CoCoNuT: Combining Context-Aware Neural Translation Models using Ensemble for Program Repair

Thibaud Lutellier
lutellier@uwewaterloo.ca
University of Waterloo
Waterloo, ON, Canada

Hung Viet Pham
hvpham@uwewaterloo.ca
University of Waterloo
Waterloo, ON, Canada

Lawrence Pang
lypang@edu.uwaterloo.ca
University of Waterloo
Waterloo, ON, Canada

Yitong Li
yitong.li@uwewaterloo.ca
University of Waterloo
Waterloo, ON, Canada

Moshi Wei
m44wei@uwewaterloo.ca
University of Waterloo
Waterloo, ON, Canada

Lin Tan
lintan@purdue.edu
Purdue University
West Lafayette, IN, USA

ABSTRACT
Automated generate-and-validate (G&V) program repair techniques (APR) typically rely on hard-coded rules, thus only fixing bugs following specific fix patterns. These rules require a significant amount of manual effort to discover and it is hard to adapt these rules to different programming languages.

To address these challenges, we propose a new G&V technique—CoCoNuT, which uses ensemble learning on the combination of convolutional neural networks (CNNs) and a new context-aware neural machine translation (NMT) architecture to automatically fix bugs in multiple programming languages. To better represent the context of a bug, we introduce a new context-aware NMT architecture that represents the buggy source code and its surrounding context separately. CoCoNuT uses CNNs instead of recurrent neural networks (RNNs), since CNN layers can be stacked to extract hierarchical features and better model source code at different granularity levels (e.g., statements and functions). In addition, CoCoNuT takes advantage of the randomness in hyperparameter tuning to build multiple models that fix different bugs and combines these models using ensemble learning to fix more bugs.

Our evaluation on six popular benchmarks for four programming languages (Java, C, Python, and JavaScript) shows that CoCoNuT correctly fixes (i.e., the first generated patch is semantically equivalent to the developer’s patch) 509 bugs, including 309 bugs that are fixed by none of the 27 techniques with which we compare.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Software and its engineering → Empirical software validation; Software defect analysis; Software testing and debugging.

KEYWORDS
Automated program repair, Deep Learning, Neural Machine Translation, AI and Software Engineering

ACM Reference Format:

1 INTRODUCTION
To improve software reliability and increase engineering productivity, researchers have developed many approaches to fix software bugs automatically. One of the main approaches for automatic program repair is the G&V method [17, 38, 52, 69, 88, 89]. First, candidate patches are generated using a set of transformations or mutations (e.g., deleting a line or adding a clause). Second, these candidates are ranked and validated by compiling and running a given test suite. The G&V tool returns the highest-ranked fix that compiles and passes fault-revealing test cases.

While G&V techniques successfully fix bugs in different datasets, a recent study [53] showed that very few correct patches are in the search spaces of state-of-the-art techniques, which puts an upper limit on the number of correct patches that a G&V technique can generate. Also, existing techniques require extensive customization to work across programming languages since most fix patterns need to be manually re-implemented to work for a different language.

Therefore, there is a need for a new APR technique that can fix more bugs (i.e., with a better search space) and is easily transferable to different programming languages.

Neural machine translation is a popular deep-learning (DL) approach that uses neural network architectures to generate likely sequences of tokens given an input sequence. NMT uses an encoder block (i.e., several layers of neurons) to create an intermediate representation of the input learned from training data and a decoder block to decode this representation into the target sequence. NMT has mainly been applied to natural language translation tasks (e.g., translating French to English).
APR can be seen as a translation from buggy to correct source code. Therefore, there is a unique opportunity to apply NMT techniques to learn from the readily available bug fixes in open-source repositories and generate fixes for unseen bugs.

Such NMT-based APR techniques have two key advantages. First, NMT models automatically learn complex relations between input and output sequences that are difficult to capture manually. Similarly, NMT models could also capture complex relations between buggy and clean code that are difficult for manually designed fix patterns to capture. Second, while G&V methods often use hard-coded fix patterns that are programming-language-dependent and require domain knowledge, NMT techniques can be retrained for different programming languages automatically without re-implementing the fix patterns, thus requiring little manual effort.

Despite the great potential, there are two main challenges of applying NMT to APR:

1. **Representing context**: How to fix a bug often depends on the context, e.g., statements before and after the buggy lines. However, to represent the context effectively is a challenge for NMT models in both natural language tasks and bug fixing tasks; thus, the immediate context of the sentence to be translated is generally ignored. Two techniques that use NMT to repair bugs [13, 77] concatenate context and buggy code as one input instance. This design choice is problematic. First, concatenating context and buggy code makes the input sequences very long, and existing NMT architectures are known to struggle with long input. As a result, such approaches only fix short methods. For example, Tufano et al. [77] have to focus on short methods that contain fewer than 50 tokens. Second, concatenating buggy and context lines makes it more difficult for NMT to extract meaningful relations between tokens. For example, if the input consists of 1 buggy line and 9 lines of context, the 9 context lines will add noise to the buggy line and prevent the network from learning useful relations between the buggy line and the fix, which makes the models inefficient and less effective on fixing the buggy code.

We propose a new **context-aware NMT architecture** that has two separate encoders: one for the buggy lines, the other one for the context. Using separate encoders presents three advantages. First, the buggy line encoder will only have shorter input sequences. Thus, it will be able to extract strong relations between tokens in the context. Using separate encoders presents three advantages. First, the buggy line encoder will only have shorter input sequences. Third, since the two encoders are independent, the context and buggy line encoders can have different complexity (e.g., different number of layers), which could improve the performance of the model. For example, since the context is typically much longer than the buggy lines, the context encoder may need larger convolution kernels to capture long-distance relations, while the buggy line encoder may benefit from a higher number of layers (i.e., a deeper network) to capture more complex relations between buggy and clean lines. This context-aware NMT architecture is novel and can also be applied to improve other tasks such as fixing grammar mistakes and natural language translation.

2. **Capturing the diversity of bug fixes**: Due to the diversity of bugs and fixes (i.e., many different types of bugs and fixes), a single NMT model using the “best” hyperparameters (e.g., number of layers) would struggle to generalize.

Thus, we leverage ensemble learning to combine models of different levels of complexity that capture different relations between buggy and clean code. This allows our technique to learn diverse repair strategies to fix different types of bugs.

In this paper, we propose a new G&V technique called CoCoNuT that consists of an ensemble of fully convolutional (FConv) models and new context-aware NMT models of different levels of complexity. Each context-aware model captures different information about the repair operations and their context using two separate encoders (one for buggy lines and one for the context). Combining such models allows CoCoNuT to learn diverse repair strategies that are used to fix different types of bugs while overcoming the limitations of existing NMT approaches.

Evaluated against 27 APR techniques on six bug benchmarks in four programming languages, CoCoNuT fixes 509 bugs, 309 of which have not been fixed by any existing APR tools. Figure 1 shows two of such patches for bugs in Defects4J [31], demonstrating CoCoNuT’s capability of learning new and complex relations between buggy and clean code from the 3,241,966 instances in the Java training set. CoCoNuT generates the patch in Figure 1a using a new pattern (i.e., updating the Error type to be caught) that previous work [12, 27, 29, 35, 37, 38, 45–48, 50, 58, 67–69, 71, 82, 86, 87] did not discover. In the Figure, “-” denotes a line to be deleted that is taken as input by CoCoNuT, while “+” denotes the line generated by CoCoNuT and is identical to the developer’s patch. These previous techniques represent a decade of APR research that uses manually-designed Java fix patterns. This demonstrates that CoCoNuT complements existing APR approaches by automatically learning new fix patterns that existing techniques did not have, and automatically fixing bugs that existing techniques did not fix. To fix the bug in Figure 1b, CoCoNuT learns from the context lines the correct variables (typeParameter and actualTypeArgument) to be inserted in the conditional statement.

This paper makes the following contributions:

- A new context-aware NMT architecture that represents context and buggy input separately. This architecture is independent of our fully automated tool and could be applied to solve general problems.
problems in other domains where long-term context is necessary (e.g., grammatical error correction).

- The first application of CNN (i.e., FConv [20] architecture) for APR. We show that the FConv architecture outperforms LSTM and Transformer architectures when trained on the same dataset.
- An ensemble approach that combines context-aware and FConv NMT models to better capture the diversity of bug fixes.
- CoCoNuT is the first APR technique that is easily portable to different programming languages. With little manual effort, we applied CoCoNuT to four programming languages (Java, C, Python, and JavaScript), thanks to the use of NMT and new tokenization.
- A thorough evaluation of CoCoNuT on six benchmarks in four programming languages. CoCoNuT fixes 509 bugs, 309 of which have not been fixed by existing APR tools.
- A use of attention maps to explain why certain fixes are generated or not by CoCoNuT.

Artifacts are available.\(^1\)

2 BACKGROUND AND TERMINOLOGY

Terminology: A DL network is a structure (i.e., a graph) that contains nodes or layers that are stacked to perform a specific task. Each type of layer represents a specific low-level transformation (e.g., convolution, pooling) of the input data with specific parameters (i.e., weights). We call DL architecture an abstraction of a set of DL networks that have the same types and order of layers but do not specify the number and dimension of layers. A set of hyperparameters specifies how one consolidates an architecture to a network (e.g., it defines the convolutional layer dimensions or the number of convolutions in the layer group). The hyperparameters also determine which optimizer is used in training along with the optimization parameters, such as the learning rate and momentum. We call a model (or trained model), a network that has been trained, which has fixed weights.

Attention: The attention mechanism [9] is a recent DL improvement. It helps a neural network to focus on the most important features. Traditionally, only the latest hidden states of the encoder are fed to the decoder. If the input sequence is too long, some information regarding the early tokens are lost, even when using LSTM nodes [9]. The attention mechanism overcomes this issue by storing these long-distance dependencies in a separate attention map and feeding them to the decoder at each time step.

Candidate, Plausible, and Correct Patches: We call patches generated by a tool candidate patches. Candidate patches that pass the fault triggering test cases are plausible patches. Plausible patches that are semantically equivalent to the developers’ patches are correct patches.

3 APPROACH

Our technique contains three stages: training, inference, and validation. Figure 2 shows an overview of CoCoNuT. In the training phase, we extract tuples of buggy, context, and fixed lines from open-source projects. Then, we preprocess these lines to obtain sequences of tokens, feed the sequences to an NMT network, and tune the network with different sets of hyperparameters. We further train the top-k models until convergence to obtain an ensemble of k models. Since each model has different hyperparameters, each model learns different information that helps fix different bugs.

In the inference phase, a user inputs a buggy line and its context into CoCoNuT. It then tokenizes the input and feeds it to the top-k best models, which each outputs a list of patches. These patches are then ranked and validated by compiling the patched project. CoCoNuT then runs the test suite on the compilable fixes to filter incorrect patches. The final output is a list of candidate patches that pass the validation stage.

Section 3.1 presents the challenges of using NMT to automatically fix bugs, while the rest of Section 3 describes the different components of CoCoNuT.

3.1 Challenges

In addition to the two main challenges discussed in Introduction, i.e., (1) representing context and (2) capturing the diversity of fix patterns, using NMT for APR has additional challenges:

(3) Choice of Layers of Neurons: While natural language text is read sequentially from left to right, source code is generally not executed in the same sequential way (e.g., conditional blocks might be skipped in the execution). Thus, relevant information can be located farther away from the buggy location (e.g., a variable definition can be lines away from its buggy use). As a result, traditional recurrent neural networks (RNN) using LSTM layers [56] may not perform well for APR.

To address these challenges, we build our new context-aware NMT architecture using convolutional layers as the main component of the two encoders and the decoder, as they better capture such different dependencies than RNN layers [16, 20]. We stack convolutional layers with different kernel sizes to represent relations of different levels of granularity. Layers of larger kernel sizes model long-term relations (e.g., relations within a function), while layers of smaller kernel sizes model short-term relations (e.g., relations within a statement). To further track long-term dependencies in both input and context encoders, we use a multi-step attention mechanism.

(4) Large vocabulary size: Compared to traditional natural language processing (NLP) tasks such as translation, the vocabulary size of source code is larger and many tokens are infrequent because developers can practically create arbitrary tokens. In addition, letter case indicates important meanings in source code (e.g., zone is a variable and ZONE is a constant), which increases the vocabulary size further. For example, previous work [13] had to handle a code vocabulary size larger than 560,000 tokens. Practitioners need to cut the vocabulary size significantly to make it scalable for NMT, which leaves a large number of infrequent out-of-vocabulary tokens. We address this challenge by using a new tokenization approach that reduces the vocabulary size significantly without increasing the number of out-of-vocabulary words. For Java, our tokenization reduces the vocabulary size from 1,136,767 to 139,423 tokens while keeping the percentage of tokens out-of-vocabulary in our test sets below 2% (Section 3.3).

\(^1\)https://github.com/lin-tan/CoCoNut-Artifact
3.2 Data Extraction
We train CoCoNuT on tuples of buggy, context, and fixed lines of code extracted from the commit history of open-source projects. To remove commits that are not related to bug fixes, we follow previous work [81] and only keep commits that have the keywords “fix,” “bug,” or “patch” in their commit messages. We also filter commits using six commit messages anti-patterns: “rename,” “clean up,” “refactor,” “merge,” “misspelling,” and “compiler warning.” We manually investigate a random sample of 100 commits filtered using this approach and 93 of them are bug-related commits. This is a reasonable amount of noise (7%) for ML training on large training data [34, 85]. We split commits into hunks (groups of consecutive differing lines) and consider each hunk as a unique instance.

We represent the context of the bug using the function surrounding the buggy lines because it gives semantic information about the buggy functionality, is relatively small, contains most of the relevant variables, and can be extracted for millions of instances. The block “Data Extraction” in Figure 2 shows an example with one buggy line (highlighted in red), one correct line (highlighted in blue), and some lines of context (with purple on the left).

The proposed context-aware NMT architecture is independent of the choice of the context and would still work with different context definitions (e.g., full file or data-flow context). Our contribution is to represent the buggy line and the context separately as a second encoder, independently of the chosen context. Exploring other context definitions is interesting future work.

3.4 Context-Aware NMT Architecture
CoCoNuT’s architecture presents two main novelties. The first one consists of using two separate encoders to represent the context and the buggy lines (Figure 3). The second is a new application of fully convolutional layers (FConv) [20] for APR instead of traditional RNN such as LSTM layers used in previous work [13]. We choose the FConv layers because FConv’s CNN layers can be stacked to extract hierarchical features for larger contexts [16], which enables modeling source code at different granularity levels (e.g., variable, statement, block, and function). This is closer to how developers read code (e.g., looking at the entire function, a specific block, and then variables). RNN layers model code as a sequence, which is more similar to reading code from left to right.

We evaluate the impact of FConv and LSTM in Section 5.3. Our architecture consists of several components: an input encoder, a context encoder, a merger, a decoder, and an attention module. For simplicity, Figure 3 only displays a network with one
convolutional layer. In practice, depending on the hyperparameters, a complete network has 2 to 10 convolutional layers for each encoder and the decoder.

In training mode, the context-aware model has access to the buggy lines, its context, and the fixed lines. The model is trained to generate the best representation of the transformation from buggy lines with context to fixed lines. In practice, this is conducted by finding the best combination of weights that translates the input instances from the training set to fixed lines. Multiple passes on the training data are necessary to obtain the best set of weights.

In inference mode, since the model does not have access to the fixed line, the decoder processes tokens one by one, starting with a generic <START> token. The outputs of the decoder and the merger are then combined through the multi-step attention module. Finally, new tokens are generated based on the outputs of the attention, the encoders, and the decoder. The generated token is then fed back to the decoder until the <END> token is generated.

Following the example input in Figure 3, a user inputs the buggy statement “int sum = 0;” and its context to CoCoNuT. After tokenization, the buggy statement (highlighted in red) is fed to the input encoder while the context (highlighted in purple) is fed to the Context encoder. The outputs of both encoders are then concatenated in the Merger layer.

Since CoCoNuT did not generate any token yet, the token generation starts by feeding the token <START> to the decoder (iteration 0). The output of the decoder (\(d_{out}\)) is then combined with the merger output using a dot product to form the first column of the attention map. The colors of the attention map indicate how important each input token is for generating the output. For example, to generate the first token (double), the token int is the most important input token as it appears in red. The token combination generates the output of the attention, as well as the sum of the merger and decoder outputs (\(\sum e_{out}\) and \(\sum d_{out}\)) to generate the token double. This new token is added to the list of generated tokens and the list is given back as a new input to the decoder (iteration 1). The decoder uses this new input to compute the next \(d_{out}\) that is used to build the second column of the attention map and to generate the next token. The token generation continues until <END> is generated.

We describe the different modules of the network below.

Encoders and Decoder: The purpose of the encoders is to provide a fixed-length vectorized representation of the input sequence while the decoder translates such representation to the target sequence (i.e., the patched line). Both modules have a similar structure that consists of three main blocks: an embedding layer, several convolutional layers, and a layer of gated linear units (GLU).

The embedding layers represent input and target tokens as vectors, with tokens occurring in similar contexts having a similar vector representation. In a sense, these layers represent the model’s knowledge of the programming language.

The output of the embedding layers is then fed to several convolutional layers. The size of the convolution kernel represents the number of surrounding tokens that are taken into consideration. Stacking such convolutional layers with different kernel sizes provides multiple levels of abstraction for our network to work with. For example, a layer with a small kernel size will only focus on a few surrounding tokens within a statement, while larger layers will focus on a block of code or even a full function. These layers are different in the encoder and the decoder. The encoders use information from both the previous and the next tokens in the input sequence (since the full input sequence is known at all times), while the decoder only uses information about the previously generated tokens (since the next tokens have not been generated yet). Figure 3 shows these differences (full triangles in the encoders and half triangles in the decoder).

After the convolutional layers, a layer of GLU (represented by the sigmoid and multiplication boxes in Figure 3) decides which information should be kept by the network. The Merger then concatenates the outputs of the input and context encoders.

Multi-Step Attention: Compared to traditional attention (see Section 2), multi-step attention uses an attention mechanism to connect the output of each convolutional layer in the encoders and the decoder. When multiple convolutional layers are used, it results in multiple attention maps. Multi-step attention is useful because it connects each level of abstraction (i.e., convolutional layer) to the output. This increases the amount of information an encoder passes to the decoder when generating the target tokens.

The attention map represents the impact of input tokens on generating a specific output token and can help explain why a specific output is generated. We analyze attention maps in RQ4.

Token Generation: The token generation combines the outputs of the attention layers, merger (\(\sum e_{out}\)) and decoder (\(\sum d_{out}\)) to generate the next token. Each token in the vocabulary is ranked by the token generation component based on their likelihood of being the next token in the output sequence. The token selected by the search algorithm is then appended to the list of generated tokens, and the list is sent back as the new input of the decoder. The token generation stops when the <END> token is generated.

Beam Search: We use a common search strategy called beam search to generate and rank a large number of candidate patches. For each iteration, the beam search algorithm checks the \(t\) most likely tokens (\(t\) corresponds to the beam width) and ranks them by the total likelihood score of the next \(s\) prediction steps (\(s\) correspond
Fixing bugs is a complex task because there are very diverse bugs with very different fixing patterns that vary in terms of complexity. Some fix patterns are very simple (e.g., changing the operator < to >) while others require more complex modifications (e.g., adding a null checker or calling a different function). Training a model to fix all types of bugs is difficult. Instead, it is more effective to combine multiple specialized models into an ensemble model that will fix more bugs than one single model.

Therefore, we propose an ensemble approach that combines: (1) models with and without context, and (2) models with different hyperparameters (different networks) that perform the best on our validation set.

As described in Section 2, hyperparameters consolidate an architecture to a network. Different hyperparameters have a large impact on the complexity of a network, the speed of the training process, and the final performance of the trained model. For this tuning process, we apply random search because previous work showed that it is an inexpensive method that performs better than other common hyperparameter tuning strategies such as grid search and manual search [10]. For each hyperparameter, based on our hardware limitations, we define a range from which we can pick a random value. Since training a model until convergence is very expensive, we tune with only one epoch (i.e., one pass on the training data). We train n models with different random sets of parameters to obtain models with different behavior and keep the top k best models based on the performance of each model on a separate validation set. This tuning process allows us to discard underfit or overfit models while keeping the k best models that converge to different local optima and fix different real-world bugs.

Finally, we sort patches generated by different models based on their ranks. We use the likelihood of each sequence (i.e., bug fix) generated by each model to sort patches of equal ranks.

3.6 Patch Validation

Statement Reconstruction: A model outputs a list of tokens that forms a fix for the input buggy line. The statement reconstruction module generates a complete patch from the list of tokens. For the abstracted tokens (i.e., strings and numbers), we extract donor code from the original file in which the bug occurred. Once the fix is generated, it is inserted at the buggy location, and we move to the validation step.

Compilation and Test Suite Validation: The model does not have access to the entire project; therefore, it does not know whether the generated patches are compilable or pass the test suite. The validation step filters out patches that do not compile or do not pass the triggering test cases. We use the same two criteria as previous work [89] for the validation process. First, the test cases that make the buggy version pass should still pass on the patched version. Second, at least one test case that failed on the buggy version should pass on the patched version.

3.7 Generalization to Other Languages

Since CoCoNuT learns patterns automatically instead of relying on handcrafted patterns, it can be generalized to other programming languages with minimum effort. The main required change is to obtain new input data. Fortunately, this is easy to do since our training set is extracted from open-source projects. Once the data for the new programming language has been extracted, the top k models can be retrained without re-implementation. CoCoNuT will learn fix patterns automatically for the new programming language.

4 EXPERIMENTAL SETUP

Selecting Training Data: Since the earliest bugs in our Java benchmarks are from 2006 and the latest are from 2016, we divide the instances extracted from the training projects into two training sets. The first one contains all instances committed before 2006 and the second one contains instances committed before 2010. Instances committed after 2010 are discarded. The models trained using the first training set can be used to train models to fix all bugs in the test benchmarks, while the models trained using the second training set should only be used on the bugs fixed after 2010. This setup is to ensure the validity of experiments so that no future data is used [75] (Section 5).

For Java, we use GHTorrent [21] to collect instances from 59,237 projects that contain commits before 2010. We also extract data from the oldest 20,000 Gitlab projects (restriction caused by the limitation of Gitlab search API) because we expect older projects to contain more bugs fixed before the first bug in our benchmarks, and 10,111 Bitbucket repositories (ranked by popularity because of limitations of the Bitbucket search API).

For other languages, we use GHTorrent to extract data from all GitHub projects before the first bug in their associated benchmark. Table 1 shows the number of projects and the number of instances in all training sets.

Selecting State-of-the-art Tools for Comparison: We compare CoCoNuT against 27 APR techniques, including all Java tools used in previous comparisons [47], two additional recent techniques [33, 71], five state-of-the-art C tools [2, 52, 55, 59], and two NMT-based techniques [13, 42]. We chose DLFix [42] and SequenceR [13] over other NMT techniques [23, 60, 77] for comparison, because [77] only generates templates and [23, 60] focus on compilation errors, which is a different problem.

Training, Tuning, and Inference: For tuning, we pick a random sample of 20,000 instances as our validation dataset and use the rest for training.
We train the top-k (default k = 10) models using ReduceLRonPlateau schedule, with a plateau of 10^{-4}, and stop at convergence or until we reach 20 epochs. In inference mode, we use beam search with a beam width of 1,000.

Infrastructure: We use the Pytorch [65] implementations of LSTM, Transformer, and FCConv provided by fairseq-py [1]. We train and evaluate CoCoNuT on three 56-core servers with NVIDIA TITAN V, Xp, and 2080 Ti GPUs.

5 EVALUATION AND RESULTS

Realistic Evaluation Setup: To evaluate CoCoNuT, we use six benchmarks commonly used for APR that contain realistic bugs.

When dealing with time-ordered data, it is not uncommon to incorrectly set up the evaluation [75]. If the historical data used to build the APR technique is more recent than the bugs in the benchmarks, it could contain helpful information (e.g., code clones and regression bugs) that would realistically be unavailable at the time of the fix. Using training/validation instances that are newer than the bugs in the benchmark to train or validate our models would be an incorrect setup and might artificially improve the performances of the models.

This incorrect setup potentially affects all previous APR techniques that use historical data. Although the effect may be smaller, even pattern-based techniques could suffer from this problem since patterns might have been manually learned from bugs that were fixed after the bugs in the benchmarks. To the best of our knowledge, we are the first to acknowledge and address this incorrect setup issue in the context of APR. The using-future-data threat is also one of the reasons that we did not use k-fold cross-validation for evaluation.

To address the setup issue, we extract the timestamp of the oldest bug in the benchmark (based on the date of the fixing commits) and only use training and validation instances before that timestamp. However, adding newer data to the training set would help CoCoNuT fix more recent bugs (e.g., using data until 2010 would be helpful to fix bugs from 2011). A straightforward solution would be to retrain CoCoNuT using different training data for each bug timestamp in the benchmark; however, this is not scalable. Instead, we split our benchmark into two parts. The first part contains bugs from 2006 to 2010 and is used to evaluate CoCoNuT trained with data from before 2006. The second part of the benchmark contains bugs from 2011 to 2016 and is used to evaluate CoCoNuT trained with data from before 2011 (including data from before 2006). This split allows CoCoNuT to learn from instances up to 2010 to fix newer bugs while keeping the overhead reasonable. We then combine the results of CoCoNuT on these two sub-benchmarks to obtain the final number of bugs fixed. With this correct setting, CoCoNuT has no access to data that would be unavailable in a realistic scenario.

Similar to previous work [12, 27, 29, 35, 38, 45–48, 50, 58, 67–69, 71, 82, 86, 87], we stop CoCoNuT after the first generated patch that is successfully validated against the test suite. If no patch passes the test suite after the limit of six hours, we stop and consider the bug not repaired by CoCoNuT. For evaluation purposes only, three co-authors manually compare the plausible patches (i.e., patches that pass the test cases) to the developers’ patches and consider a patch correct if they all agree it is identical or semantically equivalent to the developers’ patch using the equivalence rules described in previous work [49].

5.1 RQ1: How does CoCoNuT perform against state-of-the-art APR techniques?

Approach: Table 2 shows that we compare CoCoNuT with 27 state-of-the-art G&V approaches on six benchmarks for four different programming languages. We use Defects4J [31] and QuixBugs [43] for Java, Codeflaws [76] and ManyBugs [39] for C, and QuixBugs [43] for Python. For JavaScript, we use the 12 examples associated with common bug patterns in JavaScript described in previous work (BugAID) [25]. The total number of bugs in each dataset is under the name of the benchmark.

We compare our results with popular (e.g., GenProg) and recent (e.g., TBar) G&V techniques for C and Java. We do not compare with the JavaScript APR technique Vejovis [64] since it only fixes bugs in Document Object Model (DOM). We extract the results for each technique from a recent evaluation [46] and cross-check against original results when available. Perfect buggy location results are extracted from the GitHub repository of previous work [49] and manually verified to remove duplicate bugs.

We run Angelix, Prophet, SPR, and GenProg on the entire Codeflaws dataset because these techniques had not been evaluated on the full dataset. We use the default timeout values provided by the Codeflaws dataset authors. Since Codeflaws consists of small single-file programs, it is unlikely that these techniques would perform differently with a larger timeout.

The results in Table 2 are displayed as x/y, with x the number of correct patches that are ranked first by an APR technique, and y the number of plausible patches. We also show in parentheses the number of bugs fixed by CoCoNuT that have not been fixed by other techniques. ‘-’ indicates that a technique has not been evaluated on the benchmark or does not support the programming language of the benchmark. For the BugAID and ManyBugs benchmarks, we could not run the validation step; therefore we only display the number of patches that are identical to developers’ patches (‘*’ in the Table) and cannot show the number of plausible patches.

Since different approaches used different fault localization (FL) techniques, we separate them based on FL types (Column FL), as was done in previous work [48]. Standard FL-based approaches use a traditional spectrum-based fault localization technique. Supplemental FL-based APR techniques use additional methods or assumptions to improve FL. For example, HD-Repair assumes that the buggy file and method are known. Finally, Perfect FL-based techniques assume that the perfect localization of the bug is known. According to recent work [46, 49], this is the preferred way to evaluate G&V approaches, as it enables fair assessment of APR techniques independently of the fault localization approach used.
Table 2: Comparison with state-of-the-art G&V approaches. The number of bugs that only CoCoNuT fixes is in parentheses (309). The results are displayed as x/y, with x the number of bugs correctly fixed, and y the number of bugs with plausible patches. * indicates tools whose manual fix patterns are used by TBAR. Numbers are extracted from either the original papers or from previous work [49] which reran some approaches with perfect localization. In Defects4J, we exclude Closure 63 and Closure 93 from the total count since they are duplicates of Closure 62 and 92, respectively. † indicates the number of patches that are identical to developer patches—the minimal number of correct patches. - indicates tools that have not been evaluated on a specific benchmark. The highest number of correct patches for each benchmark is in bold.

<table>
<thead>
<tr>
<th>FL</th>
<th>Tool</th>
<th>Java</th>
<th>C</th>
<th>Python</th>
<th>JavaScript</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Defects4J</td>
<td>QuizBugs</td>
<td>Codeflaws</td>
<td>ManyBugs</td>
<td>QuizBugs</td>
</tr>
<tr>
<td></td>
<td>393 bugs</td>
<td>40 bugs</td>
<td>3,902 bugs</td>
<td>69 bugs</td>
<td>40 bugs</td>
</tr>
<tr>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Angelix [59]</td>
<td>-</td>
<td>-</td>
<td>318/591</td>
<td>18/39</td>
</tr>
<tr>
<td>2</td>
<td>Prophet [55]</td>
<td>-</td>
<td>301/839</td>
<td>15/39</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>SPR [52]</td>
<td>-</td>
<td>283/783</td>
<td>11/38</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Astor* [58]</td>
<td>-</td>
<td>6/11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>LSRepair [45]</td>
<td>19/37</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>DLFix [52]</td>
<td>29/65</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Supplemented</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>JAID [12]</td>
<td>9/31</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>HD-Repair* [37]</td>
<td>13/23</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>SketchFix* [27]</td>
<td>19/26</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>ssFix* [46]</td>
<td>20/60</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>CapGen* [82]</td>
<td>21/25</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>ConFix [35]</td>
<td>22/92</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>Elixir* [69]</td>
<td>26/41</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>Hercules [71]</td>
<td>49/72</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Perfect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>SOSRepair [2]</td>
<td>-</td>
<td>-</td>
<td>16/23</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>Nopol [88]</td>
<td>2/9</td>
<td>1/4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>(j)Kali [58, 68]</td>
<td>2/8</td>
<td>1/2</td>
<td>-</td>
<td>3/27</td>
</tr>
<tr>
<td>18</td>
<td>(j)GenProg [38, 58]</td>
<td>6/16</td>
<td>0/2</td>
<td>[255-369]/1423</td>
<td>2/18</td>
</tr>
<tr>
<td>19</td>
<td>RSRRepair [67]</td>
<td>10/24</td>
<td>2/4</td>
<td>-</td>
<td>2/10</td>
</tr>
<tr>
<td>20</td>
<td>ARJA [91]</td>
<td>12/36</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>SequenceR [13]</td>
<td>12/19</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>ACS [87]</td>
<td>16/21</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>SimFix* [29]</td>
<td>27/50</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>kPAR* [46]</td>
<td>29/56</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>AVATAR* [48]</td>
<td>29/50</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>FixMiner* [35]</td>
<td>34/62</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>TBar [47]</td>
<td>52/85</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

CoCoNuT (not fixed by others) | 44/85 | 13/20 | (10) | 423/716 | (271) | 7/- | (0) | 19/21 | (19) | 3/- | (3) |

Total bugs fixed by CoCoNuT | 509 | (309) |
with perfect localization. Thus, although some of these tools do not have a pattern for updating the return type of a function.

We manually check for semantic equivalence for all generated patches except for GenProg on ManyBugs. Instead, we manually check a random sample of 310 out of the 1,423 plausible patches for CodeFlaws generated by GenProg, because GenProg rewrites the program before patching it, e.g., replacing a for loop with a while loop, which makes it difficult to manually investigate all 1,423 plausible patches. The margin of error for this sample is 4% with a 95% confidence level, thus, Table 2 shows the projected range of the number of CodeFlaws bugs that GenProg fixes.

On the JavaScript and Python bug benchmarks, CoCoNuT fixes three and 19 bugs respectively.

Since different bug benchmarks contain different distributions of different types of bugs, and different APR tools fix different types of bugs, it is important to evaluate new APR techniques on different benchmarks for a fair and comprehensive comparison. CoCoNuT is the only technique on four of the six benchmarks.

5.2 RQ2: Which bugs only CoCoNuT can fix?

Approach: For the bugs only CoCoNuT can fix in Defects4J, we rerun TBar, the best technique for Java, on our hardware, with perfect localization, and without a time limit to confirm that TBar cannot fix these bugs, even under the best possible conditions. For C, as stated in RQ1, we run Angelix, SPR, Prophet, and GenProg on CodeFlaws with the same hardware we used for CoCoNuT for a fair comparison. CoCoNuT is the only technique fixing bugs in the Python and JavaScript benchmarks.

Results: CoCoNuT fixes bugs by automatically learning new patterns that have not yet been discovered, despite a decade of research on Java fix patterns. Mockito 5 (Figure 1a) is a bug in Defects4J only CoCoNuT fixes because it requires patterns that are not covered by existing pattern-based techniques (i.e., exception type update). Lang 29 (Figure 4) is another bug that cannot be fixed by other tools because existing pattern-based techniques such as TBar do not have a pattern for updating the return type of a function. TBar cannot generate any candidate patches for these two bugs.

Thanks to the context-aware architecture, CoCoNuT fixes bugs other techniques do not fix by correctly extracting donor code (e.g., correct variable names) from the context, while techniques such as TBar rely on heuristics. An example of such bugs is in Figure 1b as explained in Section 1.

CoCoNuT is the only technique that fixes Closure 92 because it learns from historical data (Figure 5b) that the lastIndexOf method in the String library is a likely candidate to replace the indexOf method. Other techniques such as TBar fail to generate a correct patch because the donor code is not in their search space.

```java
Figure 4: CoCoNuT’s Java Patch for Lang 29 in Defects4J

```
We compare CoCoNuT with DLFix to understand the impact of each component of CoCoNuT: (1) the performance of our new NMT architecture compared to state-of-the-art NMT architectures, (2) the impact of context, and (3) the impact of ensemble learning.

Approach: To understand the impact of each component of CoCoNuT, we investigate them individually. More specifically, we focus on three key contributions: (1) the performance of our new NMT architecture compared to state-of-the-art NMT architectures, (2) the impact of context, and (3) the impact of ensemble learning.

Comparison with State-of-the-art NMT: CoCoNuT fixes the most number of bugs, with 44 bugs fixed in Defects4J. DLFix is the second best, fixing 29 bugs, followed by FConv with 21 bugs while Transformer and SequenceR have similar performances, fixing 13 and 12 bugs respectively. The last baseline, LSTM, performs poorly with only 5 bugs fixed. These results demonstrate that CoCoNuT performs better than state-of-the-art DL approaches and that directly applying out-of-the-box deep-learning techniques for APR is ineffective.

Impact of the Context: Figure 7 shows the total number of bugs fixed using the top-k models, with k from 1 to 10. For all k, CoCoNuT outperforms an ensemble of FConv models trained without using context. Our default CoCoNuT (with k = 10 models) fixes six more bugs than using models without context (44 versus 38).

Advantage of Ensemble Learning: Figure 7 shows that as k increases from 1 to 10, the number of bugs that CoCoNuT fixes increases from 22 to 44, a 50% improvement. We observe a similar trend for the FConv models, indicating that ensemble learning is beneficial independently of the architecture used. Model 9 and Model 7 are the best FConv and Context-aware models respectively, both fixing 26 bugs.

While increasing k also increases the runtime of the technique, this cost is not prohibitive because CoCoNuT is an offline technique and can be run overnight. In the worse case, with k=10, CoCoNuT takes an average of 16.7 minutes to generate 20,000 patches for one bug (for k=1, it takes an average of 1.8 minutes per bug).

While CoCoNuT fixes 44 in Defects4J, the average number of bug fixed by a single model is 15.65. In Defects4J, 40% of the bugs are fixed by five or fewer models. Six of the correctly fixed bugs are only fixed by one model, while only two bugs are fixed by all models. This indicates that different models in our ensemble approach specialize in fixing different bugs.

Summary: The new NMT architecture we propose performs significantly better than baseline architectures. In addition, using ensemble learning to combine the models improves the results, with a 50% improvement for k=10 compared to k=1.

5.4 RQ4: Can we explain why CoCoNuT can (or fail to) generate specific fixes?

The Majority of the Fixes are not Clones: By learning from historical data, the depth of our neural network allows CoCoNuT to fix complex bugs, including the ones that require generating new variables. As discussed at the start of Section 5, we only keep training and validation instances from before the first bugs in our benchmarks for a fair evaluation. As a result, the exact same bug cannot appear in our training/validation sets and evaluation benchmarks. However, the same patch may still be used to fix different bugs introduced at different times in different locations. Having such patch clones in both training and test sets is valid, as recurring fixes are common. The majority of the bugs fixed by CoCoNuT do not appear in the training sets: only two patches from the C benchmark and one from the JavaScript benchmark appear in the training or validation sets. This indicates that CoCoNuT is effective in learning and generating completely different fixes.

Analyzing the Attention Map: CoCoNuT can also fix bugs that require complex changes. For example, the fix for Lang 26 from

```java
Calendar c = new GregorianCalendar(mTimeZone, mLocale);
```

requires complex patch clones. CoCoNuT’s Java patch for Lang 26 in Defects4J: Figure 8:

CoCoNuT directly learns patterns from historical data without any additional manual work, making it portable to different programming languages. Figure 6 shows the same bug in both the Java (Figure 6a) and Python (Figure 6b) implementations of the QuixBugs dataset. CoCoNuT fixes both bugs, even if the patches in Java and Python are quite different. Adapting pattern-based techniques for Java to Python would require much work because the fix-patterns are very different, even for the same bug.

Summary: CoCoNuT fixes 309 bugs that have not been fixed by existing techniques, including six bugs in Defects4J. CoCoNuT fixes new bugs by (1) automatically learning new patterns that have not been found by previous work, (2) extracting donor code from the context of the bug, and (3) extracting donor code from the historical training data.
the Defects4J dataset shown in Figure 8 requires injecting a new variable \(m\text{Locale} \). This new variable only appears four times in our training set, and never in a similar context. However, \(m\text{Locale} \) contains the token \text{Locale} which co-occurs in our training set with the buggy statement tokens \text{Gregorian}, \text{Time}, and \text{Zone}.

The attention map in Figure 9 confirms that the token \text{Time} is important for generating the \text{Locale} variable. Specifically, the tokenized input is shown on the y-axis while the tokenized generated output is displayed on the x-axis. The token \text{<CAMEL>} between \(m \) and \text{Locale} indicates that these two tokens form one unique variable. The attention map shows the relationship between the input tokens (vertical axis) and the generated tokens (horizontal axis). The color in a cell represents the relationship of corresponding input and output tokens. The color scale, shown on the right of the figure, varies from 0 (dark blue) to 0.6 (dark red) and indicates the contribution of each input token for generating an output token.

This attention map helps us understand why the model generates specific tokens. For example, the second \(m \) in the output is generated because of the token \text{mTimeZone} in the input (part of \text{mTimeZone}), showing that the network can keep the naming convention when generating new variables (square labeled 2 in Figure 9). The token \text{Locale} is mostly generated because of the token \text{Time}, indicating that the network is confident these tokens should be together (square 3).

Finally, the tokens forming the variable \(m\text{Locale} \) are all influenced by the input tokens); and \text{EOS}, indicating that this token is often used right before the end of a statement (i.e., as the last parameter of the function call, rectangle 4 on Figure 9). This example shows how the attention map can be used to understand why CoCoNuT generates a specific patch.

Limitations of Test Suites: Patches that pass the test suite but are incorrect are an issue that CoCoNuT and other APR techniques share. CoCoNuT could generate a correct fix for 8 additional bugs if more time is given; however, for these 8 bugs, CoCoNuT generates an incorrect patch that passes the test suite (we only validate the first candidate patch due to time considerations) or timed out before the correct fix. Using enhanced test suites proposed in previous work [89] may alleviate this issue.

5.5 **Execution Time**

Data Extraction: Extracting data from open-source repositories and training CoCoNuT are one-time costs that can be amortized across many bugs and should not be counted in the end-to-end time to fix one bug. For Java, extracting data from 59,237 projects takes five days using three servers.

Training Time: The median time to train our context-aware NMT model for 1 epoch during tuning is 8.7 hours. On average, training a model for 20 epochs takes 175 hours on one GPU. Transformers and FConv networks are faster to train, taking an average of 2.5 and 2.7 hours per epoch. However, training the LSTM network is much slower (22 hours per epoch).

This one time cost is to be compared to the **decade of research** spent designing and implementing new fix patterns.

Cost to fix one bug: Once the model is trained, the main cost is the inference (i.e., generating patches) and the validation (i.e., running the test suite). During inference, generating 20,000 patches for one bug (CoCoNuT default setup) takes 16.7 min on average using one GPU. On our hardware, CoCoNuT’s median execution time to validate a bug is six sec on CodeFlaws and 6 min on Defects4J (benchmark with the largest programs and test suites).

CoCoNuT median **end-to-end time** to fix a bug varies from 16.7 min on CodeFlaws to 22.7 min on Defects4J. In comparison, on identical hardware, the median time of other tools that we ran on CodeFlaws (Angelix, GenProg, SPR, and Prophet) varies from 30 sec to 4 min. TBar, on the same hardware, has an 8 min median execution time on Defects4J.

While the end-to-end approach of CoCoNuT is slower than existing approaches, it is still reasonable. In addition, we can shorten the execution time by reducing the number of patches generated in inference. Generating only 1,000 patches (i.e., 50 patches per model) would reduce CoCoNuT’s end-to-end time to 2 min on CodeFlaws and 7 min on Defects4J while still fixing most of the bugs (e.g., 34 in Defects4J). Parallelism on multiple GPUs and CPUs can also speed up the inference.

6 **LIMITATIONS**

The dataset used to train our approach is different from the ones used by other work (e.g., SequenceC and DLFix), which could impact our comparison results. However, the choice of datasets and how to extract and represent data are a key component of a technique. In addition, we compare our approach with LSTM, FConv, and Transformer architectures using the same training data and hardware, which shows that CoCoNuT outperforms all other three. Finally, both DLFix and SequenceR use data that was unavailable at the time of the bug fix (i.e., their models are trained using instances committed after the bugs in Defects4J were fixed), which could produce false good results as shown by prior work [75].

A challenge of deep learning is to explain the output of a neural network. Fortunately, for developers, the repaired program that compiles and passes test cases should be self-explanatory. For users who build and improve CoCoNuT models, we leverage the recent multi-step attention mechanism [20] to explain why a fix was generated or not.

There is a threat that our approach might not be generalizable to fixing bugs outside of the tested benchmarks. We use six different
We propose CoCoNuT, a new end-to-end approach using NMT while thanks to our context-aware ensemble NMT approach, CoCoNuT outperforms both DLFix and SequenceR. Tufano et al. [77] generates templates instead of complete patches and thus cannot be directly compared. Deep learning has also been used to detect and repair small syntax errors but only learn the syntax of the programming language.

Acknowledgment

The authors thank Shruti Dembla for her contribution in collecting java projects from GitHub. The research is partially supported by Natural Sciences and Engineering Research Council of Canada, a Facebook research award, and an NVIDIA GPU grant.

References
