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ABSTRACT
Input constraints are useful for many software development tasks.

For example, input constraints of a function enable the generation

of valid inputs, i.e., inputs that follow these constraints, to test the

function deeper. API functions of deep learning (DL) libraries have

DL-specific input constraints, which are described informally in the

free-form API documentation. Existing constraint-extraction tech-

niques are ineffective for extracting DL-specific input constraints.

To fill this gap, we design and implement a new technique—

DocTer—to analyze API documentation to extract DL-specific input

constraints for DL API functions. DocTer features a novel algorithm

that automatically constructs rules to extract API parameter con-

straints from syntactic patterns in the form of dependency parse

trees of API descriptions. These rules are then applied to a large

volume of API documents in popular DL libraries to extract their

input parameter constraints. To demonstrate the effectiveness of

the extracted constraints, DocTer uses the constraints to enable

the automatic generation of valid and invalid inputs to test DL API

functions.

Our evaluation on three popular DL libraries (TensorFlow, Py-

Torch, and MXNet) shows that DocTer’s precision in extracting

input constraints is 85.4%. DocTer detects 94 bugs from 174 API

functions, including one previously unknown security vulnera-
bility that is now documented in the CVE database, while a baseline

technique without input constraints detects only 59 bugs. Most (63)

of the 94 bugs are previously unknown, 54 of which have been

fixed or confirmed by developers after we report them. In addition,

DocTer detects 43 inconsistencies in documents, 39 of which are

fixed or confirmed.
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1 INTRODUCTION
Input constraints are useful for various software development

tasks [16, 21, 32, 52, 56]. For example, input constraints of a function

enable the generation of valid inputs, i.e., inputs that follow these

constraints, to test the function deeper. API functions of DL libraries

expect their input arguments to follow constraints, many of which

are DL-specific. For example, one parameter input of the PyTorch

API function torch.as_strided has to be a tensor. A tensor is rep-
resented using an n-dimensional array, where n is a non-negative

integer. Any input that cannot be interpreted as a tensor (e.g., a

Python list) is invalid. Many such DL-specific input constraints are

described informally in free-form API documentation. The avail-

ability of such DL API documentation presents a great opportunity

to automatically extract DL-specific constraints for better testing

and other software development tasks.

Specifically, DL libraries’ API functions require two types of

constraints for their input arguments: (1) data structures and (2)

properties of these data structures. First, DL libraries often require

their input arguments to be specific data structures such as lists,

tuples, and tensors to perform numerical computations. For exam-

ple, input of the PyTorch API function torch.as_strided has to be

a tensor as dictated by its API document. Any input that cannot be

interpreted as a tensor (e.g., a Python list) is rejected by the func-

tion’s input validity check. Such invalid inputs exercise only the

input validity checking code, failing to test the core functionality of

https://doi.org/10.1145/3533767.3534220
https://doi.org/10.1145/3533767.3534220
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tf.nn.max_pool3d(input, ksize, strides, padding, …)

tf.nn.max_pool3d

Args

A string, either 'VALID' or 'SAME'....padding

A 5-D Tensor of the format specified by data_format.

An int or list of ints that has length 1, 3 or 5. The size of the window for each 
dimension of the input tensor.
An int or list of ints that has length 1, 3 or 5. The stride of the sliding window for 
each dimension of the input tensor.

input

ksize

strides

a. API Document
C(p = input) = pD ∊ {5} ∧ pS ∊ {tensor} 

C(p = ksize) = pT ∊ {int} ∧ pS ∊ {list} 

∧ pSP ∊ {[1],[3],[5]}

C(p = strides) = pT ∊ {int} ∧ pS ∊ {list} 

∧ pSP ∊ {[1],[3],[5]}

C(p = padding) = pT ∊ {string} 

∧ p0 ∊ {‘VALID’,‘SAME’}

b. Extracted constraints

input =  

   tf.constant([[[[[1.0]]]]])

ksize = [0]

strides = [1]

padding = ‘VALID’

c. Bug-triggering input

+  bool non_negative = std::all_of(ksize_.begin(), ksize_.end(),

+   [](int k) {return k > 0; });

+  OP_REQUIRES(context, non_negative,

+     errors::InvalidArgument(“Sliding window ksize field must ”

+  “have non-negative dimensions”));

d. Bug fix in pooling_ops_3d.cc

Figure 1: TensorFlow document helps our tool detect a bug
that was fixed after we reported it to TensorFlow developers.

the API function. To test as_strided’s core functionality, a testing

technique needs to generate a tensor object for the input parameter.

Second, API functions of DL libraries require their arguments to

satisfy specific properties of data structures. Generating a correct
data structure with incorrect properties often fails the input validity

checking of the DL API functions. They often require two common

properties of a data structure—dtype and shape. Property dtype
specifies the data type of the data structure (e.g., int32, float64,

and String). In Fig. 1a, the dtype of the parameter padding should

be String. Property shape specifies the length of each dimension

of the data structure. For example, a shape of 3 × 4 matrix is a

2-dimensional tensor with the first dimension of 3 elements and

the second dimension of 4 elements. As another example, Fig. 1a

shows the document for TensorFlow API tf.nn.max_pool3d, which

indicates that the parameter input should be a tensor of 5 dimen-

sions, with the size of each dimension unspecified. Similarly, any

inputs that violate these dtype or shape requirements are rejected,

failing to test the core functionality of the API function.

While existing techniques can extract constraints from code or
software text (e.g., comments and documents), they are insufficient
for extracting DL-specific constraints. Specifically, while Pytype [7]
infers data types from Python code, it cannot precisely infer types

for DL libraries because it cannot analyze across Python and C++

code. In addition, it cannot extract numerical constraints such as

shape and range. Existing techniques that derive constraints from
software text extract different types of constraints that are not DL-

specific, such as exceptions [16, 56], command-line options and file

formats [52], locking [44], call-relations [31, 44], interrupts [45],

nullness [46, 60] and inheritance relations [60]. Although some [16,

31, 56, 60] can extract constraints related to valid ranges, those

are only a small portion of DL-specific constraints (Section 4.1).

Techniques such as C2S [56] require pairs of Javadoc comments

and formal JML [1] constraints as input. For DL API functions, such

formal constraints are unavailable.

1.1 Our Approach
To fill this gap, we design and implement a new technique—DocTer—
to analyze API documentation to extract DL-specific input con-

straints. DocTer features a novel method to automatically derive

constraint extraction rules from a small set of manually annotated

API documents with precise constraint information. These rules

can predict API parameter constraints based on syntactic patterns

in the form of dependency parse tree in documents. They are then

applied to the full sets of API documents of popular DL libraries to

extract constraints.

To demonstrate the effectiveness of these extracted constraints,

DocTer uses them to guide and improve an important task — gener-

ating test cases automatically to test DL API functions. Testing API

functions of DL libraries (e.g., TensorFlow [14] and PyTorch [38]) is

crucial because these libraries are widely used and contain software

bugs [26, 27, 41, 57, 58], which hurt not only the development but

also the accuracy and speed of the DL models.

Yet, generating test cases for DL libraries’ API functions is chal-

lenging. If a test-generation tool is (1) unaware of DL-specific con-

straints or (2) incapable of using these constraints to generate di-

verse inputs, it is practically impossible to generate valid inputs

to reach deeper states and test the core functionality of DL API

functions. Existing test-generation tools [3, 5, 9, 19, 37, 43] such as

AFL [3] and libFuzzer [5] have no knowledge of such input con-

straints, thus are very limited in testing DL API functions. DocTer

addresses these challenges by using the following techniques:

(1) DL-specific constraint extraction: Since API documents are

written informally in a natural language, manually extracting con-

straints from a large number of API documents (e.g., TensorFlow

v2.1.0 has 2,334 pages of API documents and 854,900 words) is ineffi-

cient and tedious. In addition, since these documents are constantly

evolving, it is undesirable and error-prone to manually analyze

them each time the documents are updated which can be as fre-

quent as every commit. To address these challenges, we develop

a novel method that can automatically derive a set of rules that

predict parameter constraints from parse tree patterns of API de-

scription. Given a small set of API function descriptions and the

corresponding constraint annotations, DocTer identifies a set of

rules as an optimal mapping that can minimize prediction errors

and achieve the maximum coverage of constraints. By applying

these constructed rules to a much larger set of real-world docu-

ments, DocTer can automatically extract DL-specific constraints

for API functions of the most widely used libraries.

(2) DL-specific input generation: After extracting DL-specific

input constraints (e.g., Fig. 1b), DocTer uses these constraints to

guide test generation to produce valid inputs (e.g, Fig. 1c), invalid

inputs, and boundary inputs (such as -MaxInt, 0, and MaxInt for the

constraint of dtype of int). DocTer evaluates valid inputs by check-

ing if the API runs successfully without failures, e.g., crashes. If a

failure occurs with a valid input, the generated test has manifested

a bug in the implementation of the API’s core functionality.

Fig. 1 shows a previously unknown bug detected by DocTer in

TensorFlow along with its patch that the TensorFlow developers
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committed after we reported the bug. The API document in Fig. 1a

indicates that the shape of input is 5-D, and ksize is an integer

or a list of 1, 3, or 5 integers. DocTer automatically extracts the

constraints in Fig. 1b and generates the bug-triggering input in

Fig. 1c. Detailed constraint formats are explained in Section 2.2.

DocTer generates a valid input. Specifically, parameter input is a

five-dimensional (5-D) tensor as a constant (tf.constant), where

the five pairs of square brackets denote a five-dimensional tensor.

Parameter ksize is a list of length 1, whose element is a zero (i.e.,

[0]), parameter strides is [1], and parameter padding is "VALID".

This bug is only triggered when the parameter ksize has a

zero value. This zero value causes a division-by-zero fault, re-

sulting in a floating point exception. To trigger this bug, the pa-

rameter padding must be either "VALID" or "SAME". Otherwise the

function’s input validity checking would reject the input with an

InvalidArgumentError. Therefore, it is practically impossible for

techniques that randomly generate inputs to trigger this bug. Af-

ter we reported this bug, the TensorFlow developers added the

non_negative range validation for the parameter ksize (Fig. 1d).

In addition, DocTer generates invalid inputs that violate the con-

straints to detect crashes. Despite invalid inputs, DL API functions

should not crash. Instead, they are expected to report an invalid

input (e.g., by throwing an exception or printing an error message).

This point is well confirmed by an API developer after we reported a

crash bug detected by DocTer “A segmentation fault is never OK and
we should fix it with high priority”. Such invalid-input generation is

impossible without the constraints.

(3) Documentation-bug detection: Since incorrect API documen-

tation provides false information about APIs, which often misleads

API users to introduce bugs in code [44], it is important to detect

bugs in API documents as well. Different from prior work [44, 46]

that detects inconsistencies between documents/comments and

code, DocTer detects inconsistencies within documents. For exam-

ple, in the document of tf.keras.backend.moving_average_update,

the description for the parameter value is “ ...with the same shape
as variable,...”, but the parameter variable is not documented. This

documentation bug of erroneous parameter dependencies has been

fixed after we report it.

1.2 Contributions
In this paper, we make the following contributions:

• A novel rule construction technique that formulates the chal-

lenge as an optimization problem aiming to find the smallest

set of rules that can make the largest number of correct extrac-

tions of parameter constraints. We also develop an approximate

solution to the problem based on sample space conditional prob-

ability computation.

• A document-analysis technique that extracts 16,035 constraints

automatically from API documentation with the focus on four

categories of input properties in DL APIs: structure, dtype, shape,
and valid values for 2,415 API functions across the three widely-
usedDL libraries, TensorFlow [14], PyTorch [38], andMXNet [17].

The constraint extraction precision is 85.4%.

• An application of our extracted constraints to guide the genera-

tion of DL-specific inputs.

• A tool DocTer that combines the techniques above, and detects

94 bugs in 174 APIs from the three libraries, while a baseline that

generates inputs without the knowledge of constraints detects

59 bugs only. Among the 94 bugs, 63 are previously unknown

bugs, 54 of which have been fixed (49) or confirmed (5) by the de-

velopers after we report them. Notably, one of the previously
unknown bugs was added to the CVE vulnerability data-
base for TensorFlow after we reported it. In addition, DocTer

detects 43 documentation bugs, 39 of which have been fixed (35)

or confirmed (4) after we report them.

While our rule construction and constraint extraction techniques

are general, the constructed rules and extracted constraints are

domain-specific. We focus on testing DL libraries due to their im-

portance and the lack of available constraint-extraction techniques

for them. We leave the extension to other domains, e.g., classic

machine learning libraries such as scikit-learn [39], as future work.

Availability:We share the tool DocTer, bug list, and data in [13].

2 APPROACH
2.1 Overview
Fig. 2 shows the overview of DocTer using an example of the Ten-

sorFlow API tf.nn.atrous_conv2d. DocTer consists of three phases.

The rule construction phase (i.e., the green box in Fig. 2) takes a

small portion of API documents with annotations to construct a set

of rules that can extract concrete constraints from API documents.

The rules are constructed by an optimization-based method. They

are mappings from document dependency parse trees to the corre-

sponding abstract parameter constraints in the form of assertions

(e.g., on dtype and shape), which are called Abstract Constraints
(ACs). In the constraint extraction phase (i.e, the orange box), the
rules are applied to concrete API documents to derive concrete

parameter constraints. To demonstrate the effectiveness of these

extracted constraints, in the testing phase (the purple box), DocTer
generates test inputs either conforming or violating the constraints

(by the input generator), and executes the inputs to detect bugs (by

the test case evaluator), in an iterative fashion.

A major challenge of constraint extraction is analyzing free-form

API documentation written in the natural language [16, 46, 52].

We observe that developers have limited ways to express input

constraints in natural language. However, these expressions are

instantiated differently for different APIs and composed together in

various ways, leading to complex overall syntactic structures that

are difficult to translate to parameter constraints. We hence devise

a novel method that works as follows. It first preprocesses/normal-

izes the documents to dependency parse trees and then breaks the

trees into subtrees. With a small set of API documents and the cor-

responding manually annotated ACs, an algorithm is developed to

identify the optimal mappings between subtrees and parameter con-

straints that can maximize the matching of the mapped constraints

and the ground-truth annotations. These mappings are essentially

our constraint extraction rules. DocTer applies these rules to extract

constraints from API documents automatically. Apart from a fixed

cost of annotating a small portion (e.g., 30%) of API parameters,

our process is automatic and can be reapplied to future versions or

another relevant library with little manual work.
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Figure 2: Overview of DocTer.pT ,pS , andpD are the abstract constraints representing the data type, data structure, and number
of dimensions of parameter p, respectively. Detailed constraint formats are explained in Section 2.2.

Preprocessing: During both the rule construction and constraint

extraction phases, DocTer performs two preprocessing steps: nor-
malization and dependency tree parsing to convert free-form API de-

scriptions to dependency parse trees (parse trees for short). (Fig. 2).

The normalizer replaces keywords with abstractions, e.g., replac-

ing data type keywords (e.g., int32, float64) with D_TYPE, structure

type keywords (e.g., Tensor, list) with D_STRUCTURE, and integer

constants with CONSTANT_NUM. This normalization improves the per-

formance of the rule construction algorithm by suppressing in-

stance differences. We use dependency tree parser [33] to convert

the normalized sentences to parse trees.

An example: Our rule construction component identifies a rule

1 (row one of the Rules table in Fig. 2) that maps a frequently

occurring subtree pattern “of type D_TYPE” (e.g., appearing in both

sentences 1 and 2 in Fig. 2) to an abstract type assertion (an AC)

pT ∈ {D_TYPE}, which means that the valid dtype of parameter p
should be one from the set {D_TYPE}, where D_TYPE is an abstraction

of one or more dtypes, which, in this example, are float16, float32,

and float64. In the annotated dataset, the conditional probability

of the type assertion pT ∈ {D_TYPE}, given the subtree pattern is 1.0

and the pattern is the smallest with such predictive power. Thus,

the rule constructor is able to create rule 1 .

The constraint extractor applies constructed rules to all the pre-

processed API documents to automatically extract a set of con-

straints for each input parameter. For example, in the Tensor-

flow document for API tf.nn.atrous_conv2d, one of the parse trees

parsed from the description for parameter value (e.g., Fig. 2) con-

tains two frequent subtrees “a CONSTANT_NUM d D_STRUCTURE” and “of
type D_TYPE”. These structures correspond to rules 1 , 2 , and

3 . DocTer applies these rules and obtains the extracted ACs

for the parameter in Fig. 2 (the middle of the orange box), e.g.,

p = value, AC(p) = pT ∈ {D_TYPE} ∧ pS ∈ {D_STRUCTURE} ∧ pD ∈
{CONSTANT_NUM} , where pT , pS and pD represent the data type,

data structure and number of dimensions of parameter p, respec-
tively. DocTer further instantiates the abstract symbols (D_TYPE,

D_STRUCTURE, and CONSTANT_NUM) with the corresponding value and

types (i.e., float, Tensor, and 4) from the original sentence to con-

vert theACs to concrete constraints.We nowdiscuss each individual

step.

2.2 Preprocessing
The first step of DocTer is to collect the natural language API

documents. They are at high volume. For example, there are 2,334

pages of API documents and 854,900 words in TensorFlow v2.1.0.

It is hence a daunting and tedious task for developers to manually

examine such a large set of API documents to identify constraints.

API document collection and tokenization: After collecting
the API documents (in the form of HTML pages from DL libraries’

websites), DocTer parses these files to obtain API signatures and pa-

rameter descriptions with an HTML parsing tool [2]. Since sentence

is a natural unit of organizing constraints, DocTer further splits the

description into sentences with a sentence segmentator [15].

Normalization: The tokenized sentences are normalized. While

developers may have a small number of patterns expressing parame-

ter constraints, these patterns have diverse instantiations according

to the concrete data types and parameters involved. Normalization

abstracts away these instantiation differences.

Specifically, DocTer normalizes keywords such as (1) data types

(e.g., int32) and (2) data structures (e.g., tensor) as D_TYPE and

D_STRUCTURE, respectively. To get the list of keywords for data types,

we collect a list of supported data types from each library [10–12].

We then expand such a list with informal variations (e.g., “integer”,

and “ints”) and missing common types (e.g., String) to match the

format of API documents. In total, we use 84, 74, and 53 type key-

words for TensorFlow, PyTorch, and MXNet, respectively. The full

list of keywords can be found in [13].
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DocTer also normalizes constants such as (3) integer, (4) float, (5)

boolean values as CONSTANT_NUM, CONSTANT_FLOAT, and CONSTANT_BOOL.

It also replaces (6) relational expressions (e.g., “≥ 1”) with REXPR

and replaces (7) parameter names with PARAM.

The content that is (8) quoted often refers to enumerate values,

so DocTer replaces such content with ENUM. For example, “‘NWC’
and ‘NCW’ are supported.” is normalized to “ENUM are supported”.
The shape of a parameter is often put within (9) a pair of square

brackets or parentheses, DocTer replaces such content with SHAPE.

For example, “A Tensor of shape [num_classes,dim]” is normalized

to “A D_STRUCTURE of shape SHAPE”. Finally, consecutive abstract an-
notations of the same type are replaced with just one. For example,

the three type keywords in “Must be of type ‘float16‘, ‘float32‘, or
‘float64‘.” (Fig. 2) are replaced by a single D_TYPE, resulting in a

normalized sentence “must be of type D_TYPE”.
Dependency tree parsing: Once the sentences are normalized,

they are fed to the dependency tree parser [33], which conducts POS-

Tagging and builds tree structure relationships (i.e., dependency

parse trees) between words of a sentence based on the grammati-

cal structure. For example, in the sentence “a D_STRUCTURE of type
D_TYPE” from Fig. 2, the words “D_STRUCTURE”, “type”, and “D_TYPE”

are first tagged as NN (noun). Then the parser conducts dependency

parsing and generates the dependency parse tree as shown in the

figure where D_STRUCTURE is the root, and D_TYPE is the nominal
modifier [4] of the root.
Annotating a subset of API descriptions with ACs: To support
rule construction, we randomly pick a small set of the parameters

(30%) and manually annotate them with their ACs. To minimize

possible biases, the process involves three co-authors. Two authors

independently annotate with 98.2% agreement. All disagreements

are resolved with a third author to reach a consensus.

Abstract Constraints (AC): ACs are abstract constraints/assertions.
These assertions are not on concrete dtype or shape but rather

abstract ones. An AC for a parameter p is denoted in the form of

pt ∈ {T1,T2, ...} where t is the category of AC, and T1 and T2 are
the possible abstract values. For example, pT ∈ {D_TYPE} means

that p is of D_TYPE. Specifically, the annotations of parameter p are

designed as follows:

• pT denotes the data type of an abstract constraint (AC) of p. .

• pS denotes the data structure of an AC of p.

• pSP ∈ ND
where D ∈ N denotes the shape AC of p, where D

represents the number of dimensions of p.

• pD ∈ N denotes the number of dimensions of an AC of p. There-
fore, pD = pSP .lenдth if p is a tensor or pD = 0 if p is a scalar.

• pi denotes an element in parameter p if p is a tensor, where

i = 1, 2, ..., Prod(pSP ). When p is a scalar, its value is p0.

An AC can be instantiated to different concrete constraints. Ta-

ble 1 provides examples of ACs (first column as part of the rules)

and their instantiations (last column) for several APIs.

AC annotation categories:We focus on annotating four categories

of ACs (i.e., structure, dtype, shape, and valid value) because they
represent the most common (93.6%) properties of input parameters

of API functions in major DL libraries. The four categories are:

• structure: the type of data structure that stores a collection

of values for the input parameter, such as list, tuple, and n-

dimensional array (i.e., tensor).

• dtype: the data type, such as int, float, boolean, and String, of

the parameter or the elements of structure.
• shape: the shape or number of dimensions of the parameter. For

example, in row 2 of Table 1, weights is of shape [num_classes,

dim] (i.e., it is a 2-D array where the sizes of its first and second

dimensions are num_classes and dim, respectively).

• valid value: a set of valid values (e.g., parameter padding can

only be either "VALID" or "SAME") or the valid range of a numer-

ical parameter (e.g., a float between 0 and 1).

We make reasonable assumptions when annotating API descrip-

tions. For example, a parameter is assumed to be a 0-dimensional

non-negative integer if the document states it is a “number of ...".
The assumptions are in the supplementary material [13].

2.3 Rule construction
Although API descriptions are in a natural language, these descrip-

tions often share a small number of syntactic patterns. For example,

a constraint of dtype assertion is mostly described by two syntactic

patterns: “must be one of the following types ...” and “a tensor of type
...” in TensorFlow. Our idea is hence to identify such patterns in

API descriptions and project them to the corresponding parameter

constraints. We call such projections the constraint extraction rules.
Automatically deriving such rules is challenging. The first chal-

lenge is that a syntactic pattern may have different instantiations

in various API descriptions, depending on the variables and types.

For example, the aforementioned pattern “A ‘Tensor’ of type ...” is
instantiated to “A ‘Tensor’ of type ‘string’” and “A ‘Tensor’ of type
‘int32’” in two respective parameters contents and crop_window

in API tf.io.decode_and_crop_jpeg. Our normalization step sub-

stantially mitigates this problem. The second challenge is that such

patterns are often convoluted in the overall syntactic structure of an

API description. For example, consider the description of parameter

value as shown in Fig. 2. The normalized sentence “a CONSTANT_NUM

d D_STRUCTURE of type D_TYPE.” is composed of two syntactic pat-

terns “CONSTANT_NUM d D_STRUCTURE” and “of type D_TYPE”. Third,
these patterns may have arbitrary sizes.

An optimization problem:We propose a novel method to auto-

matically derive the extraction rules from a small set of APIs with

their ACs manually annotated. We formulate it as an optimization

problem. Specifically, given an API f , its normalized natural lan-

guage description is denoted as Df , its ACs are denoted as Af . We

use trees(Df ) to denote all the subtrees of the parse tree of Df .

For example, Fig. 2 gives a 3-layer parse tree of the normalized

sentence “a D_STRUCTURE of type D_TYPE”, which has subtrees “of
type D_TYPE” and “a D_STRUCTURE type”. Such subtrees consider both

parent-child (direct) connections and ancestor-descendant (indirect)

connections. We use Tree and AC to denote the domains of sub-

trees and ACs, respectively. Our goal is hence to derive a mapping

R : Tree → AC. The mapping should satisfy the following opti-

mization objectives. First, the tree patterns can be used to precisely

predict the corresponding ACs. If we consider the tree patterns

and the ACs form a distribution, the conditional probability of an

AC given the condition of its tree pattern shall be high. Second, all
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ACs can be predicted by these patterns, i.e., our mappings should

be comprehensive. Third, the number of the mappings from a tree

pattern to an AC in R is minimum. The objective is needed oth-

erwise a simple solution would be to include all tree patterns in

descriptions. Fourth, the size of each tree pattern is minimum. It

is very likely that a tree pattern and its sub-patterns both can pre-

dict a constraint. In such cases, we prefer the smallest one, which

provides the maximum generalization.

Formally, the process to find the set of rules, that is, the optimal

mappings R, is the following.

arg min

R
E(Df ,Af )∼N



∑
a∈Af ,t ∈trees(Df ),R(t )=a

1 − P(a |t)

|Af |
+

|{a ∈ Af |∄t ∈ trees(Df ) s .t . R(t) = a}| +

|R | +
∑

a∈Af ,t ∈trees(Df ),R(t )=a

|t |


(1)

Here, N denotes the distribution of API description and the

corresponding ground-truth ACs. The above formula means that

we are looking for an R that can minimize the expected objective

function value for all samples (Df ,Af ) ∼ N . The objective function

is the sum of four terms. The first one is the average conditional

probabilities for all the ACs in Af . Intuitively, it means that for

each AC a in an API, our mapping R should associate a tree pattern

t with a such that the conditional probability P(a |t) is maximum.

The second term means that the number of ACs in Af for which

R does not have a mapping is minimum. This is to maximize the

coverage of our rules. The third term is to minimize the size of R.
The last term is to minimize the size of each tree pattern in R.

Approximate solution: Solving the above optimization problem

is difficult because it is discrete. Its complexity is NP. This is not a

typical learning problem as it does not aim to learn a distribution

but rather to construct a minimum and yet complete set of rules.

In addition, the amount of data available for training is relatively

small compared to other domains that have successful applications

of deep learning models. We hence devise an approximate solution.

The first term can be approximated by computing the sample space

conditional probabilities and then including the top associations in

R. The sample space conditional probabilities are:

P(a |t) =
| { f | a ∈ Af ∧ t ∈ trees(Df ) } |

| { f | t ∈ trees(Df )}|
(2)

Intuitively, it is the number of co-occurrences of a tree pattern

and an AC divided by the number of occurrences of the tree pattern.

We further observe that if a tree pattern t is rare, it is usually

not related to parameters. As such, we can focus on the frequent

subtrees. We use frequent subtree mining [55] to efficiently discover

the most frequent subtrees. We filter out the rare tree patterns with

threshold min_support, i.e., any tree patterns that occur less than

or equal to min_support times are discarded. The second and third

terms are approximated by selecting only the associations (of a and

t ) with a large sample space conditional probability. Specifically,

DocTer includes in R associations (of a and t ) with P(a |t) greater
than or equal to min_confidence (the selection of and min_support

and min_confidence is a trade-off between precision and recall and

Algorithm 1 Rule Construction

1: function RuleConstruction(Sample,min_support,min_confidence)
2: parser← DependencyTreeParser()

3: Df , FreqDf ← ∅

4: R ← ∅
5: foreach sentence ∈ Sample do
6: dependencyParseTree← parser.parse(sentence)
7: Df .add(dependencyParseTree)
8: end foreach
9: FreqDf ← getFreqSubtree(Df ,min_support,MAX_SIZE)
10: foreach t ∈ FreqDf do
11: foreach a ∈ selectAC(Sample, t ,min_confidence) do
12: R .add(t → a)
13: end foreach
14: end foreach
15: return R

will be discussed in Section 3). An alternative to approximate the

second term is to use a greedy algorithm to include additionally

needed tree patterns to achieve (full) coverage of ACs. However,

this often contradicts the third term. Empirically (see Section 4.1),

we find that including the top associations provides a good balance.

To approximate the fourth term, which minimizes the tree patterns,

we keep only the smallest tree pattern when multiple patterns can

be used to predict an AC.

Algorithm 1 formalizes the process of finding the approximated

solution. For each sentence in the annotated data (Sample), the

dependency tree parser parses the sentence and generates the parse

tree, which is added to the set Df (lines 5–7). Then, we select the

set of frequent tree patterns FreqDf whose frequencies are at least

min_support using frequent subtree mining (getFreqSubtree) (line

9). This process keeps only tree patterns whose size is smaller than

or equal to MAX_SIZE. For each frequent tree pattern t , selectAC

selects a set of ACs (a) with probabilities P(a |t) greater than or

equal to min_confidence. Then, each association of a and t is added
to the set R (lines 10–14).

Table 1 shows examples of the automatically discovered rules by

DocTer (col. “Extraction rules”) and examples of matched sentences

(col. “API sentences”). For example, rule 3 in Table 1 is used

to extract the enumerated value (e.g., valid value) of parameter

p, which is associated with the AC p0 ∈ ENUM . In rule 4 , the

pattern “number of” implies parameter p should be a 0-dimensional

non-negative integer.

2.4 Constraint extraction
Given an API description, the constraint extractor matches the tree

patterns in the rules with the parse tree of the description. Matches

are then projected to the corresponding ACs, which are further

instantiated in the context of the description to derive the concrete

constraints. For example, in Fig. 2, the constraint extractor finds

rules 1 , 2 , and 3 match the two subtrees “a CONSTANT_NUM d

D_STRUCTURE” and “of type D_TYPE” in the parse tree of the value

description. DocTer then assigns the three relevant ACs to the pa-

rameter value. DocTer then instantiates the ACs with the concrete

data types, structure types, and constants to generate the final con-

straints. In row 2 of Table. 1, the annotation SHAPE is instantiated
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Table 1: Rule examples and the extracted constraints from TensorFlow, PyTorch, and MXNet

type

same PARAM

as

y: 
 Must have the same 
type as `x`.

D_STRUCTURE

SHAPE

of shape

ENUM

AC(p) = pT ∊ {&PARAM}

y:
 must have the same 
type as PARAM

p = y
C(p) = pT ∊ {&x}

weights: 
 A `Tensor` of shape 
[num_classes,dim]

weights:
 a D_STRUCTURE of 
shape SHAPE

padding:
 A string, either 
`'VALID'` or `'SAME'`.

padding:
 a D_TYPE, either 
ENUM

AC(p) = pS ∊ {D_STRUCTURE}
      ∧ pSP ∊ {SHAPE} 

p = weights
C(p) = pS ∊ {tensor}
     ∧ pSP ∊ {[&num_classes,dim]}

AC(p) = p0 ∊ {ENUM}
p = padding
C(p) = pT ∊ {string}
     ∧ p0 ∊ {‘VALID’,‘SAME’}

Extraction rules API sentences Normalized sentences Extracted constraints

1

2

3

number

of

num_group:
 Number of group 
partitions.

num_group:
 number of group 
partitions

AC(p) = pT ∊ {int}
      ∧ pD ∊ {0}
      ∧ pi ∊ {[0,∞]}

p = num_group:
C(p) = pT ∊ {int}
     ∧ pD ∊ {0} ∧ pi ∊ {[0,∞]}

4

either

based on the original text, i.e., “[num_classes, dim]”. Row 3 in Ta-

ble. 1 shows an example rule of valid value constraints. DocTer
detects the pattern “either ENUM” and uses it to extract the valid
value constraint in the last column.

Constraint dependencies graphs: The description of one param-

eter often refers to the dtype or value of another parameter from

the same API function. In such cases, DocTer extracts constraints

that involve dependencies among input parameters. These depen-

dencies are useful not only for generating valid inputs but also for

determining the parameters’ generation order. The automatically

constructed rules can detect dtype dependencies. For example, row

1 in the Table. 1) shows the pattern “must have the same type as ...”
which indicates a type dependency. In this example, the operator

‘&’ is to acquire the dtype of a parameter. An example of shape
dependency is shown in row 2 of Table 1. Specifically, parameter

weights should have shape [num_classes,dim]where the size of the

first dimension is the value of another parameter num_classeswhile

dim is a non-negative integer.

These dependencies are denoted in a graph with each edge rep-

resenting a constraint dependency. During input generation, the

graph is traversed in a topological order to ensure dependencies

are properly considered. The graph construction is straightforward

and hence elided.

2.5 Testing phase
To demonstrate the effectiveness of the extracted constraints, for

each API function, DocTer iteratively generates an input i.e., values

of the API function’s parameters, and evaluates that input to detect

crashes. By either following or violating the extracted constraints,

the input generator generates conforming inputs (CIs) or violating
inputs (VIs), respectively. The conforming inputs are designed to

test the core functionality of the API function while the violating

inputs aim to test the API function’s input validity checking code. In

both cases, DocTer reports bug-triggering inputs that cause serious

crashes (e.g., segmentation fault). DocTer tests each API function

with maxIter number of inputs, and the ratio of inputs allocated to

each mode (CI or VI) is determined by the ratio conform_ratio.

Input generator: In each iteration, DocTer generates values for

all required parameters and some optional parameters (for testing

more diverse code). The probability for generating each optional

parameter is optional_ratio.

The input generator generates one input for each iteration. Given

the extracted constraints, DocTer generates a value for each param-

eter following the order determined by constraint dependencies

(Section 2.4). For a conforming input, all generated arguments sat-

isfy the extracted constraints for structure, dtype, shape, and valid
value. If concrete values are specified (e.g., enumerated values) in

the constraints, the input generator chooses from those values. Oth-

erwise, it chooses a dtype from the list of dtypes specified in the

constraints and creates a shape following the constraints. If the

constraints do not specify valid dtypes, DocTer selects one from
a default list of dtype described in Section 2.2. While the input

generator is choosing dtype and shape for a parameter, it ensures

they are generated according to the parameter dependencies, if any.

For example, parameters often have matching dimension(s), so the

input generator needs to ensure such shape consistency.

Once the dtype and shape are determined, the input generator

generates an n-dimensional array with values satisfying the given

dtype, shape, and the range as specified in the constraints, if any.

Finally, the structure constraints are checked and satisfied. For ex-

ample, if the generated value is 1-dimensional and the constraints

explicitly specify the structure (e.g., tuple or list) for the parameter,

the input generator converts the generated value accordingly.

To generate an invalid input, the input generator randomly se-

lects one parameter and generates a value that violates one or

multiple relevant constraints of that parameter. For all other param-

eters, DocTer generates their values in the same way as conforming

inputs (i.e., conforming to all constraints).

Constraint-guided boundary-input generation: Boundary in-

put values (e.g., 0 and None) tend to cause bugs due to off-by-one

errors etc. [18, 24]. Thanks to the extracted constraints, DocTer gen-

erates boundary values that follow the constraints and boundary

values that violate the constraints. For each API, DocTer picks one

parameter with the probability of mutation_p to be mutated to one

of the boundary cases. We consider six types of boundary mutators:

one constraint-specific (boundary values of constraints) and five

generics (None, zero, zero dimension, empty list, and empty string).

As an example, the mutator “zero dimension" sets the size of one of

the dimensions of the parameter’s shape to 0 (e.g., it mutates a 3-D

tensor of shape [1,1,1] to [1,0,1]).

Test case evaluator: The test case evaluator invokes the target
function with the generated input. If a severe failure occurs, DocTer

reports the input as a bug-triggering input. Specifically, DocTer

returns those inputs causing a segmentation fault, floating-point
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exception, abort, and bus error in the C++ backend. We exclude

aborts caused by assertion failures in MXNet since MXNet uses

those for exceptions. Crashes from the C++ backend (which handles

computationally-intensive DL tasks) indicate severe problems.

3 EXPERIMENTAL SETUP
Data collection: We choose three popular DL libraries (Tensor-

Flow 2.1.0, PyTorch 1.5.0, and MXNet 1.6.0) as test subjects. There

are 144,541–854,900 words in the collected API documents. Among

them, we consider 1008, 529, and 1021 relevant APIs for the three

respective libraries. An API is irrelevant if it (1) is deprecated, (2)

has no input argument, (3) cannot be parsed due to HTML syntactic

errors and typos, (4) is a non-layer class constructor, or (5) has an

API document without a “Parameter" description section. In total,

2,666 APIs are filtered out due to the five reasons above, 53.5% of

which are due to reason (1). We list the break down in [13].

Rule construction and constraints extraction: DocTer applies
three thresholds MAX_SIZE, min_support, and min_confidence to con-

struct extraction rules (Section 2.3). We set MAX_SIZE to 7 to all three

libraries. To select the best value for min_support and min_confidence,

we conducted 5-fold cross-validation on the 30% annotated data and

measure the quality of the extracted constraints. By selecting the

best F1 score, we set min_support to 10, 10, 20, and min_confidence

to 0.9, 0.7, 0.9 for TensorFlow, PyTorch, and MXNet, respectively.

Input generation and testing: We use Docker with Ubuntu

18.04, TensorFlow 2.1.0, PyTorch 1.5.0, and MXNet 1.6.0. For multi-

dimensional arrays, DocTer generates shapes of 0–5 dimensions

or as specified by the constraints. By trying different values of

optional_ratio and mutation_p on 10% randomly sampled APIs,

we choose optional_ratio=0.2 and mutation_p=0.4.

Manual and execution time: The AC annotation (Section 2.2)

takes 36 manual hours. DocTer takes 34 minutes to perform rule

construction and constraints extraction for all libraries. On average,

it takes DocTer 0.14 seconds to generate and test each input.

4 EVALUATION AND RESULTS
We answer four research questions (RQs): RQ1: How effective is

DocTer in extracting constraints from DL API documentation?

(Section 4.1) RQ2: How is DocTer compared to existing constraint-

extraction approaches? (Section 4.2) RQ3: Can the extracted con-

straints enable DocTer to detect more bugs? (Section 4.3) and RQ4:
How effective is DocTer in generating valid inputs? (Section 4.4)

4.1 RQ1: Effectiveness of constraint extraction
Approach: We apply DocTer to extract constraints in our subjects

and study the number and quality of constraints. We randomly

sample an extra of 5% (603) of input parameters (excluding the 30%

AC annotated data for rule construction) to form an evaluation set.

We manually annotate these parameters with concrete constraints

to build the ground truth. The constraints extracted by DocTer are

then compared against the evaluation set.

For each parameter, we consider all valid options for one cat-

egory as one constraint. And the constraint for this category is

correct iff all valid options are correctly extracted. For example,

the parameter size of tf.slice can be either int32 or int64. The

Table 2: Quality of constraint extraction
TensorFlow PyTorch MXNet Total/Avg

# APIs with constr. extracted 911 498 1,006 2,415

# constr. extracted 5,908 3,201 6,926 16,035
# constr. per API: Avg (Min-Max) 6.5 (1-51) 6.4 (1-33) 6.9 (1-111) 6.6 (1-65)

# evaluated param. 190 93 320 603

# evaluated param. with constr. 161 83 229 473

# evaluated constr. 350 170 363 883

Precision/Recall/F1 for All (%) 90.0/74.8/81.7 78.4/77.4/77.9 87.9/82.4/85.1 85.4/78.2/81.6

Precision/Recall/F1 for dtype (%) 93.0/82.3/87.3 78.1/79.4/78.7 92.9/81.9/87.0 88.0/81.2/84.3

Precision/Recall/F1 for structure (%) 78.9/88.2/83.3 85.7/90.0/87.8 91.7/90.2/92.4 85.4/89.5/87.8

Precision/Recall/F1 for shape (%) 89.1/74.5/81.2 80.0/76.9/78.4 76.1/79.8/77.9 81.7/77.1/79.2

Precision/Recall/F1 for valid value (%) 87.5/47.7/61.8 66.7/60.0/63.2 90.0/60.0/72.0 81.4/55.9/65.7

extracted dtype constraint pT ∈ {int32,int64} is deemed correct,

while pT ∈ {int32} is considered incorrect. If a parameter’s docu-

ment contains no constraints of the four categories, it is excluded

from the precision and recall computation. While it is reasonable to

include such no-constraint parameters in our calculation because

DocTer can trivially extract nothing, the accuracy may be inflated

if there is a large portion of such parameters. Among the sampled

parameters, the numbers of no-constraint parameters are 29 (15.3%),

10 (10.8%), and 91 (28.4%) for TensorFlow, PyTorch, and MXNet,

respectively (details in Extraction result section below).

We use the standard metrics precision, recall, and F1 score of the

extracted constraints of the sampled parameters for each constraint

category. Precision is the percentage of the correctly extracted con-

straints (i.e., extracted constraints that match the ground-truth)

over the number of all extracted constraints. Recall is the percent-
age of correctly extracted constraints over the total number of all

ground truth constraints. F1 is the harmonic mean of precision and

recall.

Extraction results: Table 2 shows the quality of extracted con-

straints. In total, DocTer extracts 16,035 constraints automatically

from the three libraries (row #constr. extracted). Specifically, TreeM-

iner [55] collects 873, 426, and 321 frequent parse subtrees from

the three libraries respectively with the corresponding min_support.

Then DocTer constructs rules with 665, 398, and 275 subtrees. The

remaining subtrees do not constitute any rules because no AC is

associated with the subtree with large enough conditional proba-

bility. Using these rules, DocTer extracts on average 6.6 constraints

per API for all three libraries (row #constr. per API: Avg (Min-Max)
Table 2). Overall, DocTer can extract constraints from 90.4%, 94.1%,

and 98.5% of relevant APIs (details in Section 3) for TensorFlow,

PyTorch, and MXNet, respectively.

For each library, Table 2 shows the number of parameters in

the evaluation set (row #evaluated param.), the number of the pa-

rameters in the evaluation set with at least one constraint (row

#evaluated param. with constr.), the number of constraints manually

labeled in the evaluation set (row #evaluated constr.). The Total/Avg
column shows the total number of parameters and constraints in

the evaluation set, and the average precision, recall, and F1 score.

Overall, DocTer achieves a high precision (85.4%) and recall (78.2%)

of constraint extraction across all three subjects. DocTer is quite

effective in extracting constraints for dtype and structure with F1

score over 80%. It is less effective when extracting constraints for

valid value. The reason is that sentences that describe constraints

for valid value are not as common in the annotated data compared

with other categories, e.g., structure, and thus DocTer misses some

patterns given the min_support and min_confidence thresholds. For
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Table 3: Number of rules and constraints

Category TensorFlow PyTorch MXNet Total

Rules Constraints Rules Constraints Rules Constraints Rules Constraints

dtype 405 2,392 114 1,163 196 2,272 715 5,827

structure 230 1,305 151 890 78 2,466 459 4,661

shape 306 1,825 282 852 173 1,699 761 4,376

valid value 97 386 22 296 11 489 130 1,171

All 665 5,908 398 3,201 275 6,926 1,338 16,035

example, when analyzing the sentence “Only ‘zeros’ is supported
for quantized convolution at the moment”, DocTer misses the valid
value constraint p0 ∈ {‘zeros’} because the pattern “Only ... is/are
supported” is not frequent enough in the annotated dataset and did

not pass the set thresholds. In Fig. 1, DocTer misses the constraint

that parameter ksize can also be a single integer due to the same

reason. With the extracted incomplete constraints (i.e., ksize is a

list of integers), DocTer still detects the bug. This confirms that

to detect real-world bugs effectively, one does not need to have

complete constraints [52]. We choose the thresholds as a trade-off

between precision and recall, and one can choose lower thresholds

for a better recall.

To show the impact of our rule extraction design (Section 2.3),

we conduct an ablation study, where we do not use the conditional

probabilities (Eq. 2) when constructing rules (the set R) and instead
set the min_confidence to 0 (instead of the settings in Section 3).

Under these settings, any frequent subtree in trees(Df ) and any

AC in Af that has more than one co-occurrence will be considered

as a rule. As a result, this version of DocTer without the conditional

probabilities extracts 1,621 imprecise rules and extracts constraints

with an F-1 of 27.9% on the same evaluation set (Table 2). In contrast,

our DocTer, with the conditional probabilities, constructs 1,338

rules (Table 3) and extracts constraints with a much higher F-1 of

81.6% (Table 2) on the same data.

Overall, DocTer extracts tens of thousands of correct constraints

for these libraries, which enables the generation of valid inputs for

detecting 94 bugs. We show the breakdown of the number of rules

and constraints extracted for all three libraries in Table 3. Note that

a subtree can be mapped to multiple categories of ACs.

Sensitivity study: Since one can choose to annotate fewer param-

eters to save manual effort at the cost of a reduced F-1 score, we

quantify the trade-off between the effectiveness of our approach

(measured by F-1) and manual effort, which is measured by the

amount of parameters to annotate. Specifically, we evaluate the F-1

scores of our approach by using different amounts of the annotated

data, i.e., 5%, 10%, and 30% of parameters. The 5% of parameters are

a subset of the 10% of the parameters, which is a subset of the 30%

of the parameters. DocTer achieves an overall F-1 score of 66.0%

with just 514 annotated parameters (5% of the parameters), 73.9%

with 1,028 annotated parameters (10% of parameters), and 81.6%

with 3,086 annotated parameters (30% of the parameters).

Generality of rules: To evaluate the generality across libraries,
we apply the rules constructed from TensorFlow and MxNet to

the documentation of PyTorch, and get the constraints with preci-

sion, recall, and F1 of 87.9%, 70.3%, and 78.1%. In addition, with the

rules DocTer constructed from all three libraries, we extract 2,312

constraints from 223 scikit-learn APIs’ documents. We manually

inspect the extracted constraints on 5% (59) randomly sampled pa-

rameters of scikit-learn APIs. DocTer achieves a precision/recall/F1

of 71.3/66.1/68.6%. The results suggest that DocTer can be applied to
new libraries completely automatically without requiring annotating
any documents of the new libraries.

To evaluate the generality across versions of the same library, we

apply the rules that DocTer constructed from TensorFlow v2.1.0,

PyTorch v1.5.0, and MXNet v1.6.0 to six versions: two more re-

cent versions from each library respectively (TensorFlow v2.2.0 and

v2.3.0, PyTorch v1.6.0 and v1.7.0, and MXNet v1.7.0 and 1.8.0). Doc-

Ter extracts 59,936 constraints from 7,684 APIs containing 580,187

words. For evaluation, we randomly sample 603 parameters (same

number of parameters as the evaluation in Table 2) that are ei-

ther with updated descriptions or newly added to the more recent

versions. The results show that the rules that DocTer constructed

are general across versions and can extract constraints from other

versions with a precision/recall/F1 of 81.9/77.7/79.7%.

4.2 RQ2: Comparison with existing approaches
We compare DocTer with grep and state-of-the-art constraint ex-

traction approaches (e.g., Jdoctor [16]).

Comparison with grep: While it may appear to be straightfor-

ward to use a grep-like technique (i.e., matching existing keywords

in documents) to extract constraints, such a technique can only iden-

tify relevant API document sentences. DocTer, on the other hand,

extracts concrete constraints automatically. The grep-like approach
could assign a constraint to a match, e.g., if a sentence contains the

keyword “integer”, the corresponding parameter would be assigned

the constraint pT ∈ {int}. We implement this approach by search-

ing in the documents for keywords of dtype constraints (e.g., “int”
and “integer”) , and structure constraints (e.g., “list” and “tensor”).

We manually collect such keywords in the API documents. This ap-

proach misses 47.8% of the constraints that DocTer extracts, i.e, all

shape, all valid value, 33% of dtype, and 4% of structure constraints.
Comparison with existing constraint-extraction techniques:
We compare DocTer with the state-of-the-art constraint-extraction

techniques, including Jdocter [16], DASE [52], Zhou et al. [60], and

Advance [31]. We exclude C2S [56] because it requires formal spec-

ifications (JML [1]), which is unavailable for the three libraries.

We exclude Pytype [7] because it cannot analyze across Python

and C++ code, therefore, cannot precisely infer types for DL li-

braries. Jdocter [16], DASE [52], and Advance [31] can only extract

constraints for valid value (e.g., range). With the assumption that

they can extract all valid value constraints correctly, the best (up-
per bound) recall that these tools can achieve is 11.9%. Aside from

valid value, Zhou et al. [60] is able to extract specifications for type

restrictions. However, we found that their heuristics that can be ap-

plied to DL document, e.g., “[something] be not [SpecClassName]”,

extract at most 28 constraints (0.2% of DocTer constraints). This

results in their best recall of 12.3%, while DocTer has a recall of

78.2%. Overall, shape constraints are DL-specific that DocTer ex-
tracts while existing techniques do not consider. The results show

that DocTer complements existing constraint-extraction techniques

by extracting DL-specific constraints automatically.
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Table 4: Number of verified new / new / all bugs (buggyAPIs)

Approach TensorFlow PyTorch MXNet Total

Baseline 22 / 26 / 41 (79) 6 / 6 / 7 (8) 6 / 9 / 11 (21) 34 / 41 / 59 (108)

DocTer
All 31 / 38 / 61 (114) 13 / 13 / 18 (28) 10 / 12 / 15 (32) 54 / 63 / 94 (174)

CI 21 / 28 / 47 (93) 11 / 11 / 14 (23) 10 / 12 / 14 (27) 42 / 51 / 75 (143)

VI 28 / 32 / 51 (83) 13 / 13 / 18 (25) 8 / 10 / 12 (27) 49 / 55 / 81 (135)

4.3 RQ3: Bug detection results
Approach: We demonstrate the effectiveness of DocTer’s con-

straint extraction using the constraints to guide input generation to

detect bugs in API documents and library code. For documentation

bugs, DocTer detects inconsistencies within API documents when

extracting constraints, which will be discussed later in this section.

For library code bugs, we use all 16,035 (Table 2) constraints ex-

tracted by DocTer to generate inputs for API functions that have at

least one extracted constraint. Table 2 shows the numbers of these

API functions (row #APIs with extracted constr.). We set maxIter to

2,000. For each API function, DocTer generates 2, 000 test inputs

(1,000 conforming and 1,000 violating inputs), evaluates them, and

returns bug-triggering inputs that cause serious failures (details

in Section 2.5). We manually examine those bug-triggering inputs

to check if they reveal real bugs. For those inputs that still trigger

the same failures in the nightly version, we report the bugs to the

developers.

We implement an unguided input generation tool as the baseline.
The only difference between DocTer and the baseline is that the

baseline has no knowledge of constraints. Specifically, the baseline

generates 2,000 random inputs for parameters without any con-

straint knowledge. For a fair comparison, we convert the generated

array inputs to tensors assuming that the baseline minimally knows

which input arguments should be tensors. Without this conversion,

non-tensor input arguments are trivially rejected by PyTorch and

MXNet, thus very ineffective in exercising the code in depth.

The extracted constraints can be used together with other input

generation tools to improve their testing effectiveness. In this paper,

we choose to implement our own baseline instead of using exist-

ing fuzzers [3, 5, 43] such as AFL [3] for practical reasons. These

fuzzers cannot test Python code: the most popular language for DL.

Moreover, these fuzzers require code coverage, which is currently

unavailable across Python and C++. Instead of code coverage, Doc-

Ter uses constraints extracted from documents to guide the testing

of both Python and C++ code, by generating inputs for the Python

API functions, in which C++ code is invoked. In addition, existing

fuzzers [3, 5, 43] generate inputs in the format of a sequence of

byte arrays. Randomly mutating some bytes is unlikely to gener-

ate valid DL-specific inputs. Our baseline is similar to AFL with

two enhancements: (1) knowledge of tensors and (2) automatically

testing Python and C++ code.

Bugs in libraries code: Table 4 presents the number of verified
new bugs, new bugs, all bugs, and buggy APIs (in “()") found by

the baseline and DocTer. A bug is verified if it has been fixed or

confirmed by the developers. A new bug refers to a previously

unknown bug that we reported. The unverified new bugs are repro-

ducible and waiting for developers’ responses. We count one bug

for each required fixing location.

DocTer detects 94 bugs, including 63 previously unknown bugs,

54 of which have been verified by the developers (49 fixed and 5

confirmed). Of the 49 fixed bugs, 19 are fixed in C++, 11 are fixed

in Python, 7 are fixed in both, and 12 is fixed silently after we

reported. The 94 bugs cause 174 APIs to fail because one bug can

cause failures in multiple APIs but are fixed in one location. We

count them as 94 instead of 174 bugs. Of the 174 buggy APIs, 12

have parameters with constraint dependencies. DocTer has also

detected 31 (94−63) known bugs that have been fixed in the nightly

versions.

The baseline detects only 59 bugs with 41 new bugs causing 108

APIs to crash. DocTer detects 52 bugs that the baseline cannot while

missing 7 bugs found by the baseline due to the randomness of the

input generation process.

False positives: Only 3 out of 66 newly reported bugs receive

“won’t fix” responses from the developers. They claim such inputs

are not supported, which is not stated in the document. We do not

count these 3 bugs in our results.

DocTer uses the automatically extracted constraints without

any manual examination. It is possible that documents themselves

are incorrect or incomplete, causing incorrect constraints to be

extracted, leading to false positives, where the code is correct, but

the API documentation is incorrect. Since we focus on severe bugs

such as crashes, all detected bugs are in library code bugs, as well

said by a developer after we reported a crash bug “A segmentation
fault is never OK and we should fix it with high priority."
Conforming and violating inputs: DocTer generates both con-

forming inputs (CIs) and violating inputs (VIs). Rows “CI” and “VI”

in Table 4 present the breakdown of the bug detection for CIs and

VIs with conform_ratio = 50%. We find that DocTer is insensitive

to conform_ratio. When it is between 20%–60% (with a 10% incre-

ment): the number of detected bugs differs by at most one. Thus,

we use conform_ratio = 50% as the default ratio to be more general.

The results show that the CIs alone, with only 50% (1,000) of the

number of test inputs of the baseline (2,000), finds more bugs (75

bugs) than the baseline (59 bugs), and the VIs alone (with 50% of

the test inputs) finds more bugs (81 bugs) than the baseline. We

manually verify the generated CIs and VIs: out of 75 CI bugs we

found, 57 of them are caused by valid inputs conforming to the

ground truth constraints. The rest of the CI bugs are caused by

invalid inputs generated by conforming to inaccurate constraints;

out of 81 VI bugs we found, all of them are caused by invalid inputs

violating the ground truth constraints.

Many bugs are detected by both CIs and VIs (comparing the “All”

row with the “CI” and “VI” rows in Table 4) because DocTer violates

the constraints of one parameter only when generating VIs. When

a crash is caused by one of the conforming parameters of a VI, it

is likely to be triggered by a CI also. However, both CIs and VIs

trigger bugs in unique APIs, thus both are effective in finding bugs.

Without the constraints, a baseline ismuchworse than the results

from any of the ratio setups. Table 4 shows that a key contribution
of our work is the ability to extract constraints from documents. One
cannot choose to focus on valid or invalid inputs without knowing

the definition of valid inputs for an API. DocTer enables this choice

since it extracts input constraints automatically.
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Impact of fuzzer’s nondeterminism: Since the fuzzing process
is non-deterministic, we investigate the impact of this nondeter-

minism to ensure the validity of our results, i.e., the reported im-

provement of DocTer is not due the randomness in the fuzzer. Our

results suggest that it is statistically significant that DocTer (which

is guided by constraints) outperforms a baseline fuzzer. Specifically,

we repeat the fuzzing experiment (with the same set of extracted

constraints) eight times. For each run, we generate 2,000 test inputs

for the baseline and 2,000 test inputs for DocTer for all APIs from

the three libraries. In each run, we use the same random seed for

both the baseline and DocTer. Different runs use different seeds.

Since it requires significant manual effort to inspect the detected

bugs from all eight runs, which are 2,301 API crashes to examine, we

use the number of buggy APIs (i.e., the number of APIs that crash)

to indicate the fuzzers’ effectiveness. Overall, among the eight runs,

DocTer on average detects 172.0 buggy APIs while the baseline on

average detects 115.6 buggy APIs. We perform the Mann-Whitney

U-test and confirm the improvement is statistically significant with

a p-value of 0.0004 and the Cohen’s d effect size of 8.96 (effect size

more than 2.0 is huge). The detailed results are in [13].

Bugs in API documents: DocTer detects three types of docu-

mentation bugs: (1) formatting bugs (e.g., indentation issue); (2)

signature-description mismatch (the description refers to param-

eters that are not specified in the API signature); and (3) unclear

constraint dependency (Section 2.4). DocTer detects 43 previously

unknown documentation bugs in 46 APIs (11 formatting bugs, 29

signature-description mismatches, 3 unclear constraint dependen-

cies). Majority (39 of 43) are fixed or confirmed after we report,

indicating that DocTer detects documentation bugs that developers

care to fix.

Bug examples: We present three bugs detected by DocTer that

the baseline fails to detect. All of them have been fixed by devel-

opers after we report them. Bug 3 is also reported as a security

vulnerability CVE-2020-15265.

Bug 1:The previously unknown bug in TensorFlow tf.nn.max_pool3d

discussed in the Introduction (Fig. 1).

Bug 2: In the API tf.image.combined_non_max_suppression, DocTer
detects a previously-unknown bug and triggers a memory overflow

by passing a large value of 311452676677046672 for the parameter

max_total_size. To successfully trigger this bug, DocTer needs to

generate correct shaped values for parameters boxes and scores.

Specifically, the parameter boxes needs to be 4-D with the size of the

last dimension equals to 4 while the parameter scores needs to be

3-D. DocTer also needs to follow the dependencies between those

two parameters – the sizes of the first two dimensions of boxes

and scores need to be the same. DocTer does this by extracting

relevant shape constraints and the dependencies correctly from the

API document. Without such knowledge, random input generation

fails to produce valid input for boxes and scores to trigger this bug.

Bug 3: DocTer triggers a segmentation fault bug in the TensorFlow

API tf.quantization.quantize_and_dequantize using an input ten-

sor of any shape with an out-of-bound axis value (i.e., the value

of axis is larger than the number of input dimensions). After we

report the bug, TensorFlow developers report this as a security

vulnerability CVE-2020-15265 to the national vulnerability data-

base (NVD). The extracted constraints enable DocTer to trigger

Figure 3: Ratio of passing inputs

this bug by ensuring the generation of many valid input values for

all parameters of this API other than the axis values. For example,

the extracted constraints contain the boolean type for parameters

narrow_range, range_given, and signed_input and the valid values

(“HALF_TO_EVEN” and “HALF_UP”) for parameter round_mode, which

help DocTer generate valid values for these parameters. In contrast,

since the baseline is unaware of these constraints, the baseline gen-

erates invalid values for these parameters, which are rejected by

TensorFlow’s input validation code, therefore avoiding exposing

this security vulnerability.

4.4 RQ4: Valid-input generation results
Approach: As discussed in the Introduction, generating valid in-

puts is essential to exercise the core functionality of the API func-

tion. While DocTer attempts to generate CIs, these CIs may still

be invalid if the constraints extracted are incorrect or incomplete.

We study the percentage of generated CIs that are valid inputs. We

compute the ratio out of 1,000 CIs (confirming_ratio = 50%) with

the first 1,000 baseline inputs for each API function. Since manually

examining the validity of all inputs is impractical and the validity

checking of mature projects (e.g., our subjects) is generally reliable,

we make a reasonable approximation by counting the number of

passing inputs whose executions terminate normally.

Results: Fig. 3 presents the ratio of passing inputs for each sub-

ject and the average. On average, DocTer achieves 33.4% ratio of

passing inputs, which outperforms the baseline (21.5%) by generat-

ing 55.3% more passing inputs. The results suggest that DocTer is

more effective in generating valid inputs than the baseline to detect

more bugs. Although DocTer outperforms the baseline, the ratio

of passing inputs is still low (33.4%), because API documents are

often incomplete. DocTer might convince developers to write more

complete documents since documents can help them find bugs.

5 THREATS TO VALIDITY
Complex constraints: DocTer does not work with complex con-

straints that require a nested structure or indirect dependency with

the constraints of another parameter. However, these complex con-

straints are uncommon in DL libraries (appeared in only 6.4% of

our sampled parameters).

Testing Python and C++ code: Since DL libraries’ core computa-

tions are in C++, it may appear to be more reasonable to directly

test C++ code. However, since Python APIs are the most popular

for DL, testing them is testing the common use cases. DocTer tests

Python APIs which invoke the computations in C++, so DocTer

finds bugs in both Python (26 bugs) code and C++ (18 bugs) code.

Manual annotations: There is a one-time cost of up to 36 man

hours of manually annotating 30% of parameters with their ACs

(Section 2.2). Since the DocTer-generated rules are applicable to
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other libraries and versions (Section 4.1), this one-time cost is rea-

sonable. Such manual annotation cost is widely accepted in other

domains (e.g., supervised learning). Moreover, to minimize biases

with the manual annotation, our process involves three co-authors.

Two authors independently annotate with 98.2% agreement. All

disagreements are resolved with a third author to reach a consensus.

6 RELATEDWORK
DocTer is the first technique to extract DL-specific constraints from

API documentation, and the first DL library testing technique that

is guided by such input-constraints.

Constraint extraction: Existing constraint-extraction techniques

are insufficient for extracting DL-specific constraints [7, 16, 31, 46,

52, 56, 60], because they miss most of the DL-specific constraints,

cannot analyze across Python and C++ code, or requires formal

specifications. Many existing techniques [16, 22, 46, 52, 53] use a

handful of manually-designed rules to extract constraints. Instead,

DocTer uses subtree matching to automatically construct rules to

extract constraints.

Analyzing software text to detect bugs: Prior work leverages

documents [31] and comments [44–46, 60] to detect inconsistency

bugs between code and its specifications. Some prior work trans-

lates software specifications into assertions [30] and oracles [22, 34].

Different from these techniques, DocTer uses frequent subtree min-

ing and association rule learning to extract constraints from API

documents to guide input generation for testing DL libraries.

Testing DL libraries and fuzzing: The constraints extracted may

be used to improve existing testing techniques. The DL library test-

ing techniques focus on addressing the test oracle challenge, by

using differential testing [18, 24, 41, 42, 49, 51] or oracle approx-

imation [35, 59]. DocTer uses crashes instead and addresses the

challenge of obtaining input constraints automatically.

Existing techniques are designed to detect specific types of bugs

such as shape-related (e.g., tensor shape mismatch) [18, 28], numer-

ical [18, 24] (e.g., returns NaN/Inf), decreased accuracy [18], and

performance [47]. On the other hand, DocTer finds general bugs

that lead to serious crashes.

TensorFlow developers use OSS-Fuzz [6] along with libFuzzer [5]

to test only 19 TensorFlow’s C++ API functions. It requires devel-

opers to manually encode test inputs from the byte-arrays returned

by libFuzzer. This would take a prohibitive amount of manual effort

to test the 2,415 APIs that DocTer tests.

Fuzzers [3, 5, 9] have been adopted to test non-DL libraries [29,

40]. They would not work well for DL libraries (Section 4.3). Since

Randoop [37] works only for a statically-typed language (e.g., Java),

it would fail to create valid dynamically-typed objects for Python

(the most popular language for DL [8]).

Testing DL models: Many fuzzing techniques test the robustness

of DLmodels instead of DL libraries [20, 23, 25, 36, 48, 50, 54]. DocTer
tests DL libraries since testing DL models alone is insufficient as

DL libraries contain bugs [26, 27, 41].

7 CONCLUSION
We propose DocTer, which features a novel method to derive gen-

eral rules to translate API documents to precise parameter con-

straints. We apply these rules to popular DL libraries to extract a

large number of DL-specific constraints. We use the constraints to

guide the input generation of DL API functions. The constraints

enable DocTer to generate valid and invalid inputs to detect more

bugs in code and documents.
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