fehnker et al. [7] present an automatic bug detection tool
which uses static analysis to find bugs in microcontroller soft-
ware. They examine three types of issues: (1) incorrect-interrupt-
handling check; (2) incorrect-timer-service check; and (3) register-
to-reserved-bits check. The last check detects similar bugs as em-
SPADE. However, the idea of their paper is different from em-
SPADE. They manually create rules in the form of CTL formulae
for these three types, and their static analysis tool detects bugs
based on the rules. Although the bug detection process is partially
automatic, automating the rule extraction process is unaddressed,
which is exactly the main contribution of em-SPADE.

Dinesh et al. [5] present techniques to extract formal specifica-
tions from legal documents, which, are in natural language. They
derive CTL specifications from the document which model check-
ing tools can use for verification of models. The specifications are
obtained with the use of intermediate semantic representation of
different sentences. On the similar line of work, Pandita et al. [17]
discuss about extracting formal method specification from natural
language text of API documents.

iComment [29] proposes to detect bugs by analyzing comments
in the code. They use Natural Language Processing (NLP), statisti-
cal and machine learning techniques to analyze comments in source
code. The paper presents the novel idea of automatically analyzing



comments to extract programming rules. iComment uses the ex-
tracted rules to automatically detect inconsistencies between com-
ments and source code. Based on the analysis, the tool indicates ei-
ther bugs or bad comments. On the similar line of work, Padioleau
et al. [16] discuss the taxonomies and characteristics of comments
in operating system (OS) codes. Empirical data presented in the pa-
per shows that comments in OS code are not merely explanations
and it is possible to exploit comments for software bug detection.

PR-Miner [11] extracts general programming rules from large
software projects and uses them to automatically detect violations
in the code. It uses a data mining technique called frequent item-
set mining to extract implicit programming rules. AccMon [36]
presents automatic detection of memory related bugs using pro-
gram counter based invariants. Alattin [30] is an alternative pat-
tern mining technique for detecting neglected conditions. RRFinder
[32] automatically mines resource-releasing specifications for API
libraries. Xie et al. [33, 34] discuss mining techniques for software
engineering and program source code data.

Our implementation of rule checker is static which uses LLVM
to issue warnings or errors at compile time. The rule checker can be
implemented at run-time as well. Csallner and Xi [4], and Smarag-
dakis and Csallner [21] discuss about combined static and run-time
approaches. Engler et al. [6] discuss concepts that lay the founda-
tion of static analysis. The originality of their paper is that they
extract the checking information from the code itself and use them
to find inconsistencies in the code. The tool can be used to find bugs
in source code without any prior knowledge of the system. Hallem
et al. [8] describe a framework for performing system specific static
analysis.

4. The Framework
This section describes the two components of em-SPADE: (1)
Rule extractor, and (2) LLVM checker. The idea of em-SPADE
is to extract invariant rules from specifications and use them to
detect inconsistencies in embedded software. Therefore, these are
related to the two components of em-SPADE respectively. em-
SPADE follows the static analysis approach by issuing warnings
or errors at compile time to indicate bugs. The automatic approach
of extracting rules from specifications is based on heuristics and
does not involve any natural language processing.

Figure 1 presents a schematic view of em-SPADE. The first
component of em-SPADE, i.e., the rule extractor, takes a microcon-
troller specification as input and gives the extracted rules in XML
format as output. The second component of em-SPADE, i.e., the
LLVM checker, takes the XML rules and software code as input
and produces errors and warnings as output. We discuss the two
components in detail in following subsections.

4.1 Rule Extractor
To gather preliminary data, we first performed an extensive study
of four specifications to understand the types of rules. Three of the
specifications are for AVR microcontrollers (i.e., ATtiny4 [25], AT-
mega640/V [24], and ATUC256L3U [27]) and one is for the ARM-
M3 based microcontrollers (i.e., UM10360 [28]). The ATtiny4 and
ATmega640/V are 8-bit AVR microcontrollers with different sizes
of in-system programmable flash. ATUC256L3U is 32-bit Atmel
AVR Microcontroller. LPC17xx family are ARM Cortex-M3 based
microcontrollers. Section 4.1.1 presents examples of manually ex-
tracted rules for ATmega640/V [24] and ARM-M3 processors.

4.1.1 Rules to Extract
While this paper, for now, focuses only on the two mentioned types
of rules, the initial study investigated more types of constraints.
Consequently, some rules listed below fall outside the category of

access type and reserved bit type of rules. These rules show the
great potential of generalizing our approach to other types of rules.
Some rules from ATmega640/V [24] are:

1. “XMCRB—External Memory Control Register B; Bit 6:3—Res:
Reserved Bits; These bits are reserved and will always read as
zero. When writing to this address location, write these bits to
zero for compatibility with future devices.”

2. “ACSR—Analog Comparator Control and Status Register;
When changing the ACD bit (i.e., bit 7), the Analog Comparator
Interrupt must be disabled by clearing the ACIE bit in ACSR.
Otherwise an interrupt can occur when the bit is changed.”

3. Bits 6:4 in the Clock Prescale Register (CLKPR) are read-only
bits.

4. “ADCSRB—ADC Control and Status Register B: Bit 7—Res:
Reserved Bit; This bit is reserved for future use. To ensure
compatibility with future devices, this bit must be written to zero
when ADCSRB is written.”

5. “Bit 0—EERE: EEPROM Read Enable; When the correct ad-
dress is set up in the EEAR Register, the EERE bit must be writ-
ten to a logic one to trigger the EEPROM read.”

Some rules from the NXP UM10360 [28] are as follows:

1. “Reset Source Identification Register (RSID—0x400F C180);
31:4—Reserved, user software should not write ones to re-
served bits. The value read from a reserved bit is not defined.”

2. Bit PLL0STAT in the PLL0 register is read-only and Bit
PLL0FEED in the PLL0 register is write-only.

3. “PLL1 Status register (PLL1STAT—0x400F C0A8); 31:7—
Reserved, user software should not write ones to reserved bits.
The value read from a reserved bit is not defined.”

4. “PLL1 Feed register (PLL1FEED—0x400F C0AC); 31:8 —
Reserved, user software should not write ones to reserved bits.
The value read from a reserved bit is not defined.”

5. “External Interrupt Flag register (EXTINT - address 0x400F
C140); 31:4—Reserved, user software should not write ones
to reserved bits. The value NA read from a reserved bit is not
defined.”

Processor specifications follow similar in structure and con-
tent across chip vendors. The first specification is for an ATMEL
based microcontroller whereas second specification is for micro-
controllers from NXP semiconductors. Although these specifica-
tions are from different vendors, yet the extracted rules are sub-
stantially analogous. Therefore, if it is possible to build a tool to
extract rules from AVR microcontrollers, the tool should be able to
extract rules from other line of microcontrollers with small or no
modifications.

4.1.2 How to Extract the Rules
After this study showed that processor specifications are similar
in structure and content, we started creating the automatic rule
extractor primarily for the AVR family of microcontrollers. The
rule extractor is based on the following observations:

1. The register description layout allows us to get information
about the specific bits. Figure 2 shows one such example for
Power Control Register 1 (PRR1). Bits 7 and 6 in this register
are designated as read-only bits while the rest of the bits are all
read and write bits.

2. Register names are in uppercase letters with few numeric char-
acters. Lowercase letters, if any, appear after the first three char-
acters in the name. Also, register name are acronyms with a



Figure 2. Layout of PRR1 register in ATmega640/V

given acronym description. Timer/Counter Control Register A
(TCCR0A) is an example from the ATmega640/V specification.
USARTn Control and Status Register B (UCSRnB) is another
example from ATmega128 specification.

3. Reserved bits in registers have descriptions. We are able to look
up these with keyword searches. For example, EECR register in
the ATmega640/V specification has the following description
about some reserved bits: “Bits 7:6 — Res: Reserved Bits.
These bits are reserved bits and will always read as zero.” We
have observed this kind of description in all AVR specifications
and the NXP UM10360 specification.

Based on these observations, the rule extractor applies the fol-
lowing heuristics to extract the reserved bit and read- and write-
only rules:

Heuristics for Reserved Bit Rules – The extraction of re-
served bit type of rules starts with identifying the sentences that
describe the reserved bits in registers. For this, the rule extractor
goes through the sentences and looks for related words such as
‘reserved’ and ‘unused’. Sentences of this type are converted to
concrete checkable rules if reserved bit numbers and the register
name can both be found. Since the sentence describing the bits
is placed as per the bit numbers, it is easy to find the bit num-
bers given the sentence. The extractor needs only look at the be-
ginning of the sentence, and find the bit number or range of bits.
For an example, “Bits 5..0 Res: Reserved Bits - These bits are
reserved bits in the ATmega103(L) and will always read as zero.”
is a description for reserved bit range 5 to 0 in ‘SPSR’ register in
ATmega103. Note that the extractor uses regular expression such
as “\\Bit[\\s+s][\\s0-9:,.]*” for matching the bit numbers. This
is a ‘Boost’ [20] based regular expression which requires an extra
backslash before any escape sequence involving a backslash such
as ‘\s’.

Extraction of the register name is simple. Unlike bit numbers,
the register name might not be available at the beginning of the
sentence. However, the name is present in close vicinity of the bit
description. Based on our observation, the rule extractor looks at
the preceding 100 sentences for the register name. Register names
are alphanumeric with all letters in capital. Also, the name is based
on the acronym of words which are also available along with the
name. For example, “ADC Control and Status Register - ADCSR”
in ATmega103. One can observe that the register name ‘ADCSR’ is
an acronym of ‘ADC Control and Status Register’. One can use this
observation to confirm the validity of the extracted register name.

Heuristics for Read- and Write-only Rules – Extraction of
read- and write-only rules is based on the register description layout
such as the layout shown in Figure 2. One can observe that each bit
in this register is designated as ‘R’, ‘W’ or ‘R/W’. ‘R’ represents a
read-only bit, ‘W’ represents a write-only bit and ‘R/W’ represents
a read-write bit. For read-only and write-only rules, we need the bit
numbers which are read-only or write-only along with the register
name.

The rule extractor uses regular expression matching technique
for identifying the register description. It looks for the bit descrip-

1 <?xml version = ‘1.0’?>
<!DOCTYPE rules SYSTEM ‘rules.dtd ’>

3 <rules >
<equals >

5 <l>
<bit_id = ‘XMCRB ’

7 location = ‘6’ />
</l>

9 <r>
0

11 </r>
</equals >

13 </rules >

Figure 3. An example of reserved bit rule in XML

tion pattern in the document, and then uses this pattern to find the
read-only or write-only category of each bit. The regular expres-
sion used is - “[R/W]*\\s[R/W]*\\s[R/W]*\\s[R/W]*\\s[R/W]
\\s[R/W]*\\s[R/W]*\\s[R/W]*”. This is again a ‘Boost’ [20]
based regex with the an extra backslash before the escape sequence
‘\s’. The eight occurrences of ‘R/W’ in the above regular expres-
sion correspond to the eight register bits which are marked as either
‘R’ or ‘W’. This regex identifies register bits from register layouts
such as the one in Figure 2. Note that extraction of the register
name is same as it is for reserved bit rules.

The tool applies a combination of above mentioned heuristics
and uses some stop words, such as MCU and AVR, to extract the
rules. Specifications of processors are generally in PDF format.
em-SPADE first converts it into text format using a free PDF-to-
text tool called pdftotext [19]. For comparison, we also tried
other available tools such as pdftxt, ebook-convert, pdf2ps,
ps2ascii and ps2txt. pdftotext is better than all of these in
terms of preserving format and information. Once em-SPADE gets
the text form of the specification, it reshapes the text by getting rid
of empty lines and merging some lines to get the original register
description layout. The tool relies on the Boost regular expression
libraries [20] to search for patterns and uses C++ containers avail-
able in Standard Template Library (STL) to manipulate the inter-
mediate data during rule extraction. The rule extractor writes the
rules into a simple text file, which the next module of the tool con-
verts to rules in XML format. The LLVM checker in em-SPADE
leverages these extracted rules directly to detect bugs.

4.1.3 Conversion of Rules to XML Format
em-SPADE uses XML to store extracted rules from specifications.
The rules XML file is an input to the LLVM checker along with the
software code. Figure 3 shows an example of a reserved bit rule in
XML. The rule corresponds to bit 6 in External Memory Control
Register B (XMCRB) of ATmega640/V [24] microcontroller. In
this example, the register name is present in line 6 in Figure 3. The
next line lists the location of the reserved bit in the register. Figure 3
shows only the XML expression for the 6th bit of the XMCRB
register. Similar expressions can be written for other bits, i.e., 5:3.



4.2 LLVM Checker
This subsection describes the static checker implemented in LLVM [9].
LLVM stands for Low Level Virtual Machine. It is a compiler in-
frastructure that allows users to perform a variety of optimizations
on the source code with the help of LLVM passes. Building a pass
creates a shared object, which users can load using the LLVM op-
timizer tool opt [9]. Opt can load LLVM specific bitcode files and
perform optimizations written in the pass. Using LLVM passes,
we can also do static analysis of the source code. The checker of
em-SPADE is an implementation of an LLVM pass.

The pass implemented for em-SPADE performs static analy-
sis based on the XML rules file. Since, the rules of interest only
have reserved bits and access type of rules, the pass looks at assem-
bly statements, which are assignments to some registers. The pass
parses the XML rules using libxml2 and verifies the validity of as-
signments. Assignments become store instructions in LLVM inter-
mediate representation (IR) of the program, so the LLVM checker
specifically looks at store instructions in the LLVM IR.

If it finds inconsistencies in assignments based on the rules
file, it will produce warnings and/or errors. Since, writing one to
a reserved bit can cause problems for a future versions of the de-
vice, em-SPADE reports reserved bit violations as errors. How-
ever, violations of access type of rules produce warnings. It is im-
portant to mention that register names in avr-libc are present as
macros. Therefore, the tool does not find the register names in the
IR of the program. This necessitates another small module in em-
SPADE which creates a mapping of register names and correspond-
ing macro values. It does the mapping by parsing the specification
header file in the library. Header files for all AVR microcontrollers
are available in avr-libc, which is a part of the avr-gcc toolchain.
This small module creates this mapping in an simple text file which
the LLVM pass reads while going through the IR of the program.
These changes do not affect LLVM binaries as the changes are only
limited to mapping register name macros from headers files to text
files.

em-SPADE compiles the program under test with debug options
to get more information about the instructions. Thus, em-SPADE is
able to provide sufficient information about the warnings and errors
that it reports. This helps developers in locating bugs in the pro-
gram. Currently, em-SPADE only examines one-line instructions
in LLVM intermediate representation, and does not handles cases
where writes to reserved or read-only bits are data-dependent or
conditional.

In summary, we have implemented em-SPADE in C++ that uses
LLVM as back-end for performing static analysis. em-SPADE uses
pdftotext to parse specification PDF documents in text form.
Additionally, it uses C++ standard template library, Boost regex
library and libxml2 library. em-SPADE uses Clang as a front end
to get the LLVM bitcode from the source.

5. Experimental Method
This section discusses the experimental method under the following
four subsections:

5.1 Subjects & Design
To test technical feasibility and understand how em-SPADE works
in practice, we experimented with several AVR processors from
ATMEL. To experiment with the rule extractor of em-SPADE, we
randomly selected ten specifications for training. After training the
rule extractor, we randomly selected another set of five specifica-
tions for evaluating the rule extractor of em-SPADE.

For evaluating em-SPADE’s capabilities of finding bugs, we
looked at application notes [14] and source from ATMEL. Applica-
tion notes are general application programs for ATMEL based mi-

crocontrollers. The application notes span over different domains
such as automotive, home appliances, industrial automation, mo-
bile electronics, PC peripherals. em-SPADE analyzed 81 appli-
cation notes downloaded from ATMEL website. Source code of
these application notes contain 50 to 500 lines of code. Apart from
this, em-SPADE also analyzed projects for ATMEL AVR micro-
controllers available at github.

The 15 specifications in the training and evaluation set cover
a wide variety of microcontrollers. They represent three subfami-
lies: (1) ATmega, (2) ATtiny, and (3) AT90S. These 15 specifica-
tions dictate requirements and constraints for 39 AVR microcon-
trollers. With 39 microcontrollers spanning over three subfamilies,
the training and evaluation set becomes representative of AVR mi-
crocontrollers. Therefore, the selected set of 15 specifications rep-
resenting 39 AVR microcontrollers provides a good variability and
scale for testing em-SPADE. The 15 specifications are the follow-
ing:

1. AT90S2313 – 8-bit AVR Microcontroller with 2K Bytes of In-
System Programmable Flash

2. AT90S8515 – 8-bit AVR Microcontroller with 8K Bytes In-
System Programmable Flash

3. ATmega169, ATmega169V – 8-bit AVR Microcontroller with
16K Bytes In-System Programmable Flash

4. ATtiny25/V, ATtiny45/V, ATtiny85/V – 8-bit AVR Microcon-
troller with 2/4/8K Bytes In-System Programmable Flash

5. ATtiny24, ATtiny44, ATtiny84 – 8-bit AVR Microcontroller
with 2/4/8K Bytes In-System Programmable Flash

6. ATmega103, ATmega103L – 8-bit AVR Microcontroller with
128K Bytes In-System Programmable Flash

7. ATmega8, ATmega8L – 8-bit AVR Microcontroller with 8K
Bytes In-System Programmable Flash

8. ATmega128, ATmega128L – 8-bit Atmel Microcontroller with
128KBytes In-System Programmable Flash

9. ATtiny13, ATtiny13V – 8-bit AVR Microcontroller with 1K
Bytes In-System Programmable Flash

10. ATmega48/V, ATmega88/V, ATmega168/V – 8-bit Atmel Mi-
crocontroller with 4/8/16K Bytes In-System Programmable
Flash

11. ATmega640/V, ATmega1280/V, ATmega1281/V, ATmega2560/V,
ATmega2561/V – 8-bit Atmel Microcontroller with 64K/128K/256K
Bytes In-System Programmable Flash

12. ATtiny4, ATtiny5, ATtiny9, ATtiny10 – 8-bit AVR Microcon-
troller with 512/1024 Bytes In-System Programmable Flash

13. ATmega48PA, ATmega88PA, ATmega168PA, ATmega328P –
8-bit AVR Microcontroller with 4/8/16/32K Bytes In-System
Programmable Flash

14. AT90S8535, AT90SL8535 – 8-bit AVR Microcontroller with
8K Bytes In-System Programmable Flash

15. ATtiny261/V, ATtiny461/V, ATtiny861/V – 8-bit AVR Micro-
controller with 2/4/8K Bytes In-System Programmable Flash

5.2 Apparatus
We performed the experiments on a Lenovo T420 machine which
has an Intel Core i5-2520M processor running at 2.50 GHz. It has
4.0 GB RAM memory and is running Ubuntu 12.10 which has
3.5.0-26-generic version of the Linux kernel.

We manually collected the data about the rule extractor by in-
specting the generated rules file for each specification. Then, we
compared these rules with the manually extracted rules to calcu-



Table 1. Summary of detected bugs
Project Total Reserved-Writes RO-Writes
Optiboot 1 1 0
Libpolulu 3 3 0
AVR064 2 0 2
AVR130 3 0 3
AVR132 3 0 3
AVR312 2 0 2
AVR314 2 0 2
AVR318 1 0 1
AVR319 1 0 1
AVR441 2 0 2
Aggregate 20 4 16

late different metrics. Source codes of AVR based software were
downloaded from ATMEL AVR and github websites.

5.3 Measures
We use the following metrics about the extracted rules from dif-
ferent specifications in the training and evaluation set: (1) Actual
Total Rule, (2) True Positives (TP), (3) False Positives, (4) False
Negatives, (5) Precision, (6) Recall, and (7) F1 score. Actual To-
tal Rule gives the number of manually extracted rules from the
specifications. True positives (TP) are the correct rules reported by
em-SPADE. False positives (FP) are the incorrect rules reported by
em-SPADE which are not actual rules. False negatives (FN) are the
rules that em-SPADE missed to report.

Precision (P) is the fraction of extracted rules that are correct.
Precision is defined as:

P =
TP

TP + FP

Recall (R) is the fraction of correct rules that em-SPADE ex-
tracts. It is defined as:

R =
TP

TP + FN

F1 score is a measure of accuracy which takes both precision
and recall into account:

F1 = 2 ∗ P ∗R
P +R

F1 score reaches its best value at one and worst value at zero.

5.4 Procedure
We performed the testing by categorizing the software code ac-
cording to the specifications in the training and evaluation set. For
example, to test microcontroller software for bugs against the AT-
tiny13 specification, we first extracted the rules from this specifi-
cation. em-SPADE took the same rules file as input to perform bug
detection test on the set of all ATtiny13 software. Therefore, we
needed to vary the specification and the LLVM specific bitcode file
of the microcontroller software for testing em-SPADE. We gener-
ated the LLVM specific bitcode file using the LLVM front-end tool
Clang.

6. Results
This section discusses the bugs, i.e., errors and warnings, that em-
SPADE reported, and the rules that rule extractor of em-SPADE
extracted from the AVR family of microcontroller specifications. In
the first subsection, we provide a detail description of the errors and
warnings that em-SPADE found for some application note projects
and github projects.

6.1 Errors and Warnings Detected
em-SPADE found a total of 20 errors and warnings in ten projects.
An overall summary of these bugs is available in Table 1. Table 1
lists four columns: (1) Project, (2) Total, (3) Reserved-Writes, and
(4) RO-Writes. The first column lists the name of the project. The
second column tells the total bugs (errors and warnings) found in
the particular project. Third and fourth columns tell the number
of Reserved-Writes and RO-Writes bugs found in the project re-
spectively. An elaborate discussion on these two type of bugs is
available as follows:

6.1.1 RO-Writes
em-SPADE found 16 RO-Writes type of bugs in eight projects
which are application notes published by ATMEL. Although writ-
ing to read-only bits might not cause a program to fail, it is bad
programming practice and can cause new bugs in future revisions.
Therefore, we consider RO-Writes as bugs. These bugs correspond
to three specifications, i.e., ATmega169, ATtiny13 and ATtiny24.
In all these cases, specifications dictate that the registers have read-
only bits that are initialized with 0 but developers incorrectly write
1 to those register bits. The next two paragraphs provide two exam-
ples of RO-Writes bugs which em-SPADE found.

Assignment “TIFR1 = 0xFF;” in Main.c in AVR064 project sets
all eight bits in TIFR1 register to one. Project AVR064 is intended
for the ATmega169 microcontroller and the corresponding speci-
fication dictates that bits 7:6 and 4:3 in Timer/Counter1 Interrupt
Flag Register (TIFR1) are read-only bits. Hence, setting bits 7:6
and 4:3 to one in TIFR1 register is a violation of the read-only rule
and, therefore, the assignment is a bug.

Another example is the assignment “PORTB = 0xFF;” in Wake-
upTimer/main.c in AVR132. This assignment sets are eight bits in
PORTB register to one. The project is intended for the ATtiny13
microcontroller. The ATtiny13 specification dictates that bits 7:6 in
Port B Data Direction Register (PORTB) are read-only bits. Hence,
setting bits 7:6 to one in PORTB register is a violation of the read-
only rule and, therefore, the assignment is a bug.

6.1.2 Reserved-Writes
em-SPADE found one Reserved-Writes type of bug in Opti-
boot [15]. Optiboot is an optimized bootloader for Arduino [2],
and is a quarter of the size of the default bootloader. It allows
larger Arduino programs and makes Aurduino programs upload
faster. Therefore, it plays an important part as Aurduino boot-
loader. Optiboot has two target MCUs, i.e., ATtiny84 [26] and
ATmega168/V [23]. In both these specifications, bits 7:6 and 4:3 in
Timer/Counter1 interrupt flag register (TIFR1) are reserved. How-
ever, bynase.c in Optiboot sets all these bits in TIFR1 register to
one. This is a violation of the above mentioned reserved bit rule for
ATtiny84 and ATmega168/V microcontrollers.

em-SPADE found three Reserved-Writes type of bugs in a
library called libpolulu0-avr [12]. The Pololu AVR Library is
a collection of support functions for programming AVR-based
Pololu products or for using Pololu products with AVRs. It is
designed for use with the free avr-gcc compiler. Most of the li-
brary can also be used together with the Arduino environment. This
project targets the following microcontrollers—ATmega48pa [22],
ATmega88pa [22], ATmega168pa [22], ATmega328p [22], AT-
mega48/V [23], ATmega88/V [23] and ATmega168/V [23].

For all these microcontrollers, bits 7:3 in Pin Change Inter-
rupt Flag Register (PCIFR) are reserved. However, in two files
in libpolulu project i.e., PololuWheelEncoders.cpp and Orangutan-
PulseIn.cpp, these bits are set to one as “PCICR = 0xFF;”. This
is a violation of the reserved bits rule for all seven microcon-
trollers. Therefore, the mentioned assignment is a bug for libpolulu-
avr project. In these specifications, bits 7:6 and 4:3 in Timer/-



Table 2. Data about extracted rules from training specifications
Reserved bit rules Read-write only rules

Specification Actual Tool FP FN P (%) R (%) F1 Actual Tool FP FN P (%) R (%) F1

AT90S2313 15 12 0 3 100.00 80.00 0.89 18 15 0 3 100.00 83.33 0.91
AT90S8515 12 12 0 0 100.00 100.00 1.00 16 13 0 3 100.00 81.25 0.90
ATmega169
ATmega169V

12 11 1 1 91.67 91.67 0.92 46 39 0 7 100.00 84.78 0.92

ATtiny25/V
ATtiny45/V
ATtiny85/V

16 15 1 1 93.75 93.75 0.94 29 27 1 2 96.43 93.10 0.95

ATtiny24
ATtiny44
ATtiny84

18 18 0 0 100.00 100.00 1.00 29 25 0 4 100.00 86.21 0.93

ATmega103
ATmega103L

14 12 1 2 92.31 85.71 0.89 21 14 2 7 87.50 66.66 0.76

ATmega8
ATmega8L

10 8 1 2 88.89 80.00 0.84 29 20 0 9 100.00 68.96 0.82

ATmega128
ATmega128L

14 13 3 1 81.25 92.86 0.87 30 23 0 7 100.00 76.67 0.87

ATtiny13
ATtiny13V

17 15 0 2 100.00 88.24 0.94 23 22 0 1 100.00 95.65 0.98

ATmega48/V
ATmega88/V
ATmega168/V

33 28 1 5 96.55 84.85 0.90 45 44 0 1 100.00 97.78 0.99

Aggregate 161 144 8 17 94.74 89.44 0.92 286 242 3 44 98.78 84.61 0.91

Table 3. Data about extracted rules from evaluation specifications
Reserved bit rules Read-write only rules

Specification Actual Tool FP FN P (%) R (%) F1 Actual Tool FP FN P (%) R (%) F1

ATmega640/V
ATmega1280/V
ATmega1281/V
ATmega2560/V
ATmega2561/V

20 19 1 1 95.00 95.00 0.95 54 53 0 1 100.00 98.15 0.99

ATtiny4
ATtiny5
ATtiny9
ATtiny10

24 24 2 0 92.31 100.00 0.96 34 31 0 3 100.00 91.18 0.95

ATmega48PA
ATmega88PA
ATmega168PA
ATmega328P

33 27 1 6 96.43 81.82 0.88 46 42 0 4 100.00 91.30 0.95

AT90S8535
AT90SL8535

17 16 0 1 100.00 94.12 0.97 23 18 0 5 100.00 78.26 0.88

ATtiny261/V
ATtiny461/V
ATtiny861/V

16 13 1 3 92.86 81.25 0.87 28 23 0 5 100.00 82.14 0.90

Aggregate 110 99 5 11 95.19 90.00 0.92 185 167 0 18 100.00 90.27 0.95



Counter1 interrupt flag register (TIFR1) are reserved. However,
in OrangutanServos.cpp, the assignment “TIFR1 = 0xFF;” sets all
the register bits to one which violates the requirement of reserved
bits 7:6 and 4:3 in TIFR1 register. Therefore, this statement is also
buggy.

The reported 20 bugs in Reserved-Writes and RO-Writes cat-
egory span across ten AVR projects and 13 different AVR micro-
controllers. It is evident that such bugs are prevalent in microcon-
trollers codes. Therefore, em-SPADE is useful in detecting register
assignment bugs in microcontroller software.

6.2 Specification Analysis Results
Table 2 shows the data about extracted rules for the ten specifica-
tions in the training set. Similarly, Table 3 shows the data about
extracted rules for the five specifications in the evaluation set. Ta-
ble 2 and 3 list the same metrics for access and reserved-bits types
of rules.

Reserved bit rules and read-write only rules are present sepa-
rately in both tables. Each row in these tables starts with the spec-
ification name followed by data about reserved bit rules and read-
write only rules. Within reserved bit rules and read-write only rules,
the tables list seven entries. Within reserved bit rules and read-
write only rules multicolumns, column “Actual” reports the number
of manually extracted rules. Column “Tool” reports the number of
correct rules that em-SPADE extracted. In the next two columns,
the tables show the number of false positives (FP) and the num-
ber of false negatives (FN). The next two columns report precision
(P) and recall (R) in percentage. The last column lists the F1 score
which is a collective measure of precision and recall. The range of
F1 score in the tables is from zero to one.

Table 2 shows that the overall precision is 94.74–98.78% and
the overall recall is 84.61–89.44% for reserved bit rules and the
read-write only rules in the training set. Table 3 shows that the
overall precision is 95.19–100.00% and the overall recall is 90.00–
90.27% for reserved bit rules and read-write only rules in the
evaluation set. The F1 score of reserved bit rules is 0.92 for both
training and evaluation set. The F1 score of read-write only rules
is 0.91 for the training set and 0.95 for the evaluation set. The F1

score of higher than 0.9 for training and evaluation set indicates that
the rule extractor of em-SPADE is accurate, precise, and effective.
In addition, it indicates that the rule extractor works accurately for
specifications outside of the training set.

Table 2 and 3 show the number of false positives and false neg-
atives for rules extracted from all the specifications. The main rea-
son attributed to both, the false positives and false negatives, is the
failure of the heuristics in some cases. In majority of the observed
cases, the heuristics fail due to conversion of PDF specifications
to text form by pdftotext. While converting, pdftotext some-
times produces unordered lines or misaligned text for register de-
scription layouts. This type of incorrect conversion negatively af-
fects the rule extractor heuristics, which results in false positives
and false negatives. In the future, we can use advanced conversion
tools or analyze the manufacturers’ source files of specifications to
reduce false positives and false negatives.

7. Performance
We discuss the performance of em-SPADE in terms of overhead
caused by the LLVM pass, overhead caused by the rule extractor.
We also discuss the scalability of em-SPADE in with respect to
large concatenated specifications.

7.1 Rule Extractor Overhead
Overhead caused by the rule extractor of em-SPADE is not impor-
tant because rule extraction is a one time task for each processor

specification. Once em-SPADE extracts the rules from a particular
specification, the LLVM checker can use the same rules file to de-
tect bugs in any software intended for the processor. However, we
recorded the one time overhead that the rule extractor causes while
extracting the rule. For all the 15 specifications in training set and
evaluation set, the rule extractor produced a mean overhead of 4.52
seconds. It took 4.41 seconds of mean CPU time.

7.2 LLVM Checker Overhead
To get data about overhead produced by the LLVM pass imple-
mentation, we ran em-SPADE on four projects using rules from
the 15 specifications individually. For all these 60 trials, the LLVM
checker produced a mean overhead of 1.87 seconds. The checker
produced a CPU overhead of 1.79 seconds.

7.3 Scalability of em-SPADE
We tested the scalability of em-SPADE with respect to large spec-
ification. To test the scalability of the rule extractor, we combined
15 specs using pdftk [18] to get one large combined PDF file of
3857 pages. The rule extractor completed the extraction in 24.25
seconds. It took 24.10 seconds of CPU time. The mean overhead
caused by LLVM checker of em-SPADE in this case was 2.29 sec-
onds. It produced a CPU overhead of 2.22 seconds.

8. Discussion
In this section, we discuss four important points about em-SPADE
which provide details about the limitation, effectiveness and gener-
ality of em-SPADE. In below subsections, we discuss the following
specific points:

8.1 The Need to Modify the Source Code to Get LLVM
Bitcode

As mentioned earlier, we have implemented the checker as a LLVM
pass. Building the pass creates a shared object which the LLVM
optimizer tool can load. The pass works on the LLVM specific
binary bitcode file of the source code under inspection. em-SPADE
needs to compile the source code using clang to get the LLVM
binary. Clang is the front end for LLVM compiler infrastructure.
Clang needs ‘emit-llvm’ option to generate the LLVM specific
bitcode output. Most of the projects em-SPADE analyzed were
for avr-gcc [3] compiler. Avr-gcc is a port of GCC which creates
binaries for AVR [14] processors. To compile such source codes
using clang, we manually need to make some changes such as
adding the required header files in the code, providing the path to
the include directory of avr library and commenting out a few lines
if required. However, in doing so we make sure that none of the
changes made put em-SPADE at an advantage in any way as far as
finding errors and warnings are concerned.

8.2 False Positives & False Negatives
em-SPADE did not find any false positives while analyzing the em-
bedded software projects. However, since the rule extractor reports
false positives, it is probable that em-SPADE may report false pos-
itive bugs if the register corresponding to the false rule is assigned
some value in the software.

Since the rule extractor is based on heuristics, em-SPADE
does not guarantee that it extracts all the rules from specifica-
tions. Low recall, specially for ATmega103/ATmega103L and AT-
mega8/ATmega8L, in Table [1] suggests that em-SPADE misses
some actual rules. Inspecting these specifications and the tool
heuristics, we found that the limitation comes from pdftotext [19].
Pdftotext fails to preserve the register description layout in the
text format which negatively affects the heuristics. Following the
current line of work such as [1], [10], [13], [31] and [35], em-
SPADE seeks a balance between false positives and false negatives.



8.3 Incorrect Data in Specifications
The underlying assumption in the context of em-SPADE is that
specifications contain correct rules. If there is incorrect data in the
specification, then em-SPADE might report false bugs or miss bugs.
If developers reference the specification to develop a project, then
em-SPADE will not report any bugs because of the consistency
between the project code and specification, even though the data
in specification is incorrect. However, if developers write projects
with the help of their prior knowledge or experience about the de-
vice, then em-SPADE will report the bug caused by the inconsis-
tency between project code and the specification. Since specifica-
tions act as standard reference guide for developers, it is reasonable
to assume their correctness.

8.4 Generality of em-SPADE to other Specifications
Since the rule extractor in em-SPADE makes no specific assump-
tion about ATMEL AVR specifications, em-SPADE should be gen-
eralizable to other type of specifications. The heuristics used to ex-
tract rules from specifications are applicable to other families of mi-
crocontrollers. Our study of NXP LPC17xx microcontrollers gives
credence to this belief. Some example rules from these microcon-
trollers are present in Section 4. One can observe that these rules
are similar to the extracted rules from ATmega640/V [24] which
have been listed earlier.

9. Conclusion and Future Work
In this paper, we propose a new approach to extract rules from pro-
cessor specifications automatically and check source code against
these rules to detect bugs in embedded systems automatically. We
build the prototype em-SPADE, which automatically extracts 652
rules correctly from 15 specifications with precisions of 95.19–
100.00% and recalls of 90.00–90.27%. em-SPADE detects 20 bugs
in ten ATMEL and AVR software projects automatically, which
demonstrates the effectiveness of the approach.

In the future, we plan to employ data mining and natural lan-
guage processing techniques to extract more complex rules which
will generalize em-SPADE and boost the usefulness of em-SPADE.
We would accordingly need to enhance our static checker so that it
can following type of complex rules:

1. “To enter any of the three sleep modes, the SE bit in MCUCR
must be set (one) and a SLEEP instruction must be executed.”

2. “The SE bit must be set (one) to make the MCU enter the sleep
mode when the SLEEP instruction is executed.”.

3. “This bit must be set (one) when the WDE bit is cleared, Oth-
erwise, the Watchdog will not be disabled.”

4. “When changing the ACD bit, the Analog Comparator interrupt
must be disabled by clearing the ACIE bit in ACSR.”

5. “ The Stack Pointer must be set to point above $60.”

The idea is to automatically classify such sentences into differ-
ent categories. Once such classification of sentences is available, it
would be easy to extract required information which can be turned
to concrete checkable rules.

In addition, we plan to express the extracted rules in LTL for-
mulae to help us categorize the rules. The rules of interest are cor-
rectness properties which LTL formulae can express in well de-
fined categories. Once we have categorized the rules, we could con-
vert the LTL formuale directly to XML format. XML is expressive
enough to accommodate the extracted rules from specifications. To
further improve the precision and recall of the rule extractor, we
can use advanced PDF-to-text conversion tools or analyze the man-
ufacturers’ source files of PDF specifications. In addition, we plan

to port em-SPADE to gcc framework to avoid the issues of gener-
ating LLVM IR e.g., mapping of register names and corresponding
macro values for generating IR. Another possible future extension
is detecting assignment violations involving function calls.
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