
CloCom: Mining Existing Source Code for
Automatic Comment Generation

Edmund Wong, Taiyue Liu, and Lin Tan
Department of Electrical and Computer Engineering
University of Waterloo, Waterloo, Ontario, Canada

{e32wong, t67liu, lintan}@uwaterloo.ca

Abstract—Code comments are an integral part of software
development. They improve program comprehension and soft-
ware maintainability. The lack of code comments is a common
problem in the software industry. Therefore, it is beneficial to
generate code comments automatically. In this paper, we propose
a general approach to generate code comments automatically
by analyzing existing software repositories. We apply code clone
detection techniques to discover similar code segments and use
the comments from some code segments to describe the other
similar code segments. We leverage natural language processing
techniques to select relevant comment sentences.

In our evaluation, we analyze 42 million lines of code from
1,005 open source projects from GitHub, and use them to generate
359 code comments for 21 Java projects. We manually evaluate
the generated code comments and find that only 23.7% of the
generated code comments are good. We report to the developers
the good code comments, whose code segments do not have an
existing code comment. Amongst the reported code comments,
seven have been confirmed by the developers as good and
committable to the software repository while the rest await for
developers’ confirmation. Although our approach can generate
good and committable comments, we still have to improve the
yield and accuracy of the proposed approach before it can be
used in practice with full automation.

Keywords—comment generation; documentation; program com-
prehension

I. INTRODUCTION

Code commenting is an integral part of software develop-
ment. Developers rely on code comments to help understand
source code. Previous work had shown that code comments
can help improve software maintainability [1]. However, many
code bases do not contain adequate code comments [2]. There-
fore, it is beneficial to generate code comments automatically
since it can save developers’ time in writing comments.

Previous work from Sridhara et al. [3], [4], [5], [6] had
focused on generating code comments for Java methods [3],
groups of statements [4], Java classes [5], and parameter
comments [6]. Their technique synthesizes natural language
sentences from the code elements directly. However, these
techniques rely on high-quality identifier names and method
signatures from the source code. For example, the grouping of
multiple statements together requires all method names contain
the same verb [4]. The technique may fail to generate accurate
comments if the source code contains poorly named identifiers
or method names.

Our previous work AutoComment [7] mined a large-scale
question and answer (Q&A) website, Stack Overflow [8], to

extract and improve human written descriptions for automatic
comment generation. AutoComment extracted code segments
from Stack Overflow, and identified their corresponding de-
scriptions. AutoComment then detected code segments in soft-
ware repositories that are similar to the code segments on Stack
Overflow, and used the improved descriptions (modified with
natural language processing techniques) as comments for the
code segments in the software repositories. Although human
written sentences from Stack Overflow can be used as source
code comments, the technique can only generate a limited
number of comments automatically. The reason is if a code
segment had never been discussed on a Q&A website, then
AutoComment cannot generate a comment for the detected
code segments that are similar, which limits the yield. Based
on our user study [7], we learnt that comments that are written
for easy-to-understand code (no comment is needed to help
comprehension) are less useful.

To overcome the yield issue, we propose a general ap-
proach to mine new sources—existing open source software
repositories—for code comment generation. This approach
is similar to AutoComment. The main difference is that
this approach identifies similar code segments between two
code repositories, while AutoComment detects similar code
segments between a code repository and code segments in
Stack Overflow. This is based on the idea that 1) software
reuse is common [9], [10], and 2) millions of lines of open
source projects that contain code comments are available for
the generation of human written comments. For example, the
1,005 Java open source projects that we downloaded from
GitHub contains 42 million lines of code and 17 million lines
of comments based on CLOC [11].

Mining human written comments from software reposito-
ries have four main challenges over our previous work [7],
which mines human written comments from Q&A sites:

First, since we mine code comments from a large pool
of software repositories, a code segment is often similar to
many other code segments that contain code comments because
software reuse is common. This is a problem because a
single code segment can have many comment candidates. In
our previous work [7], Q&A sites often disallow duplicate
questions, we typically have less than four comment candidates
when mining Q&A sites. Therefore, we need new approaches
to rank the multiple matched comment candidates.

Second, it is more challenging to process source code com-
ments compared to the human written sentences from Q&A
sites. The reason is that code comments are often not written

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/ republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.



in full sentences, which means a natural language parser cannot
process the code comments accurately. In contrast, since Q&A
sites are a platform for users to ask questions and obtain
feedback from other users, they encourage users to use full
English sentences.

Third, code comments mined from source code are more
likely to contain project specific information compared to
human written sentences on Q&A sites. The reason is source
code comments are written to be read by developers who
are interested in understanding the logic of the commented
code with respective to the surrounding code, whereas human
written sentences on Q&A sites are written to be read by the
general public. When we mine code comments from source
code, we require an effective approach to determine if a code
comment contains keywords that are only applicable to a
specific code segment.

Forth, mining code comments from existing software
repositories requires a more advanced code clone detection
technique due to two reasons. First, the software repository
is larger consisting of 42 million lines of code, compared to
the code segments in Q&A sites, which have an average size
between three to ten lines of code. The large repository brings
the need for a highly scalable code clone detection technique.
Secondly, many code segments in Q&A are uncompilable,
which limits us from extracting fine-grained information such
as type information and variable scope level. Since we extract
code segments from complete source code files in the target
project, we can leverage an abstract syntax tree parser to
extract fine-grained information (i.e., variable type bindings
and type of a statement) from source code to help improve the
accuracy of the code clone detection technique.

To address these challenges, we proposed four techniques,
including 1) filtering of code clones that do not have semantic
similarity, 2) extraction of code comments from the source
code, 3) elimination of code comments that contain project-
specific information, and 4) ranking multiple code comment
candidates. This paper makes the following contributions:

• We proposed a new approach, CloCom, to analyze soft-
ware repositories for comment generation. The approach
performs code clone detection between the input target
project and the software repositories, and leverages infor-
mation from all the similar code segments to eliminate
code comments that contain project specific information.

• We analyzed 42 million lines of code from 1,005 Java
projects and generated 359 comments. Our result shows
that 23.7% of the generated code comments are good. The
yield and accuracy are both low despite having a larger
set of source code for mining compared to our previous
work [7]. However, we analyzed the key observations
in the results and reported the good code comments to
developers. Amongst the reported code comments, seven
have been confirmed by the developers as good and
committable to the software repository while the rest
await for developers’ confirmation.

• We made our tool open source and our classification
results publicly available on our project website (see
Section Availability). Our tool is capable of extracting
mappings between source code and code comments, and
can act as a standalone code clone detection tool.

II. APPROACH

Figure 1 shows the design of CloCom. CloCom takes two
inputs: 1) software projects for comment extraction, e.g., open
source projects from GitHub, and 2) target software projects to
be commented. The output of CloCom is a list of automatically
generated comments for the target projects.

CloCom generates code comments for the target projects.
It detects code clones between the database containing raw
software projects and the target projects’ source code (Sec-
tion II-A), prunes out code clones that do not have semantic
similarity (Section II-B), maps each code segment with its
respective code comment (Section II-C), prunes out code
comments that contains invalid information (Section II-D),
and selects the code comment(s) that best describe the code
segment from the list of available candidates (Section II-E).

We compared CloCom against our previous work, Auto-
Comment [7]. The following techniques are new and improved
to address the challenges described in Section I. First, we
proposed a new context-sensitive text similarity measure for
selecting valid code comments (Section II-D). It performs
a three-way analysis between the code comment, the code
segment from the database, and the code segment from the
target project. Second, we proposed a new approach to rank
the generated code comments based on the code comments’
text similarity score and length (Section II-E).

A. Code Clone Detection

In order to generate code comments for the target projects,
we first have to locate code clones. We discover similar code
segments between the database and the target projects.

1) Algorithm: We designed and implemented a code clone
detection tool, which is token-based. Token-based code clone
detection tools can achieve a time complexity of O(n ∗ m)
with token-based matching, where n is the number of lines
of code in the input project; and m is the number of lines
of code in the database. The token-based matching algorithms
are usually more efficient than tree-based matching algorithms
(polynomial runtime [12]). The time efficiency is important for
scalability purposes because our database contains 42 million
LOC.

Our matching algorithm is similar to that of DuDe [13] with
two differences. First, our technique is language dependent
due to the usage of an abstract syntax tree (AST) parser
for accurate tokenization of the code elements. The parser is
different from Dude [13], which detects code elements using
regular expressions. Second, we only support Type-1 and Type-
2 clones whereas DuDe supports Type-1, Type-2, and some
Type-3 clones. Type-2 clone is defined as “Syntactically identi-
cal fragments except for variations in identifiers, literals, types,
whitespace, layout and comments” [12]; and Type-3 clone
includes changed, added, removed statements [12]. We would
like to explore Type-3 clone in the future because changed,
added, or removed statements will impact the meaning of the
code segment.

We did not leverage existing code clone detection tools
because many are not scalable [14]. Existing mature code
clone detection tools such as NiCad [15] and Deckard [14]
both have a quadratic runtime [12], whereas our approach has



Database -
Github
Projects

Code
Clone

Detection

Target Project

Code
Clone

Pruning

Comment
Extraction

Comment
Selection

Comment
Ranking

Comments

Fig. 1. Overview of CloCom

a linear runtime of O(n ∗ m). In addition, we require fine-
grained tuning of the tokenization rules (i.e., require exact
matching on strings and chars) and the extraction of metadata
(i.e., scope level of a statement, identifier names, and the type
of a statement). This brings the requirement of an open-source
software.

2) Tokenization: Tokenization of the source code is based
on the serialization of AST nodes. We utilized Eclipse AST-
Parser [16] to obtain the AST of the Java source code.
ASTParser cannot fully resolve variable type bindings of code
elements unless we manually compile each project in the
database, which is infeasible because there are 1,005 Java
projects in GitHub. We overcome this problem by tracking all
the variable declarations within each Java class, which gives us
a non-fully qualified data type of each variable. This approach
produces fewer false clones compared to SIM [17], a code
clone detection tool used in our previous work [7], where
variables with different declaration types are treated as the
same token.

3) Configuration: Our tool recognizes code clones with
three or more statements, which is a common threshold similar
to other previous work [18]. Our tool excludes two types of
statements including return statement and switch statement.
Return statement is less meaningful, and switch statement
can have many overlapped segments that introduce false pos-
itives [19]. In our evaluation, we observe that 59.7% of the
clones have a size of three statements, 21.1% have a size of
four statements, 5.7% have a size of five statements, and 13.5%
have a size of six or more statements.

We require string and char literals to match exactly during
the tokenization phase. The reason is that the value of string
and char literals have a high impact on the semantic meaning
of the code segment. The following shows a code segment,
where its semantic meaning is highly dependent on the value
of the string literal:

1 // if element is not "property" then skip
2 if ( !"property".equals( propElement.getTagName() )

) {
3 continue;
4 }
5 String propName = propElement.getAttribute( "name"

).trim();
6 String propValue = propElement.getAttribute( "value

" ).trim();

B. Code Clone Pruning

Code clone detection tools, in general, cannot distinguish
the difference between a meaningful match and a meaningless
match. Many tools simply report a match if two code segments
are syntactically similar. For example, the following code
segment contains many syntactically similar code clones, but
the code clones will not be useful from a semantic standpoint.

1 int i = 0;
2 int j = 0;
3 int k = 0;

In order to identify semantically similar matches, we filter
out clones that are syntactically similar, but not semantically
similar using the following basic heuristics, which had been
deployed in our previous work [7].

1) Require at least one Method Invocation: If a code clone
does not contain at least one method invocation, it means that
the code segment is performing low-level operations (e.g., sim-
ple variable declarations, switch statements, for/while/try/catch
statement headers). Hence, we discard such code segments.

2) No Repetitive Statements Allowed: Code clones, where
the matched body statements only consist of the same repeated
statement, are removed. This type of code clone is particularly
common in code that are related to declarations and numerical
computations. The following is an example of a repetitive code
segment:

1 hasmap.put("John", 0);
2 hasmap.put("Peter", 0);
3 hasmap.put("Mary", 0);

C. Comment Extraction

Once we have a list of useful code clones, we retrieve the
code comments from the AST of the database code segment.
We map the code comments to the code segments from the
target project. We preprocess all the extracted code comments
by normalizing spaces and removing newline characters. The
preprocessing helps us detect if the same code comment
already exists in the code segment of the target project. In
such cases, it means the code segment from the target project
does not require a code comment, and hence we do not extract
a duplicate code comment. Code comments can exist in one
of the following three forms.

1) Single-line Comment: Single-line comment starts with
a double slash (//). In our previous work [7], we were able to
extract full sentences easily from Stack Overflow posts, which
is not the case in this work with single-line comments. The
problem with single-line comments is that programmers often
stack multiple lines of single-line comments together to form a
single comment block. It is common for programmers to omit
the full stop symbol, and we observe that code comments are
often not written as a full sentence. The following shows an
example of the issue:

1 // obtain a list of files
2 // inside the directory
3 // remove the files afterwards



In the case where there are multiple single-line comments,
we simply merge and treat them as a single comment. We
merge them due to two reasons. First, the sentences that are
within the same block can be describing the same subject.
It will be inappropriate to remove a sentence from a block
that contains multiple sentences without understanding the
sentence’s context. Second, there is no reliable way to break
down a block into individual sentences.

A different form of single-line comment is the in-line
comment, which contains code in front of the comment. It
is only used to describe a single line of code as opposed to a
block of code, which is often less useful, and hence we discard
them.

2) JavaDoc Comment: JavaDoc comment is delimited by
/**...*/. It only appears in front of a public class, or a
public/protected method/variable.

3) Block Comment: Block comment is delimited by
/*...*/. It is similar to the JavaDoc comment except it can
appear anywhere in the source code.

D. Comment Selection

A code segment from an input project can be matched
against code segments in the database, referred to as database
clones. However, a code segment from an input project can also
be matched against code segments within its project, referred
to as local clones. Since all these matches share the same code
structure, we treat them as a single match group for analysis,
as opposed to our previous work [7] which had analyzed them
separately. The goal of comment selection is to aggregate and
leverage the information between all these code clone matches,
and generate a single comment that is applicable against all
the code clones. Having a large number of code clones within
a clone group is beneficial to this technique because more
information will be available for selecting code comments.

Text similarity is a measure to calculate the association of
a code comment against 1) all code segments from the target
projects, and 2) all code segment from the database.

Text similarity is a global metric because it compares the
comment against all the possible code clones, which allows
us to prune out project specific comments. It is a three-way
analysis between 1) the code comment, 2) the code segment
from the database, and 3) the code segment from the target
projects. The analysis differs from our previous work [7],
which only performs a two-way analysis between 1) the code
comment, and 2) the code segment from the target projects.
The key difference is that, in this work, we want to focus
on determining if the code comment contains text similarity
terms that are specific to a code segment (a context-sensitive
analysis). Our previous work only checks if there are text
similarity terms (a context-insensitive analysis).

Consider the following database code segment that reads a
text file line by line:

The database code segment contains a code comment in
line 1 that describes the matched code between line 2-8, and
the code comment assumes that the variable, textFile, in
line 2 is a text file. However, given a different code segment
that is in a different context (i.e., an audio file instead of a text

1 // read the text file
2 String textFile = "file.txt";
3 FileReader fr = new FileReader(textFile);
4 BufferedReader br = new BufferedReader(br);
5 StringBuilder sb = new StringBuilder();
6 String line = br.readLine();
7 while (line != null) {
8 sb.append(line);

file), this code comment will not be applicable. Hence, if we
can detect the term, text, is a context-sensitive term, we can
discard this code clone pair.

In some cases, text similarity terms between a comment
and a code segment can exist outside of the matched code
statements. For example, if the variable, textFile, is named
file, then there will be no way to identify that the term,
text, is important. To tackle this problem, we extend the
search to the entire method body that encapsulates the code
segment during the similarity term extraction process. Sim-
ilarity terms that exist within the matched statements are
considered to be in the local context, and terms that exist
outside the matched statements are considered to be in the
global context. However, we require there to be at least one
similarity term that exists in the local context, otherwise we
discard the match. This is because a code comment should be
directly describing the matched statements.

Similarity terms are extracted from two different types of
sources, including 1) code comments, and 2) source code.
For the source code, we extract all the simple name nodes
from the AST. A simple name is defined as an identifier
other than a keyword, boolean literal, or null literal. Each
term is then broken down based on the camel case convention
(i.e., CamelCase can be divided into two terms, Camel and
Case). The similarity score between two lists of similarity
terms is the number of overlapping terms. A higher similarity
score gives us a metric to measure the closeness of a code
comment against the matched statements.

We use the following simplified example to illustrate this
technique. First, we have a code segment from the input project
in Figure 2.

1 Pattern pattern = Pattern.compile("\\bhello\\b");
2 Matcher matcher = pattern.matcher(argument);
3 if (matcher.find()){
4 return true;
5 }

Fig. 2. A code segment from the input project that does not have a comment

The code segment is matched against another piece of code
segment from the database in Figure 3, which has a code
comment at line 1.

1 // Search for the term hello from the input string
2 Pattern pattern = Pattern.compile("\\bhello\\b");
3 Matcher matcher = pattern.matcher(inputString);
4 if (matcher.find()){
5 return true;
6 }

Fig. 3. A code segment from the database that contains a comment

The procedure for calculating the text similarity is the
following:

(i) Extract a list of terms from the following sources:
- input project code segment (#1):



pattern, compile, hello, matcher,
argument, find
- database code segment (#2):
pattern, compile, hello, matcher,
input, string, find
- database code comment (#3):
search, for, the, term, hello, from,
the, input, string

(ii) Obtain the list of shared terms between #2 and #3:
hello, input, string
This returns a list of terms that are important in the code
comment.

(iii) We require all the shared terms between (#2 and #3) to
exist in #1. Since the intersection between (#2 and #3)
and #1 is missing two text similarity terms, input and
string, we discard this code comment. However, if the
two missing text similarity terms exist in the method that
encapsulates the input project code segment, then we can
consider this as a match. The reason is that 1) all the
shared terms between (#2 and #3) exists in #1, and 2) at
least one of the terms, hello, exists in the local context.

In our design, we require at least one text similarity term to
exist in the local context. We show the frequency distribution
of the text similarity terms for both the local and global context
in Table I. It is possible to configure the matching to be
more strict by increasing the text similarity score threshold.
However, we observed that 80.6% of the sentences contain one
local text similarity term only, which means a text similarity
score of one is a good threshold. The same applies to the global
text similarity score, where we did not configure a threshold
because 93.5% of the code comments do not contain a global
text similarity term.

TABLE I. TEXT SIMILARITY SCORE DISTRIBUTION OF ALL THE
GENERATED CODE COMMENTS

Score Local Frequency Global Frequency
0 not applicable 93.5% (638)
1 80.6% (550) 4.8% (33)
2 9.4% (64) 1.3% (9)
3 4.4% (30) 0.1% (1)

≥ 4 5.6% (38) 0.1% (1)

Lastly, code comments commonly contain code artifacts
that represent the important elements within a sentence. We
require code artifacts, which exist inside a code comment,
exist inside all the matched code segments. For example, the
code comment, “Invoke arraycopy() to copy the numbers to
the new array,” contains the method name, arraycopy. If
arraycopy does not appear in the code segment, it is very
likely that the code comment is not applicable. We utilize the
following regular expressions, similar to our previous work [7],
to detect code artifacts:

• Quoted text surrounded by a single or double quote.
• Method invocations and field access.
• Camel cases including standard CamelCase, interior
camelCase, and capital CAMELCASE.

• Remove code comments that contain any of the
commonly used terms in defect prediction [20].
bug, fix, error, issue, crash,
problem, fail, defect, patch

TABLE II. 21 EVALUATED OPEN SOURCE JAVA PROJECTS
LOC - LINES OF CODE

ET - EXECUTION TIME IN MINUTES

Project LOC ET Project LOC ET
Java JDK 964,143 141 ArgoUML 195,363 26
DNSJava 63,071 3 Ant 135,407 25
ANTLR 42,078 6 Carol 11,694 4
GanttProject 54,461 4 Hibernate 528,662 46
HSQLDB 169,178 19 JabRef 96,663 18
Jajuk 68,998 15 JavaHMO 25,631 6
JBidWatcher 30,219 5 JFtp 77,195 5
JHotDraw 233,991 5 MegaMek 289,864 52
Planeta 11,125 3 SweetHome 87,547 16
Vuze 574,566 66 FreeMind 67,287 8
FreeCol 130,308 22

E. Comment Ranking

Since each code segment can have a large number of code
comment candidates, we rank our results and only present the
best code comments to the user.

We rank the code comments based on two simple heuris-
tics, including 1) the closeness of a code comment against the
code segment (text similarity score), and 2) the conciseness of
the code comment (number of words in the code comment).
The calculation of the text similarity score is shown in Sec-
tion II-D. A high text similarity score means the code comment
is closely associated against the code segment. However, since
code comments can obtain the same text similarity score, we
further rank the code comments based on the conciseness of
the code comments by counting the number of words in the
code comment.

In this paper, we display a maximum number of two code
comments for each code segment. The reason is that 95.4%
of the code clone groups have a maximum number of two
code comments. If multiple comments contain the same text
similarity score and have the same length, we display them all
to the user, even if there are more than two code comments.

III. EXPERIMENTAL METHODS

We evaluate CloCom on open-source software projects.

A. Data Source

We apply CloCom to generate comments for 21 Java
open-source projects in our evaluation. The evaluated projects
includes 6 commonly evaluated projects in code clone detec-
tion [21], i.e., Java JDK, ArgoUML, DNSJava, Ant, ANTLR,
and Carol, along with 15 projects that were previously eval-
uated for automatic comment synthesis by Sridhara et al [4].
The total number lines of code for each project calculated
using CLOC [11] is shown in Table II, along with the single-
threaded execution time on an Intel Core i5-3470 CPU with a
3GB Java heap.

Since we require a software repository for mining code
comments, we collected open source Java projects from a
repository host, GitHub, to generate the database. Our script
queries the repository hosts’ search API and fetches all the
hosted software. We only collected Java projects because our
code clone detection tool (Section II-A) is currently limited to
the Java programming language. As of November 2014, our
database contains 1,005 projects from GitHub for a total of 42
million LOC.



B. Evaluation Criteria

We performed a manual verification to evaluate the quality
of the automatically generated code comments. Our previous
work [7] evaluated the quality of each comment based on the
accuracy, adequacy, conciseness and usefulness criteria. Recent
work by Moreno et al. [5] evaluated the comments based on
the content adequacy, conciseness, and expressiveness criteria.
These approaches have a common problem. There are multiple
criteria for each code comment, which can be too fine-grained
for determining if a comment will be committed and used by
developers. For example, a code comment with a high accuracy
score and a low conciseness score does not tell us whether a
developer would consider it committable to the code repository.
Therefore, we propose the following ranking criteria.

Under the assumption that the code comment has to be
committed in the software repository, the code comment is:

• Good: The generated comment is accurate, adequate,
concise and useful at describing the source code, i.e.,
it can be committed. If there is an existing comment,
the generated comment must have a major difference in
sentence structure, or offer a similar or better quality
compared to the existing comment.

• Fix: The generated comment is not accurate, adequate,
concise, or useful, at describing the source code but can be
fixed with minor modifications, i.e., it can be committed
with a fix.

• Bad: The generated comment is not accurate, adequate,
concise, or useful at describing the source code, i.e., it
cannot be committed.

In the case where a comment is not accurate, adequate,
concise, or useful, we classify the main types of problem for
further analysis.

C. Research Questions

We would like to answer the following research questions
in our evaluation:

RQ1: What are the yield and quality of the automatically
generated code comments?

RQ2: For a comment that contains partially incorrect infor-
mation, what has to be done (i.e., types of modifications
that are needed) in order to fix the comment?

RQ3: What are the reasons for a code comment to be in-
applicable to a different code segment (despite the two
comments having the same syntax)?

RQ4: How does the quality of the existing code comments
compare to the quality of the automatically generated
code comments?

IV. RESULTS

A. RQ1

We apply our tool to 21 projects to evaluate the yield and
quality of the generated code comments. Table III shows the
detailed breakdown.

TABLE III. YIELD AND QUALITY RESULTS OF THE COMMENTS
NC - NUMBER OF GENERATED CODE COMMENTS

CG - NUMBER OF UNIQUE CODE SEGMENTS (CLONE GROUPS)
LC - AVERAGE NUMBER OF CLONES IN THE INPUT PROJECT

DC - AVERAGE NUMBER OF CLONES IN THE DATABASE
GD (GOOD) - CODE COMMENTS IN NC IS ACCURATE, ADEQUATE,

CONCISE AND USEFUL
FX (FIX) - CODE COMMENTS IN NC IS NOT ACCURATE, ADEQUATE,

CONCISE, OR USEFUL BUT CAN BE FIXED WITH MINOR MODIFICATIONS
BD (BAD) - CODE COMMENTS IN NC IS NOT ACCURATE, ADEQUATE,

CONCISE, OR USEFUL
CM - CODE SEGMENT IN LC HAS AN EXISTING CODE COMMENT

* - AVERAGE VALUE

Yield Quality
Project NC CG LC DC GD FX BD CM
Java JDK 96 84 2.1 1.8 23 5 68 51
ArgoUML 22 18 1.7 1.4 9 1 12 9
DNSJava 12 10 1.4 1.7 2 4 6 7
Ant 34 27 1.9 2.1 6 2 26 14
ANTLR 11 8 1.1 1 2 2 7 11
Carol 3 3 1 1 0 0 3 1
GanttProject 4 2 1 9 0 0 4 4
Hibernate 12 9 1.4 3.1 3 2 7 4
HSQLDB 35 27 1.5 1.9 8 3 24 15
JabRef 20 18 1.2 2.6 8 0 12 3
Jajuk 8 5 1.8 4.6 3 0 5 7
JavaHMO 5 3 3 7 0 1 4 3
JBidWatcher 16 11 1 3.4 1 1 14 7
JFtp 2 2 4 1 0 0 2 0
JHotDraw 7 6 1 1.2 6 0 1 7
MegaMek 13 8 2.5 3.9 1 0 12 0
Planeta 1 1 1 1 0 0 1 1
SweetHome 15 9 2.1 3.7 4 0 11 4
Vuze 19 15 2.3 2.3 1 0 18 6
FreeMind 9 6 1 1 3 0 6 6
FreeCol 15 9 1.2 3.4 5 0 10 1
ALL 359 281 1.8* 2.3* 85 21 253 161

1) Yield of the generated code comments: We generated a
total number of 359 comments for 281 unique code segments.
We show the number of generated code comments (NC)
per project. In average, our tool generated an average of 17
comments for each project. The yield is still low considering
that the 21 evaluated projects contain over 3.8 million LOC.

Since a unique code segment can exist in multiple locations
within a single project, we only count it once and refer this
as a clone group (CG). Each clone group consists of code
segments from the following sources, including 1) the input
project, and 2) the database. We show the average number
of code clones within each clone group that comes from the
input project, referred to as local clones (LC), and the software
repositories, referred to as database clones (DC). In the case
where the input project code clone already contains an existing
code comment (CM), we compare the existing code comment
against the automatically generated code comment in RQ4.

Each clone group contains an average of 1.8 local clones
and 2.3 database clones. Do note that NC represents the total
number of unique code comments for each clone group (CG).
For example, if we generated a single code comment for a CG
that contains two LC, we only count NC as one instead of two.
We show the distribution of the clone group size in Table IV. A
large LC or DC size is advantageous to our technique because
it helps improve the accuracy of the text similarity and code
artifact pruning. Based on the data, we see that 58.4% of the
clone groups contain a size of two. In the future, we can
increase the clone group size by expanding the database with
more projects, or leverage more advanced code clone detection
techniques.



TABLE IV. FREQUENCY DISTRIBUTION OF THE NUMBER OF CODE
CLONES PER CLONE GROUP (CG)

Size Frequency
2 58.4% (5596)
3 15.0% (1432)
4 6.4% (610)
5 4.4% (426)

≥ 6 15.8% (1513)

2) Quality of the generated code comments: We perform
a manual evaluation on all the generated code comments for
each project, and show the classification results in Table III.
There are a total number of 359 generated comments in
total. Amongst them, we observe that 85 (23.7%) of the code
comments are good, 21 (5.8%) require modifications, and 253
(70.5%) are bad. It is interesting to observe that only a minor
number of code comments require a fix to become applicable.
We further analyze the cause for incorrect code comments in
RQ2 and RQ3.

CloCom generated code comments with a low yield and
accuracy. It only generated 359 code comments for the 21
evaluated projects, and only 23.7% of all the generated code
comments can be directly applied to the code segments. We
report to the developers the good code comments, whose code
segments do not have an existing code comment. Amongst the
reported code comments, seven have been confirmed by the
developers as good and committable to the software repository
while the rest await for developers’ confirmation. The commit
rate of the code comments are available on our website (see
Section Availability).

B. RQ2

RQ1 showed that 5.8% of the code comments require minor
modifications prior from being applicable against a different
code segment. We classified the major types of modifications
that are required in Table V.

TABLE V. THE MAJOR TYPES OF MODIFICATIONS THAT HAVE TO BE
APPLIED TO THE FIXABLE CODE COMMENTS

Class Cov. Explanation
1 80.9%

(17)
The subject is wrong. For example, “Append the path”, has
the subject, “path”, which is incorrect because the code can
be appending a “string”.

2 14.3%
(3)

The modifier of a head noun is incorrect. For example, “text
file” has a modifier “text” and a head noun “file”, which is
incorrect because the code can be dealing with a “music
file”.

3 4.8%
(1)

The comment contains multiple clauses, one of which needs
to be removed to be a valid comment for the code segment.
For example, “Give the concurrent thread time so it will try
to acquire locks” contains a clause, “so it will try to acquire
locks”. However, the code is not trying to acquire locks,
which renders the entire sentence to be incorrect.

Result shows that the majority of the problems come from
comments that contain context-sensitive information (class 1
and class 2). For example, a piece of code segment that is
responsible for reading a file can be reading different types
of file (e.g., text file, music file). Such case requires advanced
natural language analysis techniques to detect important terms
within a sentence.

Another source of the problem is that generated code
comments might contain multiple clauses (class 3), where
one of them may contain irrelevant information. For example,
“Retrieve the files and close the connection” contains two

clauses connected by “and”. One would have to detect and
separate the analysis of the two clauses in order to be able
to eliminate the second clause. However, it is very rare for
this type of code comment to appear. A possible extension of
the code comment analysis to a more fine-grained model (per
clause analysis) will be beneficial.

In summary, majority of the fixable code comments are
due to incorrect context, where the action (verb) is correct but
the subject (noun) is incorrect. It may be possible to leverage
natural language processing techniques to analyze the verb
phrases and noun phrases in the sentence. However, since code
comments are not necessarily written in full sentences, and
that there are many technical terms in the source code, it may
be challenging to obtain the parse tree of the sentence. We
believe that the usage of a statistical parser, coupled with a
list of common technical phrases in software engineering, can
help obtain a correct parse tree of the sentence.

C. RQ3

RQ1 showed that 70.5% of the code comments are bad
comments. We classified the major types of reasons that make
a code comment not applicable in Table VI.

TABLE VI. THE MAJOR TYPES OF REASONS FOR AN INAPPLICABLE
CODE COMMENT

Class Cov. Explanation
1 2.0%

(5)
Code comment contains invalid information.

2 77.5%
(196)

Code comment is not useful or too trivial.

3 20.5%
(52)

The target project code segment already has a similar
comment (minor differences in grammar and spelling).

Result show that the most common reason for an invalid
code comment is due to not useful or trivial comments (class
2). These comments are not incorrect. For example, “create
a factory class,” “close previous connection,” are trivial code
comments that are correct, but not necessarily useful for a
programmer. In order to filter such trivial comments, we have
to apply techniques to analyze for code comments that are a
simple rephrase of the code element. This is very interesting
because the trivial code comment exists, which means some
developers had considered the code comments to be useful.
Since this is a subjective matter, we recommend readers to
check out the evaluation details on our website.

The second most common reason for an invalid code
comment is that there exists a similar code comment in the
input project’s source code (class 3). Although our tool already
detects and filters away code comments that are similar, we
notice that a lot of code comments contain grammatical,
spelling, or one to two word modifications to the sentence.
Hence, we were not able to filter them out automatically.

Another reason for an invalid code comment is that the
code comment contains invalid information. However, the
number of code comments that contain invalid information is
very low, which suggests that 1) code comments from software
repositories have a good quality, and 2) our text similarity
technique is successful at selecting valid code comments.

The majority of code comments that are incorrect contain
information that is trivial or not useful. This is interesting be-
cause even though some developers wrote the code comments,



it does not necessarily mean the code comments are useful.
They may be pressured to write comments for the purpose of
writing comments. In order to detect invalid information in
code comments, we may be able to leverage natural language
processing techniques such as the dependency parser to extract
grammar relationships of the words in a sentence.

D. RQ4

One question is whether the code segment from the input
project contains an existing code comment. In our design,
if the code segment from the input project contains a code
comment that is identical to the generated code comment,
we automatically discard the code comment (Section II-C).
Among the remaining code segments from the input project,
44.8% (161/359 from Table III) of them contain an existing
code comment that is different from the generated comments.
We compare the automatically generated comments against the
existing code comments (CM in Table III) in Table VII.

TABLE VII. AUTOMATICALLY GENERATED CODE COMMENTS VS.
EXISTING CODE COMMENTS

BETTER - GENERATED COMMENT IS BETTER IN QUALITY
SIMILAR - THE TWO COMMENTS ARE SIMILAR IN QUALITY

WORSE - GENERATED COMMENT IS WORSE IN QUALITY

Classification Better Similar Worse
Good 2.5% (4) 16.8% (27) 9.9% (16)
Fix 0% (0) 0% (0) 9.3% (15)
Bad 0% (0) 32.9% (53) 28.6% (46)

Our results show that existing code comments are superior
to automatically generated code comments, For the automat-
ically generated code comments that are good, only 2.5% of
them are better than the existing code comments, but 16.8%
of them are similar compared to the existing code comment.
However, our result from RQ1 shows that 55.2% (1 - 44.8%)
of the code segments contain no existing code comment that
is different from the generated comment. This means although
automatically generated code comments are generally not as
good as existing code comments; it may still be beneficial to
generate a code comment for the code segments that do not
have an existing code comment.

E. Reporting Comments to Developers

We had reported to the developers all code comments that
are rated as good, provided the code comments’ corresponding
code segments do not have an existing comment, which
consists of 37 out of the 85 of the good comments. Developers
were asked to rate the comments using the same evaluation
criteria in Section III, which is based on whether a code
comment can be committed. As of December 2014, two of
the projects’ developer replied and gave a rating of GOOD to
all seven comments that they were asked to evaluate. Figure 4
shows an example of one of the reported comments (line 6),
which the developer had rated it as good for commit:

V. LIMITATIONS AND FUTURE WORK

Most of the matched code segments contain only 3–5 lines
of statements (largest contains 39 lines of statements), and the
code segments may contain simple code that does not require
a code comment.

1 try {
2 if (new File(jarEntryURL.toURI()).canWrite()) {
3 connection.setUseCaches(false);
4 }
5 } catch (URISyntaxException ex) {
6 // Wrap the exception and re-throw
7 IOException ex2 = new IOException();
8 ex2.initCause(ex);
9 throw ex2;

10 }

Fig. 4. The developer had rated the code comment on line 6 as committable.

There are two possible explanations to the yield and quality
issue. First, this can be a limitation of our code clone detection
tool, which only detects Type-1 and Type-2 clones. Type-3
clones refer to clones that contain changed, added, or removed
statements, which we did not consider in this work. The
reason is that Type-3 clones have a higher chance of being
not applicable against a cross-project code comment. One can
try to leverage these advanced code clone detection techniques
and tools to help detect more sophisticated types of clones.

Second, our technique is not eliminating simple code seg-
ments effectively. Our code clone detection technique accepts a
code segment if it contains three or more statements. However,
it is clear that in some cases, not all three of the statements
are truly useful code. For example, the following code segment
currently counts as three statements. One possible method to
fix this is to not consider or count the “try” token on line 1 as
a valid statement from the AST node.

1 try {
2 Thread.sleep(100);
3 } catch (InterruptedException inte) {

VI. THREATS TO VALIDITY

In our evaluation, a main threat to validity is that we
evaluated the generated code comments manually, and our
evaluation criteria is different compared from those of the
previous work [5], [7]. We tried our best to be objective
in our evaluation, made the results publicly available, and
reported the generated code comments to the developers. Our
evaluation criteria is based on whether a code comment could
be committed in the software repository, which we rank them
using the good, fix, and bad criteria (Section III). These criteria
are different compared to the previous work [5], [7], which rate
comments based on the accuracy, adequacy, conciseness, and
usefulness criteria. The reason for this change is that we do
not believe that it is beneficial to break down the evaluation
into multiple criteria. For example, a code comment that has a
high accuracy score and a low conciseness score does not tell
us the applicability of a code comment.

VII. RELATED WORK

A. Automatic Comment Generation

There is much work that focuses on automatic comment
generation for specific code structures. Our previous work [7]
took a unique approach towards automatic comment gen-
eration, which mines human written code comments from
Q&A sites. Recent work from Sridhara et al. automatically
synthesize natural language sentences for specific types of
code segments directly, including Java methods [3], groups of



statements [4], Java classes [5], and parameter comments [6].
Others focus on generating documents for exception [22],
failed test cases [23], and code changes [24]. A few previous
work focus on mining descriptions or documentation from
developer communications, such as bug reports, forum posts
and emails [25], [26], [27].

B. Code Clone Detection

In the area of code clone detection, there are token-
based [19], [28], AST-based [14], [29], and semantics-based
techniques [30]. Previous work [12], [31] performed compar-
isons between the existing code clone detection techniques.
Roy et al. [12] performed a comprehensive comparison be-
tween a large number of code clone detection tools based on
their attributes, and their capability at handling Type-1, Type-
2, Type-3, and Type-4 clones. Svajlenko et al. [31] developed
a framework for making code clone detection tools scalable
by partitioning the dataset, and based their analysis on tradi-
tion tools including Deckard [14], NiCad [15], iClones [32],
Simian [33], SimCad [34], and CCFinderX [28].

Our code clone detection implementation is similar to
DuDe [13], which is a text-based tool. DuDe relies on
combining non-gapped clones into a single large clone to
support Type-3 clones. There are two main differences between
CloCom and DuDe. First, DuDe applies regular expressions to
perform tokenization of the source code, whereas we utilized
an Eclipse ASTParser [16] for accurate tokenization. Second,
Dude is capable of handling Type-3 clones, whereas we do not
support it to ensure the high scalability of the tool.

VIII. CONCLUSION

We proposed a new general approach to mine software
repositories for automatic comment generation. Our tool gen-
erated 359 code comments for 281 unique code segments on
the 21 evaluated software projects. Amongst all the generated
code comments, 23.7% of the code comments can be directly
committed into the software repository as a good comment.
However, the yield and accuracy are still considered to be rel-
atively low, which suggests the approach needs to be improved
before it can be used in practice with full automation.

Compared to our previous work [7], our technique is
capable of generating more code comments (181 in CloCom
vs. 102 in AutoComment) on the same 15 projects [4]. We
proposed a new context-sensitive text similarity technique to
tackle the issue with code comments that contain information
specific to the code segment, which is a challenge that did not
exist in our previous work.

In our evaluation, we proposed a simplified metric to rank
the evaluated code comments based on the assumption that the
code segment has to be committed in the software repository.
We answered four research questions, including 1) the yield
and quality of the generated code comments, 2) the reasons
for a code comment to be fixable for commit, 3) the reasons
for a code comment to be unsuitable for commit, and 4) a
comparison of existing code comments against automatically
generated code comments.

There are three observations in the results. First, the
majority of the partially incorrect code segments are due

to incorrect context, where the subject of the sentence is
incorrect. Second, the majority of the code comments that we
classify as not committable are because the code comments
are not useful or too trivial. Developers often modify and re-
use code comments, where the only differences are due to
grammatical, spelling, or one to two word modifications to
the sentence. Third, automatically generated code comments
are poor replacements for existing code comments.

Our observations from the research questions pointed out
several key areas that can be improved. We do admit our
evaluation is subjective. We tried to mitigate this problem
by being as objective as possible during the evaluation, and
released all the evaluation data on our website.

AVAILABILITY

The source code and evaluation results of CloCom
are publicly available on our project website,
http://asset.uwaterloo.ca/clocom/. It contains the output
of CloCom on each project, and the classification detail of all
the generated code comments.

ACKNOWLEDGMENT

This research is supported by the Natural Sciences and
Engineering Research Council of Canada.

REFERENCES

[1] K. Aggarwal, Y. Singh, and J. Chhabra, “An Integrated Measure of
Software Maintainability,” in Reliability and Maintainability Sympo-
sium, 2002, pp. 235–241.

[2] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A Study of
the Documentation Essential to Software Maintenance,” in International
Conference on Design of Communication: documenting & designing for
pervasive information, 2005, pp. 68–75.

[3] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards Automatically Generating Summary Comments for Java
Methods,” in Automated Software Engineering, 2010, pp. 43–52.

[4] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically Detect-
ing and Describing High Level Actions within Methods,” in Interna-
tional Conference on Software Engineering, 2011, pp. 101–110.

[5] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic Generation of Natural Language Summaries for
Java Classes,” in International Conference on Program Comprehension,
2013, pp. 23–32.

[6] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Generating Parameter
Comments and Integrating with Method Summaries,” in International
Conference on Program Comprehension, 2011, pp. 71–80.

[7] E. Wong, J. Yang, and L. Tan, “AutoComment: Mining question and
answer sites for automatic comment generation,” in Automated Software
Engineering, 2013, pp. 562–567.

[8] Stack overflow. [Online]. Available: http://stackoverflow.com/
[9] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang, “Mining

succinct and high-coverage api usage patterns from source code,” in
Working Conference on Mining Software Repositories, 2013, pp. 319–
328.

[10] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “MAPO: Mining
and Recommending API Usage Patterns,” in European Conference on
Object-Oriented Programming, 2009, pp. 318–343.

[11] Count lines of code. [Online]. Available: http://cloc.sourceforge.net/
[12] C. Roy, J. Cordy, and R. Koschke, “Comparison and Evaluation of

Code Clone Detection Techniques and Tools: A Qualitative Approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.



[13] R. Wettel and R. Marinescu, “Archeology of Code Duplication: Re-
covering Duplication Chains from Small Duplication Fragments,” in
International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, 2005.

[14] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scalable
and Accurate Tree-Based Detection of Code Clones,” in International
Conference on Software Engineering, 2007, pp. 96–105.

[15] C. Roy and J. Cordy, “NICAD: Accurate Detection of Near-Miss Inten-
tional Clones Using Flexible Pretty-Printing and Code Normalization,”
in International Conference on Program Comprehension, 2008, pp.
172–181.

[16] Eclipse java development tools. [Online]. Available: https://eclipse.org/
jdt/

[17] The software and text similarity tester sim. [Online]. Available:
http://dickgrune.com/Programs/similarity tester/

[18] Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, and T. Xie, “XIAO: Tuning
Code Clones at Hands of Engineers in Practice,” in Annual Computer
Security Applications Conference, 2012, pp. 369–378.

[19] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A Tool for Finding
Copy-paste and Related Bugs in Operating System Code,” in Symposium
on Opearting Systems Design & Implementation - Volume 6, 2004, pp.
20–20.

[20] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards Building a
Universal Defect Prediction Model,” in Working Conference on Mining
Software Repositories, 2014, pp. 182–191.

[21] C. Roy and J. Cordy, “A Survey on Software Clone Detection Re-
search,” Queen’s University School of Computing TR, vol. 115, 2007.

[22] R. P. Buse and W. R. Weimer, “Automatic Documentation Inference
for Exceptions,” in International Symposium on Software Testing and
Analysis, 2008, pp. 273–282.

[23] S. Zhang, C. Zhang, and M. Ernst, “Automated Documentation Infer-
ence to Explain Failed Tests,” in International Conference on Automated
Software Engineering, 2011, pp. 63–72.

[24] R. P. Buse and W. R. Weimer, “Automatically Documenting Program

Changes,” in International Conference on Automated Software Engi-
neering, 2010, pp. 33–42.

[25] S. Panichella, J. Aponte, M. D. Penta, A. Marcus, and G. Canfora,
“Mining Source Code Descriptions from Developer Communications,”
in International Conference on Program Comprehension, 2012, pp. 63–
72.

[26] B. Dagenais and M. Robillard, “Recovering Traceability Links Between
an API and Its Learning Resources,” in International Conference on
Software Engineering, 2012, pp. 47–57.

[27] J. Kim, S. Lee, S. Hwang, and S. Kim, “Enriching Documents with
Examples: A Corpus Mining Approach,” ACM Transactions on Infor-
mation Systems, vol. 31, no. 1, pp. 1:1–1:27, 2013.

[28] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Transactions on Software Engineering, vol. 28, no. 7, pp. 654–
670, 2002.

[29] V. Wahler, D. Seipel, J. Wolff, and G. Fischer, “Clone detection in
source code by frequent itemset techniques,” in International Workshop
on Source Code Analysis and Manipulation, 2004, pp. 128–135.

[30] R. Komondoor and S. Horwitz, “Using Slicing to Identify Duplication
in Source Code,” in International Symposium on Static Analysis, 2001,
pp. 40–56.

[31] J. Svajlenko, I. Keivanloo, and C. Roy, “Scaling classical clone detection
tools for ultra-large datasets: An exploratory study,” in International
Workshop on Software Clones, 2013, pp. 16–22.

[32] N. Göde and R. Koschke, “Incremental Clone Detection,” in European
Conference on Software Maintenance and Reengineering, 2009, pp.
219–228.

[33] Simian - similarity analyser. [Online]. Available: http://www.
harukizaemon.com/simian/

[34] M. Uddin, C. Roy, K. Schneider, and A. Hindle, “On the Effectiveness
of Simhash for Detecting Near-Miss Clones in Large Scale Software
Systems,” in Working Conference on Reverse Engineering, 2011, pp.
13–22.


