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Abstract—Automated program repair (APR) aims to help
developers improve software reliability by generating patches for
buggy programs. Although many code language models (CLM)
are developed and effective in many software tasks such as code
completion, there has been little comprehensive, in-depth work
to evaluate CLMs’ fixing capabilities and to fine-tune CLMs for
the APR task.

Firstly, this work is the first to evaluate ten CLMs on four
APR benchmarks, which shows that surprisingly, the best CLM,
as is, fixes 72% more bugs than the state-of-the-art deep-learning
(DL)-based APR techniques. Secondly, one of the four APR
benchmarks was created by us in this paper to avoid data
leaking for a fair evaluation. Thirdly, it is the first work to
fine-tune CLMs with APR training data, which shows that fine-
tuning brings 31%–1,267% improvement to CLMs and enables
them to fix 46%–164% more bugs than existing DL-based APR
techniques. Fourthly, this work studies the impact of buggy lines,
showing that CLMs, as is, cannot make good use of the buggy
lines to fix bugs, yet fine-tuned CLMs could potentially over-rely
on buggy lines. Lastly, this work analyzes the size, time, and
memory efficiency of different CLMs.

This work shows promising directions for the APR domain,
such as fine-tuning CLMs with APR-specific designs, and also
raises awareness of fair and comprehensive evaluations of CLMs
and calls for more transparent reporting of open-source reposi-
tories used in the pre-training data to address the data leaking
problem.

Index Terms—Automated Program Repair, Code Language
Model, Fine-Tuning, Deep Learning

I. INTRODUCTION

Automated program repair (APR) [1]–[3] helps developers im-

prove software reliability by generating patches automatically

to repair software defects. Many deep learning (DL)-based

APR techniques [4]–[13] adapt DL models to take a buggy

software program as input and generate a patched program.

A typical DL-based APR technique builds a neural network

model from a training set, which are pairs of buggy code and
the corresponding fixed code. Then these models are evaluated

on a test set, which are also pairs of the buggy and fixed code
that is disjoint from the training set. With the strong learn-

ing capability of DL models, these techniques learn diverse

patterns of transforming buggy programs to patched programs

from large code corpora, and many [7], [9], [10] outperform

traditional template-based [14], [15], heuristic-based [16]–[18]

and constraint-based [19]–[21] APR techniques.

Although DL-based APR techniques are one of the most

effective, these tools fail to fix a large portion of bugs.

In addition, existing DL-based APR tools typically have to

generate hundreds to thousands of candidate patches and take

hours to validate these patches to fix enough bugs [6], [7],

[9], [10]. Recent work shows that 93% of developers are only

willing to review up to ten patches and 63% of developers

expect APR tools to respond within one hour [22]. Thus, there

is a gap for DL-based APR research to be used in practice [22].

In addition to DL-based APR models, code language models
(CLMs) [23], [24] have shown their promises for fixing bugs,

given the demonstrated effectiveness of language models [25]–

[34] in natural language domains. Different from DL-based

APR models that use an APR-specific design and are trained

with labeled APR training sets (typically pairs of buggy and

fixed code), CLMs are trained with huge-sized unlabeled code
corpora (e.g., programs) for general code language modeling

tasks, e.g., next token prediction [35], [36].

Despite the success of CLMs in many domains [23], [24],

[35], [37], [38], there has been little comprehensive, in-depth
work analyzing and comparing CLMs’ fixing capabilities

in the APR domain with those of existing DL-based APR

techniques that are specially designed to fix bugs. Thus, it

is an interesting and important research question to ask: do
code language models bring improvement to automated
program repair and how?

A. Evaluation of CLMs on APR Benchmarks

Existing techniques [23], [24], [37], [38] evaluate CLMs’

fixing capabilities mostly on the benchmark provided by

CodeXGLUE [39], which is abstracted code (e.g., VAR1 <

VAR2.length()) instead of real-world code (e.g., charno <

sourceExcerpt.length()). But understanding and gener-

ating concrete variable and function names is a mandatory and

challenging step to fix bugs [6], [7], [9], [10]. In addition, they

report BLEU scores (which measure the similarity between

generated patched code and the developer patch) instead of

validating the correctness of the generated patches. They

cannot do so, because CodeXGLUE [39] also contains no full

project context or test cases. But many patches with a good

BLEU score are incorrect patches. Thus, we need to use an

APR benchmark with realistic, real-world bugs and test cases

to evaluate the true effectiveness of CLMs in fixing bugs.
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While we can and will use real-world APR bench-

marks such as Defects4J v1.2 [40], Defects4J v2.0 [40],

and QuixBugs [41], to evaluate the fixing capabilities of

CLMs [42], there is a challenge that the training data of these

CLMs may contain the bugs or fixes in these APR benchmarks,

since these CLMs use public repositories such as all GitHub

repositories by a certain date [23], [24], [35], [37], [38]. While

data leaking is a threat to all CLM-related papers, not just this

paper, this threat is less of a concern for APR compared to

other domains [43], [44], since CLMs do not see the pairs

of buggy code and their fixed code during training, and their

training data often contains at most the buggy code or the fixed

code, but not both. We address this data-leaking challenge by

manually creating a new evaluation benchmark HumanEval-
Java that has not been seen by any of the evaluated CLMs
during training.

In this work, we evaluate ten code language models of

four types (PLBART [23], CodeT5 [24], CodeGen [35], and

InCoder [45]) on four benchmarks (Defects4J v1.2 [40], De-

fects4J v2.0 [40], QuixBugs [41] and HumanEval-Java). We

run developer-written test cases to validate the correctness of

generated patches to evaluate and compare the ten CLMs.

B. Fine-tuning CLMs for the APR Task

CLMs are often trained for general tasks (e.g., next token

prediction) on a large corpus. This training is referred to as

pre-training. Fine-tuning is a common technique to train a
pre-trained CLM with data from a downstream task, e.g., code

summarization or code translation, when one wants to apply a

general pre-trained CLM to a specific downstream task [23],

[24], [35], [37], [38]. Fine-tuning is typically very effective to

tailor a general pre-trained CLM for a downstream task [25],

[30]–[32], [46]. Yet, none of the CLMs have been fine-tuned

for the APR task with real-world, non-abstracted APR training

data.

To study how fine-tuning may enhance or hurt CLMs on

APR, we fine-tune ten CLMs with APR training data used

by DL-based APR techniques. We also study the impact of

the size of the fine-tuning data. Typically the more training

data, the more effective the resulting models are up to a

certain point, when one trains a DL model from scratch [26],

[27], [46], [47]. And DL-based APR tools also fix more bugs

when they are trained with more data [10]. We will study if

fine-tuning with more data improves the fixing capabilities of

CLMs for APR [47], [48].

C. Fixing Capability versus Cost

As the size (i.e., number of parameters) of CLMs grows

exponentially in recent years [34], the cost of applying such

large models (e.g., time and memory cost) also grows dra-

matically. Although larger CLMs may fix more bugs, the

trade-off between fixing capability and cost of applying such

large models is important. Thus, we study as the model sizes

change, how the fixing capabilities change (size efficiency),

how the average time required to generate patches changes

(time efficiency), and how the memory footprint changes

(memory efficiency) of the ten different-sized CLMs.

D. Contributions

To sum up, this paper makes the following contributions:

(1) A new APR benchmark, HumanEval-Java, that no existing

CLMs have seen during pre-training, to ensure the fairness of

evaluation.

(2) A study of ten CLMs (of four architectures, i.e., PLBART,

CodeT5, CodeGen, and InCoder) and four state-of-the-art DL-

based APR techniques (i.e., CURE, RewardRepair, Recoder,

and KNOD) on four APR benchmarks (i.e., Defects4J v1.2,

Defects4J v2.0, QuixBugs and our new HumanEval-Java):

• Finding 1: CLMs, even without fine-tuning, have com-
petitive fixing capabilities. To our surprise, the best CLM,

as is, fixes 72% more bugs than the state-of-the-art DL-

based APR techniques.

• Finding 2: While buggy lines (code lines that need to be
modified) are useful to guide fixing, CLMs fail to make

good use of them and fix fewer bugs when the buggy

lines are explicitly given.

(3) The first fine-tuning experiment of ten CLMs with APR

training data, and a study of fine-tuning’s impact (and its

training data size) on CLMs for APR:

• Finding 3: Fine-tuning improves CLMs’ fixing capabil-
ities by 31%–1,267%, and fine-tuned CLMs outperform

DL-based APR techniques significantly, by 46%–164%.

• Finding 4: Although fine-tuning helps, it sometimes
makes CLMs over-rely on the buggy lines, and thus fail

to fix some bugs that can be fixed without fine-tuning.

• Finding 5: CodeT5 and CodeGen models achieve the best
fixing capabilities after being fine-tuned with 10,000 APR

training instances, and fine-tuning with more APR data

makes them fix fewer (reduced by 8%–19%). InCoder

model fixes the most bugs after being fine-tuned with

50,000 training instances, and more fine-tuning data also

makes it fix fewer (reduced by 9%).

(4) A study of the size, time and memory efficiency of CLMs

(i.e., PLBART, CodeT5, CodeGen and InCoder).

• Finding 6: CodeT5 and InCoder models have the best
size efficiency, suggesting developing larger CodeT5 or

InCoder models is the most promising. Besides, CodeT5,

PLBART, and InCoder models are better choices given

limited resources, as they have better time and memory

efficiency than CodeGen models.

(5) Implications for future work (Section VII).

II. CODE LANGUAGE MODELS

A. CLM Architectures

Code language models can be categorized into three groups:

encoder-only models, decoder-only models, and encoder-
decoder models. Regardless of groups, most existing code
language models are built with a Transformer [49] architecture
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as it has the best learning capability and the greatest scalabil-

ity [25]–[27], [30]–[32], [46], [49].
Encoder-only models include CodeBERT [37] and Graph-

CodeBERT [38], which only have a bidirectional transformer

encoder [49] with attention mechanism [49] to learn vectorized

embedding of the input code sequence. As they only have

encoders, these models are most suitable for downstream tasks

that require no generation, such as code representation (i.e.,

embedding the input code) and code clone detection [37].
Decoder-only models include CodeGen [35], InCoder [45],

and Codex [36], which only have an autoregressive trans-

former decoder [49] to learn to generate code sequences.

Different from encoder-only models that calculate embedding

for input code, decoder-only models are most suitable for

downstream tasks such as open-ending code generation [36],

i.e., generating code based on input prompts, where a prompt

could be natural language text describing the functionality,

the signature of a function, or the first few lines of code in a

function.
Finally, encoder-decoder models include PLBART [23]

and CodeT5 [24], which have both a bidirectional trans-

former encoder and an autoregressive transformer decode.

The encoder is trained to calculate the embedding of input

code and the decoder is trained to generate code. Thus,

encoder-decoder models are more flexible to suit both non-

generation (e.g., code classification) [23] and generation (e.g.,

code summarization) [24] downstream tasks.

Input: int add ( int x , y) { return x ; } 
Output: int add ( int x , int y ) { return x + y ; }

Input: int <MASK0> ( int <MASK1> , int <MASK2> ) { return <MASK1> + <MASK2> ; } 
Output: <MASK0> add <MASK1> x <MASK2> y

Input: int add ( int x , <MASK0> y ) { return <MASK1> ; } 
Output: <MASK0> int <MASK1> x + y

      (2) Masked Span Prediction

      (3) Masked Identifier Prediction

      (4) Deleted Span Prediction

Input: int add ( int x , int y ) { return x + y ; } 
Output: 0  1  0  0  1 0  0  1 0 0   0  1 0 1 0 0

      (5) Identifier Tagging

Input: int add ( int x , int y ) { return x + y ; } 
Output: add two integers. 
Input: add two integers. 
Output: int add ( int x , int y ) { return x + y ; }

      (6) Biomodel Dual Generation

Input: int add ( int x , int y ) { return 
Output: int add ( int x , int y ) { return x 
Input: int add ( int x , int y ) { return x 
Output: int add ( int x , int y ) { return x +

      (1) Next Token Prediction

Fig. 1: Common pre-training tasks with examples that are used

by existing CLMs.

B. Common Pre-training Tasks
An important design difference among code language models

is the tasks used in pre-training. Figure 1 shows several

common pre-training tasks used by existing code language

models.

(1) Next Token Prediction is the task that given a piece

of incomplete code, the language model is trained to predict

the following token, e.g., given int add(int x, int y){
return, the next token should be x. This process, if done iter-

atively, trains language models to generate complete programs

from the beginning to the end.

(2) Masked Span Prediction is the task of training a language
model to predict the masked code snippet in the input code.

Figure 1 shows a simple Java function that returns the sum of

two integers, where some parts of the function are masked by

placeholders <MASK0> and <MASK1>. The language model is

trained to predict that <MASK0> should be int and <MASK1>

should be x + y.

(2) Masked Identifier Prediction is the task of predicting

identifier names in the given code. For example, all three iden-

tifiers (add, x, and y) are masked by placeholders (<MASK0>,

<MASK1>, and <MASK2>), and a code language model is

trained to predict their correct name.

(3) Deleted Span Prediction is the task that given code

with some parts deleted (e.g., int and + y are deleted), the

language model is trained to generate the completed code.

(4) Identifier Tagging is the task of predicting whether each
token in the code is an identifier or not. For example, add is

an identifier while int is not. Thus the predicted label of add

is 1 and that of int is 0.

(5) Biomodel Dual Generation is the task of training a lan-
guage model that transforms code between different languages,

e.g., from a natural language description to Java code, from

Java code to natural language text, or from Java code to Python

code, etc.

III. EXPERIMENTAL DESIGN

Figure 2 shows the overview of our experimental design. We

apply ten CLMs and three state-of-the-art DL-based APR

techniques on four bug benchmarks—three widely-used and

one new benchmark that we designed to address the data-

leaking challenge—to generate patches. We study and compare

the fixing capabilities of the CLMs and the DL-based APR

techniques (RQ1). Then we fine-tune these CLMs with APR

training datasets of different sizes, and study the patches

generated by fine-tuned CLMs to show the impact of training

data size on fine-tuning (RQ2). Finally, by comparing patches

generated by differently sized code language models, we study

the size, time, and memory efficiency of different CLMs

(RQ3).

We focus on Java single-hunk bugs, as the best DL-based

APR techniques are all specially designed for Java single-hunk

bugs (i.e., the buggy code is continuous lines of code) [7], [9],

[10]. This enables us to explore how CLMs are different from

DL-based APR techniques in fixing the same types of bugs.

A. Three Existing Bug Benchmarks

We select real-world bug benchmarks widely used in the APR

domain, including Defects4J v1.2 [40], Defects4J v2.0 [40],
and QuixBugs [41]. Defects4J v1.2 is the most widely used
version of the Defects4J benchmark that contains 393 bugs,

among which 130 are single-hunk bugs. Defects4J v2.0 is

the latest version of the Defects4J benchmark that contains

444 additional bugs, among which 108 are single-hunk bugs.

Both Defects4J v1.2 and Defects4J v2.0 are collected from

famous Java projects such as “Google Closure compiler”
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Code Language Models 

Fine-tuned Code Language
Models 

DL-based APR Techniques 

Bug Benchmarks

Fine-Tuning

Patch Generation

Patch Generation

RQ1: 
Fixing Capabilities 
(Comparison with
APR Techniques) 

Patched
Programs

RQ2: 
Impact of  

Fine-tuning

Patch Generation

Patched
Programs

Patched
Programs

RQ3: 
Size, Time and

Memory Efficiency 

Fig. 2: Overview of experimental design.

and “Apache commons-math”. QuixBugs is a benchmark that

contains 40 bugs regarding famous algorithms like “quick sort”

and “merge sort”.

B. New HumanEval-Java Benchmark to Avoid Data Leaking

Defects4J v1.2, Defects4J v2.0, and QuixBugs are widely used

by DL-based APR techniques. However, applying CLMs only

on them might be problematic, as CLMs may have seen these

benchmarks in their pre-training data. By checking Code-

SearchNet [50] and BigQuery1, which are the data sources

of common CLMs, we find that four repositories used by

the Defects4J benchmark are also in CodeSearchNet, and the

whole Defects4J repository is included by BigQuery. Thus, it

is very likely that existing APR benchmarks are seen by CLMs

during pre-training.

To overcome this threat, we create a new bug benchmark

from HumanEval [36], named HumanEval-Java. HumanEval
is a dataset manually created to address the threat that CLMs

may have seen test datasets available online. Yet, it is created

for evaluating code generation task [36] and is written in

Python. We manually convert the Python programs in Hu-

manEval and their test cases into Java programs and Junit

test cases, and then inject bugs in the correct Java programs

to create an APR benchmark. HumanEval-Java contains 164

(single-hunk) Java bugs, varying from simple bugs like in-

correct operator usage to complex logical bugs that require

modification of several lines of code to fix. Since HumanEval-

Java is converted from HumanEval and the bugs are manually

injected, none of the CLMs would have seen it before. Thus,

it is the fairest benchmark to compare CLMs with DL-based

APR tools.

C. Studied Code Language Models

Table I lists the ten CLMs evaluated in this paper. We select

CLMs to study based on the following requirements: (1) the

language model is trained on a large enough code corpus (e.g.,

we exclude T5 [46] and GPT-2 [26], which are natural lan-

guage models, and we exclude GPT-Neo [29] and GPT-J [28],

which are trained on the THEPILE dataset [51], of which

90% are English text), (2) the language model can be applied

to APR without any modification to its architecture or extra

1https://console.cloud.google.com/marketplace/details/github/github-
repos?pli=1

PLBART CodeT5 CodeGen InCoder

Models
base (140M) small (60M) 350M 1B
large (400M) base (220M) 2B 6B

large (770M) 6B

Data Source StackOverflow CodeSearchNet THEPILE StackOverflow
BigQuery BigQuery BigQuery GitHub/GitLab

Raw Size
NL 79.0GB - 1.1TB 57.0GB
PL 576.0GB - 436.3GB 159.0GB

Instances
NL 47M 5M - -
PL 680M 8M - -

Tokens
NL 6.7B - 354.7B -
PL 64.4B - 150.8B -

TABLE I: Ten CLMs of four architectures that we study in

this work. NL refers to natural language, while PL refers

to programming language. “Raw Size” refers to the size of

collected pre-training data, “Instances” refers to the number

of pre-training data fed to the models, and “Tokens” is the

total number of NL or PL tokens in the pre-training data. “-”

means the corresponding number is not reported.

designs. Thus, encoder-only models such as CodeBERT [37]

or GraphCodeBERT [38] are excluded. They need either an

extra decoder or careful designs of input format to be applied

to generate patches, and (3) the pre-trained language model is

publicly accessible (e.g., Codex [36] is excluded as its model

is not released and cannot be fine-tuned). As a result, we select

four types of code language models, which are PLBART [23],

CodeT5 [24], CodeGen [35], and InCoder [45].

PLBART: These models follow BART’s [32] encoder-decoder
architecture (Section II-A), and are pre-trained on masked span

prediction and deleted span prediction (Section II-B).

The pre-training dataset of PLBART comes from BigQuery

and StackOverflow, which contains 47M natural language

instances and 680M programming language instances. The

programming language data consist of 470M Java instances

(69%) and 210M Python instances (31%). Thus, it performs

better on Java and Python code than other programming

languages [23].

The developers released two PLBART models of different

sizes, referred to as PLBART-base (140M parameters) and

PLBART-large (400M parameters), both of which are pre-

trained with the same data and pre-training tasks. We include

both models in this work.

CodeT5: The CodeT5 models follow T5’s [46] encoder-

decoder architectures (Section II-A), and are pre-trained on

several code-specified tasks, including masked span prediction,

identifier tagging, masked identifier prediction, and bimodal

dual generation (Section II-B).

The pre-training dataset comes from CodeSearchNet [50]

(an open-sourced code corpus containing 4291 projects col-

lected from GitHub), and also C and CSharp programs

collected via BigQuery, which contains around 5M natural

language instances and 8M programming language instances.

The programming language data consists of 22% JavaScript,

18% Java, 13% Python, 13% CSharp, 12% C, 11% PHP, 8%

Go and 2% Ruby languages.

Developers released three CodeT5 models of different sizes,

referred to as CodeT5-small (60M parameters), CodeT5-base
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Input: 
public ValueMarker(double value, Paint paint, Stroke stroke,... 
  <extra_id_0> 
  this.value = value;} 

Expected Output: 
 super(paint, stroke, outlinePaint, outlineStroke, alpha); 

Input: 
public ValueMarker(double value, Paint paint, Stroke stroke,... 
  // buggy line: super(paint, stroke, paint, stroke, alpha); 
  <extra_id_0> 
  this.value = value;} 
Expected Output: 
 super(paint, stroke, outlinePaint, outlineStroke, alpha); 

Input: 
public ValueMarker(double value, Paint paint, Stroke stroke,... 
  <mask>
  this.value = value;} 

Expected Output: 
public ValueMarker(double value, Paint paint, Stroke stroke,... 
 super(paint, stroke, outlinePaint, outlineStroke, alpha); 
 this.value = value;} 

Input: 
public ValueMarker(double value, Paint paint, Stroke stroke,... 
  // buggy line: super(paint, stroke, paint, stroke, alpha); 
  <mask>
  this.value = value;} 
Expected Output: 
public ValueMarker(double value, Paint paint, Stroke stroke,... 
 super(paint, stroke, outlinePaint, outlineStroke, alpha); 
 this.value = value;} 

Input: 
public ValueMarker(double value, Paint paint, Stroke stroke,... 

Expected Output: 
 super(paint, stroke, outlinePaint, outlineStroke, alpha); 
 this.value = value;} 

Input: 
public ValueMarker(double value, Paint paint, Stroke stroke,... 
 // buggy line: super(paint, stroke, paint, stroke, alpha); 
Expected Output: 
 super(paint, stroke, outlinePaint, outlineStroke, alpha); 
 this.value = value;} 

CodeT5 Prompt (w/o buggy line) CodeT5 Prompt (w/ buggy line)

PLBART Prompt (w/o buggy line) PLBART Prompt (w/ buggy line)

CodeGen Prompt (w/o buggy line) CodeGen Prompt (w/ buggy line)

Input: 
public ValueMarker(double value, Paint paint, Stroke stroke,... 
  <mask>
  this.value = value;} 

Expected Output: 
 super(paint, stroke, outlinePaint, outlineStroke, alpha); 
 this.value = value;} 

Input: 
public ValueMarker(double value, Paint paint, Stroke stroke,... 
  // buggy line: super(paint, stroke, paint, stroke, alpha); 
  <mask>
  this.value = value;} 
Expected Output: 
 super(paint, stroke, outlinePaint, outlineStroke, alpha); 
 this.value = value;} 

InCoder Prompt (w/o buggy line) InCoder Prompt (w/ buggy line)

Fig. 3: Prompts used for applying CLMs on the APR task, using Chart-20 in Defects4J v1.2 benchmark as an example.

(220M parameters), and CodeT5-large (770M parameters).

We include all three models in this work.

CodeGen: The CodeGen models follow a decoder-only ar-

chitecture (Section II-A) and are pre-trained on the next

token prediction task (Section II-B). The developers re-

leased 12 CodeGen models: CodeGen-350M/2B/6B/16B-

NL/Multi/Mono [35]. The “350M/2B/6B/16B” in the name

refers to the number of parameters, while “NL/Multi/Mono”

specifies different training datasets. Specifically, “NL” denotes

that the model is only pre-trained on THEPILE [51] dataset

(mostly English text). “Multi” means that the model is also

pre-trained on data collected via BigQuery, which includes

30% Java, 21% C++, 17% C, 16% Python, 8% JavaScript and

8% Go languages. “Mono” specifies that the model is also

pre-trained on a huge Python corpus collected from GitHub.

As we focus on fixing Java bugs in this paper, and the

16B model is too large to run on our machines, we only

study the CodeGen-350M/2B/6B-Multi models, referred to as

CodeGen-350M, CodeGen-2B, and CodeGen-6B to simplify
the names.

InCoder: The InCoder models follow XGLM [52]’s decoder-

only architecture (Section II-A) and are also pre-trained on the

masked span prediction task (Section II-B).

The pre-training data of InCoder comes from open-sourced

projects on GitHub and GitLab, and StackOverflow posts,

which consists of 159 GB of code data (33% Python, 26%

JavaScript, 10% C/C++, 8% HTML, 4% Java, etc.) and 57

GB of text data (the number of instances and tokens is not

reported). The pre-training data is deduplicated and filtered to

guarantee high quality.

Developers released two InCoder models of different sizes,

referred to as InCoder-1B (1B parameters) and InCoder-6B
(6B parameters), both of which are included in this work.

D. Applying Code Language Models
To answer RQ1, we apply the pre-trained CLMs without any

fine-tuning to study their fixing capabilities learned from pre-

training tasks. We carefully check their papers and documen-

tation to ensure we set them up correctly.
To set up a fair comparison, we apply each code language

model with two different prompts, i.e., the input to a CLM.

The first prompt does not contain the buggy lines (but the bug

location is still known), which is the natural (default) way of

applying these CLMs according to their documentation. The

second prompt gives the buggy lines as lines of comments,

to ensure CLMs have the same information as DL-based

APR techniques, which require buggy lines and surrounding

functions to fix bugs. Figure 3 shows the prompts for different

CLMs.

• To apply PLBART models without providing the buggy
lines, the whole buggy function is provided, with

the buggy lines masked by a placeholder (specifically,

<mask> for PLBART). The models are expected to

output the whole patched function. To validate the correct-
ness, the test cases are executed on the output function.

• To apply CodeT5 models without the buggy lines, the
input format is the same as PLBART, but the placeholder

used to mask the buggy line is <extra_id_0>. CodeT5

models are expected to generate the patched lines. Since

CodeT5 models do not have to generate the whole func-

tion, it is supposed to be easier for CodeT5 to generate the

correct patch. To validate the correctness of the patch, we

replace the buggy lines with CodeT5’s output to form the

patched program, on which developer-written test cases

are executed.

• To apply CodeGen models without the buggy lines, the
input is the function before the buggy lines. The models

are expected to complete the function by generating the

1438



Input: 
public ValueMarker(double value, Paint paint, Stroke stroke,... 
  // buggy line: super(paint, stroke, paint, stroke, alpha); 
  this.value = value;} 
Expected Output: 
 super(paint, stroke, outlinePaint, outlineStroke, alpha);

Fine-tuning Prompt

Fig. 4: Prompt used for fine-tuning CLMs with Chart-20

in Defects4J v1.2 benchmark as an example.

patched line and the remainder of the function after the

buggy lines. To validate the correctness, we append the

output to the input to form a complete function, on which

the test cases are executed. CodeGen models do not know

the code snippet after the buggy lines (thus, they have less

information when fixing bugs), which is due to the design

of CodeGen.

• To apply InCoder models without the buggy line, the
input is the same as PLBART. The models are expected

to output the patched line as well as the code after

the patched line. To validate the correctness, we append

the output to the code before the buggy line to form a

complete function and run the test cases. Compared with

CodeGen models, InCoder models have the code snippet

after the buggy lines when generating patches, which is

the advantage of the design of InCoder models (i.e., using

masked span prediction as a pre-training task).

• To apply these CLMs models with buggy lines as part
of the prompts, the buggy lines are provided as lines of

comments before the location of the buggy lines.

E. Fine-tuning Code Language Models

To answer RQ2, we conduct the first experiment to fine-tune

ten CLMs for the APR task. Since the APR training data are

pairs of buggy code and fixed code, we provide the buggy

code as part of the prompts to CLMs so that they can learn to

generate fixed code given buggy code (Figure 4). Similar to

RQ1, to make the comparison among fine-tuned code language

models fair, we use the same prompt, i.e., input to the models,

for all language models. We fine-tune the CLMs to directly

output the patched lines, the same as the output of DL-based

APR techniques.

For the training data for fine-tuning, we use the APR

data shared in previous work [10], which is collected from

commits of open-sourced GitHub Java projects, and treat each

single-hunk fix as a separate instance, which contains 143,666

instances in total. The dataset is randomly split into a training

dataset with 129,300 instances and a validation dataset with

14,366 instances to tune the hyper-parameters (e.g., number

of training epochs).

For all the CLMs, we apply the same setting for fine-

tuning. Specifically, the batch size is one (due to our hardware

constraints). We use the Adam optimizer [53] with a learning

rate of 1e−5 to update the model weights. CLMs are only fine-

tuned for one epoch over the APR dataset, as they converge

fast on the validation dataset. We set a fixed random seed

when fine-tuning different models to minimize variance for a

consistent, fair comparison.

F. Baseline DL-based APR Techniques

To compare CLMs with APR tools, we select the four best

open-sourced DL-based APR techniques, namely CURE [7],

RewardRepair [9], Recoder [10], and KNOD [11]. Other APR

techniques either fix fewer bugs [4]–[6], [14], [15] or are un-

available [54], and we need to select open-sourced techniques

to apply them to our new benchmark HumanEval-Java. These

APR techniques all have encoder-decoder architecture, but also

have APR-specific designs.

CURE implements its encoder and decoder with convolu-

tional networks [55], and applies a small code GPT [7], [25]

to learn code syntax (but it is only pre-trained on 4M Java

functions), and designs a code-aware search strategy to exclude

invalid identifiers during patch generation [7].

RewardRepair is implemented with transformer architecture

and is the most similar to CLMs regarding architectures. It

also considers patch execution information (compilability and

correctness) in the calculation of loss function during training,

which makes the model learn to generate compilable and

correct patches [9].

Recoder has a novel architecture to generate edits to modify

the abstract syntax tree (AST) to patched AST [10]. Generat-

ing at the AST level enables it to generate more syntactically

correct patches, and generating edits enables it to fix bugs with

fewer decoding steps.

KNOD is a recent DL-based APR technique that uses

graph-transformer [56] and a novel three-stage tree decoder

to generate patched ASTs. It also uses domain-knowledge

distillation [57] to help the model learn code syntaxes and

semantics.

G. Patch Generation and Validation

For all experiments, we let each tool (CLMs, fine-tuned CLMs,

or DL-based APR techniques) generate ten candidate patches

for each bug and run the developer-written test cases on

the patched program. The first patched program that passes

all the test cases is considered a plausible patch. And we

finally manually check the correctness of plausible patches

to distinguish correct patches (which should be identical or

semantically equivalent to developer-written patches).

IV. RQ1: FIXING CAPABILITIES

Table II shows the fixing capabilities of the ten CLMs and

three state-of-the-art DL-based APR techniques on four bug

benchmarks, including our new HumanEval-Java. We report

the number of correct patches within the top ten patches

generated by each technique since recent work shows that 93%

of developers are only willing to review up to ten patches [22].

The results of CLMs are obtained and reported without feeding

buggy lines, as CLMs fix more bugs without buggy lines

information (analyzed in Section IV-B).

A. Comparison between CLMs and DL-based APR Techniques

Table II shows that different types of CLMs perform signifi-

cantly differently when applied to APR without fine-tuning. In
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Benchmarks #Bugs PLBART CodeT5 CodeGen InCoder DL-based APR Techniques
base large small base large 350M 2B 6B 1B 6B CURE Reward Recoder KNOD

Defects4J v1.2 130 13 13 1 0 1 4 11 11 10 16 6 20 24 20
Defects4J v2.0 108 9 8 2 4 1 3 4 8 10 15 6 8 11 13
QuixBugs 40 11 12 3 0 3 7 15 16 14 15 5 7 6 10
HumanEval-Java 164 39 52 3 5 6 30 49 46 40 59 18 22 11 18

Total 442 72 85 9 9 11 44 79 81 74 105 35 57 52 61

TABLE II: Number of correct fixes generated by the ten CLMs (without fine-tuning), and four DL-based APR techniques.

Reward denotes RewardRepair.

general, PLBART models, CodeGen models (except CodeGen-

350M), and InCoder models fix more bugs than APR tools

in the four APR benchmarks combined (Row ‘Total’), while

CodeT5 models fix the fewest. Specifically, InCoder-6B fixes

the most number (105) of bugs, which is 72% more than the

best DL-based APR technique, KNOD. The second best is

PLBART-large, which fixes 85 bugs and is 39% more than

KNOD. The poor result of CodeT5 models might be due to

that it is pre-trained for significantly different tasks [24], in-

cluding code-to-code generation, code-to-identifier-tag predic-

tion, and code-to-natural-language generation. Thus, without

fine-tuning them for the APR task, CodeT5 models cannot

generate reasonable code or correct patches.

Figure 5 shows the distributions of the compilation rate of

patches generated for bugs in all benchmarks by each model.

CodeGen models generate the most compilable patches, with

an average compilation rate of 73% and a median of 97%.

PLBART and InCoder models also generate much more com-

pilable patches than DL-based APR techniques. DL-based

APR techniques are only able to generate 44%–62% com-

pilable patches on average.

CLMs and DL-based APR techniques have different fixing

capabilities on different benchmarks. Specifically, DL-based

APR techniques have better fixing capabilities than CLMs on

Defects4J v1.2. Figure 6(a) shows an example (Math-75) in

Defects4J v1.2 that all three DL-based APR techniques fix but

all ten CLMs fail to fix. This bug has little context. Without

enough context, although CLMs can generate reasonable code,

they fail to generate the correct fix. Regardless of providing the

buggy line return getCumPct((Comparable<?>) v); to

the CLMs or not, all CLMs fail to fix this bug. As shown

later in Section IV-B, CLMs without fine-tuning make poor

use of the buggy lines. In contrast, APR tools are designed to

leverage the buggy line information and thus fix this bug.

In contrast, on QuixBugs and HumanEval-Java benchmarks,

PLBART, CodeGen and InCoder models show much better fix-

ing capabilities than APR tools. Figure 6 (b) shows an example

(GCD) in QuixBugs that PLBART, CodeGen and InCoder

models can fix but APR tools cannot. Although CLMs do

not see the buggy line else return gcd(a % b, b);, they

have learned from natural language text or code corpus that

gcd stands for greatest common divisor, and can complete the

function correctly. By contrast, APR tools rely on the buggy

line a lot when generating candidate patches. Their patches

look like applying simple edit operations on the buggy line

without considering code syntax and semantics carefully. i.e.,

CURE’s patch replaces a % b with a, RewardRepair’s patch

deletes return, which even makes the function uncompilable,

Recoder’s patch replaces a with b, and KNOD’s patch replaces

b with a.

Finding 1: CLMs have competitive fixing capabilities
even without fine-tuning. PLBART, CodeGen, and InCoder

models fix more bugs and generate more compilable

patches than state-of-the-art DL-based APR techniques,

while CodeT5 models, as an exception, generate poor

patches before fine-tuning.

B. Impact of Buggy Lines

Fig. 5: Distributions of compilation rates of the ten patches

generated for each bug from all four benchmarks.

public double getPct(Object v) { 
-  return getCumPct((Comparable<?>) v);       Buggy line       
+  return getPct((Comparable<?>) v);       APR tools' patch   
+  return (double ) v ;     PLBART's patch    
+  if (v instanceof Number)     CodeGen's patch   
+    return ((Number) v).doubleValue();                 
+   else if (v instanceof Boolean)                     
+    return ((Boolean) v).booleanValue()? 1.0 : 0.0;           
+   else if (v instanceof String)                      
+    return Double.parseDouble((String) v);               
+   else return 0.0;  
+   Number n = (Number) v;        InCoder's patch 
+   return n.doubleValue() * 100.0;              
}

(a) Math-75 bug in Defects4J v1.2 that DL-based APR techniques fix but CLMs
do not.

public static int gcd(int a, int b) { 
  if (b == 0) return a; 
-   else return gcd(a % b, b);     Buggy Line   
+  else return gcd(b, a % b);     CLMs' patch  
+  else return gcd(a, b);     CURE's patch
+  gcd(a % b, b);      RewardRepair's patch 
+   else return gcd(b % b, b);     Recoder's patch 
+   else return gcd(a % b, a);            KNOD's patch 
}

(b) GCD in QuixBugs that CLMs fix but DL-based APR techniques do not.

Fig. 6: Examples of bugs on which CLMs and DL-based APR

tools perform differently.

Table III shows the number of correct fixes over four bench-

marks generated by CLMs when buggy lines are given. For
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PLBART CodeT5 CodeGen InCoder
base large small base large 350M 2B 6B 1B 6B

36 (-36) 62 (-23) 5 (-4) 2 (-7) 4 (-7) 28 (-16) 58 (-21) 73 (-8) 61 (-13) 99 (-6)

TABLE III: Number of correct fixes generated by CLMs with buggy lines provided. Numbers in () are the reduction compared

to those without buggy lines.

public static Integer next_smallest(int[] lst) { 

+   Set<Integer> numbers = new HashSet<Integer>();  CLMs' patch w/o buggy line 

  for (Integer n : lst) 

    numbers.add(n); 

  Integer[] no_duplicate = numbers.toArray(new Integer[] {}); 

public static Integer next_smallest(int[] lst) { 
  // buggy line: List<Integer> numbers = new ArrayList<Integer>(); 

+   if (lst == null) return null;     PLBART's patch w/ buggy line 

  for (Integer n : lst) 

    numbers.add(n); 

  Integer[] no_duplicate = numbers.toArray(new Integer[] {}); 

(a) PLBART generates incorrect patch for NEXT SMALLEST in HumanEval-
Java with the buggy line given.

public static String flip_case(String string) { 
  ... 
  for (int i = 0; i < char_list.length; i += 1) { 
    char c = char_list[i]; 
    if (Character.isLowerCase(c)) { 
+       char_list[i]=Character.toUpperCase(c); CLM's patch w/o buggy line 

public static String flip_case(String string) { 
  ... 
  for (int i = 0; i < char_list.length; i += 1) { 
    char c = char_list[i]; 
    if (Character.isLowerCase(c)) { 
      // buggy line: char_list[i]=Character.toLowerCase(c); 
+              CodeGen's patch w/ buggy line 
+       char_list[i]=Character.toLowerCase(c); InCoder's patch w/ buggy line 

(b) CodeGen and InCoder generate incorrect patches for FLIP CASE in
HumanEval-Java with the buggy line given.

public Week(Date time, TimeZone zone) { 
+   super(time, zone);      PLBART's patch w/o buggy line
+   this.time = time; this.zone = zone;   CodeGen's patch w/o buggy line
+   super(); this.time = time; this.zone = zone;  InCoder's patch w/o buggy line
}
public Week(Date time, TimeZone zone) { 
  // buggy line: this(time, RegularTimePeriod.DEFAULT_TIME_ZONE,  
  // buggy line: Locale.getDefault()); 
+   this(time, zone, Locale.getDefault());  CLM's patch w/ buggy line
}

(c) CLMs fix Chart-8 in Defects4J v1.2 only with the buggy line given.

Fig. 7: Bug examples on which CLMs perform differently

when buggy lines are given versus not given.

example, “36 (-36)” shows that PLBART-base fixes 36 bugs

with buggy lines provided as input, while PLBART-base fixes

72 bugs without buggy lines. To our surprise, all CLMs

consistently fix 6%–78% fewer bugs when buggy lines are

given.

To understand the reason, Figure 7(a) shows an example,

bug NEXT SMALLEST from HumanEval-Java, for which

CLMs generate the correct patch without having the buggy

line. This shows the models understand no_duplicate in

the context and thus initializes numbers as a HashSet.

Yet, when the buggy line List<Integer> numbers = new

ArrayList<Integer>(); is given, PLBART fails to fix it

anymore, generating an uncompilable patch where numbers is

undeclared. Figure 7(b) shows another example, FLIP CASE

from HumanEval-Java, that CodeGen and InCoder generate

incorrect patches when the buggy lines are given. CodeGen’s

patch deletes the whole buggy line and InCoder’s patch simply

repeats the buggy line, which shows that CLMs are confused

by the buggy lines, and try to follow the given buggy code

instead of generating the correct code. This is explainable as

CLMs are not pre-trained to utilize the buggy lines.

Although CLMs fix fewer bugs when buggy lines are

given, they fix some unique bugs with the help of buggy

lines. Figure 7(b) shows such an example, Chart-8, from

Defects4J v1.2. Without the buggy line, CLMs’ patches are

incorrect for this bug as they do not have enough context

to generate the correct patch. When the buggy line is given,

they all can generate the correct patch this(time, zone,

Local.getDefault());.

Finding 2: Although buggy lines enable CLMs to fix some
bugs, CLMs fail to make good use of the buggy lines.

CLMs generate fewer compilable patches and fix fewer

bugs overall when buggy lines are given.

V. RQ2: IMPACT OF FINE-TUNING

A. Fixing Capabilities of Fine-tuned CLMs

Table IV shows the number of correct fixes generated by

the ten CLMs after fine-tuning. Overall, all CLMs fix more

bugs after fine-tuning, with a 31%–1,267% improvement.

As a result, fine-tuned CLMs consistently outperform DL-

based APR techniques over four benchmarks. The best model,

InCoder-6B, fixes 100 (164%) more bugs than the best DL-

based APR technique.

Regarding the impact of fine-tuning, CodeT5 models gain

the most improvement (889%–1,267%) and PLBART models

gain the least improvement (31%). Although multi-task pre-

training [24] makes CodeT5 models generate poor code before

fine-tuning, they indeed learn general programming language

knowledge from pre-training, which helps CodeT5 models

learn great fixing capability from fine-tuning. For PLBART

models, a surprising result is that the PLBART-large model

fixes four fewer bugs on the HumanEval-Java benchmark after

fine-tuning, which we tried to explain in Section V-B.

Finding 3: Fine-tuning with APR data improves all ten
CLMs’ fixing capabilities, and fine-tuned CLMs fix sig-

nificantly 100 (164%) more bugs than the state-of-the-art

DL-based APR techniques on the four benchmarks.

B. Pre-trained versus Fine-tuned CLMs

Figure 8(a) shows an example that all the CLMs can fix

only after fine-tuning. Without fine-tuning, CodeT5 models

generate incorrect patches that are irrelevant to the buggy

line, PLBART and CodeGen models generate patches that are

equivalent to the buggy lines, and InCoder models delete the

buggy line. This supports our Finding 2 that CLMs fail to
utilize the buggy line information well (CLMs also fail to fix

this bug without the buggy lines). Yet, after fine-tuning, all

CLMs learn to make use of the buggy lines to generate the

correct patches.
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Benchmarks #Bugs PLBART CodeT5 CodeGen InCoder DL-based APR Techniques
base large small base large 350M 2B 6B 1B 6B CURE Reward Recoder KNOD

Defects4J v1.2 130 25 (12) 29 (16) 19 (18) 30 (30) 33 (32) 23 (19) 32 (21) 38 (27) 27 (17) 41 (25) 6 20 24 20
Defects4J v2.0 108 13 (4) 17 (9) 15 (13) 17 (13) 19 (18) 20 (17) 23 (19) 23 (15) 24 (14) 28 (13) 6 8 11 13
QuixBugs 40 15 (4) 17 (5) 14 (11) 15 (15) 19 (16) 18 (11) 18 (3) 18 (2) 18 (4) 22 (7) 5 7 6 10
HumanEval-Java 164 41 (2) 48 (-4) 41 (38) 54 (49) 54 (48) 52 (22) 53 (4) 52 (6) 64 (24) 70 (11) 18 22 11 18

Total 442 94 (22) 111 (26) 89 (80) 116 (107) 125(114) 96 (69) 126 (47) 131 (50) 133 (59) 161 (56) 35 57 52 61

TABLE IV: Number of correct fixes generated by the ten fine-tuned CLMs and four DL-based APR techniques. Numbers in

() are the improvement gained by fine-tuning. Reward stands for RewardRepair.

public static String next_palindrome(int[] digit_list) { 
  ArrayList<Integer> otherwise = new ArrayList<Integer>(); 
  otherwise.add(1); 
  // buggy line: otherwise.addAll( 
  // buggy line:   Collections.nCopies(digit_list.length, 0)); 

+   otherwise.addAll(Arrays.asList(digit_list));  PLBART's patch w/o fine-tuning 
+  otherwise = new ArrayList<Integer>();      CodeT5's patch w/o fine-tuning 
+  for (int i = 0; i < digit_list.length; i++){  CodeGen's patch w/o fine-tuning 
+     otherwise.add(digit_list[i]); 
+   } 
+           InCoder's patch w/o fine-tuning 
+   otherwise.addAll(                Fine-tuned CLMs' patch 
+     Collections.nCopies(digit_list.length-1, 0)); 

(a) NEXT PALINDROME in QuixBugs that CLMs only fix w/ fine-tuning.

public SORT_NUMBERS(String numbers) { 
     HashMap<String, Integer> value_map = new HashMap<String, Integer>() 
     {{ put("zero", 0); put("one", 1); put("two", 2);... }} 
     ArrayList<String> number_array = new ArrayList<String( 
         Arrays.asList(numbers.split(" "))); 
+    Collections.sort(number_array,                   CLMs' patch w/o fine-tuning
+        (a, b) -> value_map.get(a).compareTo(value_map.get(b)));
public SORT_NUMBERS(String numbers) { 
     ... 
     ArrayList<String> number_array = new ArrayList<String( 
         Arrays.asList(numbers.split(" "))); 
     // buggy line: Collections.sort(number_array); 
+    Arrays.sort(number_array);         Fine-tuned PLBART's patch
+    Collections.sort(number_array, new String[0]);   Fine-tuned CodeGen's patch
+    number_array.sort();         Fine-tuned InCoder's patch
+    Collections.sort(number_array);        CURE and Recoder's patch
+    Collections.sort(number_array.trim());       RewardRepair's patch
+    Collections.odd_count(number_array);             KNOD's patch

(b) SORT NUMBERS in HumanEval-Java that CLMs only fix w/o fine-tuning.

Fig. 8: Examples of bugs on which CLMs perform differently

after fine-tuning.

Figure 8 (b) shows an opposite example that CLMs can

fix only without fine-tuning. PLBART, CodeGen and InCoder

models fix this bug without fine-tuning and without the

buggy line provided, which shows that they understand that

number_array is an array of numbers written in English,

and should be sorted according to their numerical values

(stored in value_map). This reveals CLMs’ strong capabilities

of understanding code semantics. Yet, after fine-tuning, they

all generate incorrect patches. It is surprising that the fine-

tuned CLMs make a similar mistake as the DL-based APR

techniques (which also fail to fix this bug) that their patches

rely on the buggy line too much, failing to figure out the target

functionality from the context.

Finding 4: Fine-tuning with APR data enables CLMs to
better leverage buggy lines to fix more bugs. Yet, it also

makes CLMs share a common shortcoming of DL-based

APR techniques that they miss some bugs if they over-rely

on the buggy lines. Overall, fine-tuned CLMs have the best

fixing capabilities.

Fig. 9: Number of correct fixes for HumanEval-Java generated

by CLMs that are fine-tuned with different-sized APR data.

(w/) stands for applying CLMs (not fine-tuned) with feeding

buggy lines.

C. Impact of Fine-tuning Data Size

Figure 9 shows the number of correct fixes that CLMs gen-

erate on the HumanEval-Java benchmark when they are fine-

tuned with different-sized APR data. CodeT5-large gains a

great improvement after being fine-tuned with only 100 APR

training instances and reaches its best fixing capability (59)

after being fine-tuned with 10,000 instances. CodeGen-6B also

fixes the most number of bugs after being fine-tuned with

10,000 instances. Both models share a common pattern that if

the fine-tuning data increases from 10,000 to the full dataset

(129,000), they start to fix fewer bugs.

InCoder-6B fixes fewer bugs after being fine-tuned with 100

APR training instances (51), but its fixing capability keeps

increasing and reaches the best (76) after being fine-tuned with

50,000 instances.

PLBART-large shows a different pattern that its fixing capa-

bility keeps a relatively stable growth as the fine-tuning data

increases. Yet, the fine-tuned PLBART-large model always

fixes fewer bugs than the pre-trained PLBART-large (i.e.,

without fine-tuning) without the buggy lines given.

Finding 5: CodeT5, CodeGen, and InCoder models reach
the best fixing capabilities after being fine-tuned with

10,000 and 50,000 APR instances, yet too much fine-

tuning data makes them fix fewer bugs. The best fine-tuned

PLBART model still fails to outperform the pre-trained

PLBART models.

VI. RQ3: SIZE, TIME, AND MEMORY EFFICIENCY

Figure 10 (a) shows the number of correct fixes that the

ten fine-tuned CLMs generate as the CLMs’ number of
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Fig. 10: Size, time and memory efficiency of CLMs.

parameters grows. Larger models with more parameters con-

sistently exhibit better fixing capability than smaller models.

Fine-tuned CodeT5 and InCoder models always fix the most

number of bugs compared with other models that have a

similar number of parameters, i.e., CodeT5 and InCoder are

the most size-efficient. Fine-tuned PLBART models have the

second-best size efficiency, and CodeGen models are the least

size-efficient. The result suggests that pre-training and fine-

tuning larger CodeT5 or InCoder models are promising, which

remains as future work since we already evaluated the largest

models released.

In addition to size efficiency, we study CLMs’ time effi-

ciency. Figure 10 (b) shows the GPU time in seconds that each

CLM takes to generate a correct fix. PLBART models have

the best time efficiency in generating patches, taking 0.70–

0.89 seconds on average to generate a correct patch. CodeGen

models, although fixing more bugs than PLBART models,

are the least time-efficient and require 3.64–13.88 seconds on

average to generate a correct patch.

Memory requirement, or memory efficiency, is also an

important consideration for practical usage. Figure 10 (c)

shows the requirement of GPU memory (in GB) to apply

each CLM on the four benchmarks. The CodeGen-6B and

InCoder-6B models require 19.84–24.81GB GPU memory to

run, which is significantly more than other CLMs. In contrast,

the other CLMs can easily fit into a single card with standard

8GB or 12GB memory. Overall, CodeT5 and InCoder models

always fix more bugs than PLBART and CodeGen given the

same memory limitations.

We also include the size, time and memory efficiency of

Dl-based APR techniques in figure 10. All CLMs fix more

bugs than DL-based APR techniques given the same number

of parameters, time, and memory.

Finding 6: CodeT5 and InCoder models show the best

size efficiency, thus it is more promising to develop larger

CodeT5 and InCoder models than the others. PLBART,

CodeT5 and InCoder models all have better time efficiency

and memory efficiency than CodeGen models, and thus are

better choices given limited resources.

VII. IMPLICATIONS AND FUTURE WORK

A. Fine-tuning CLMs for APR

Improving fine-tuning: Fine-tuned CLMs have much better
fixing capabilities than state-of-the-art DL-based APR tech-

niques. Thus, it is promising to build future APR techniques

based on CLMs instead of training from scratch.

Yet, the fine-tuning applied in this work is straightforward

and simple. Existing DL-based APR techniques have APR-

specific designs, such as code-syntax guided beam search [7],

leveraging AST structural information [10], and learning exe-

cution information [9], which existing CLMs do not have yet.

Incorporating syntax and structural information or test cases

execution information into fine-tuning may further improve the

fixing capabilities of CLMs.

Addressing over-reliance on buggy lines: Fine-tuned CLMs
share a common shortcoming with existing DL-based APR

techniques, which is the over-reliance on buggy lines. It might

be caused by model biases to favor small changes to fix

bugs and that fixes to most bugs in the training set are small

changes [7]. Yet, this makes fixing bugs that require larger

modifications to the buggy lines extra challenging. Possible

solutions include balancing different bugs in the fine-tuning

APR dataset, or developing separate models especially for

bugs requiring big modifications.

B. Larger CodeT5 and InCoder Models

Our Finding 6 shows that CodeT5 and InCoder models have

better size efficiency. Thus, pre-training and fine-tuning larger-

sized CodeT5 and InCoder models is a promising direction to

fix more bugs.

C. Fair and Comprehensive Evaluation

Improving benchmarks: Good benchmarks are crucial for
evaluating and comparing CLMs. This work releases a new

benchmark HumanEval-Java that is not only more realistic

than the code-refinement dataset in CodeXGLUE for the APR

task, but also not included in CLMs’ pre-training data. Yet,

HumanEval-Java contains mostly small programs. An APR

benchmark that consists of larger buggy programs (and also

not seen by CLMs) is still needed.

Avoiding benchmark leaking in pre-training: CLMs rely on
enormous code corpora to pre-train, which brings a threat that

existing APR benchmarks such as Defects4J may be (partially)

included in their pre-training datasets. It is impractical to limit

the pre-training dataset of CLMs, as data is a crucial part and

contribution of techniques. But we call for clearer reporting

and documentation of open-source repositories used in the pre-

training data of future CLM work to address the benchmark

leaking problem.
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Evaluating size, time, and memory efficiency: In addition
to the overall fixing capabilities, size efficiency shows which

type of model is more promising to develop with larger sizes.

Time and memory efficiency show which models perform the

best given limited resources. To make more comprehensive

evaluations of CLMs in future work, size, time, and memory

efficiency should also be evaluated and reported.

VIII. THREATS TO VALIDITY AND LIMITATIONS

One threat to the evaluation of all CLM papers [23], [24], [35]

is that the training data of these CLMs may contain the bugs

or fixes in the four APR benchmarks since these CLMs use

public repositories such as all GitHub repositories by a certain

date [23], [24], [35]. This threat exists for all CLM-related

papers, not just this paper. But this threat is less of a concern

since CLMs do not see the pair of bugs and their fixed code

during training, and their training data often contains at most

the buggy code or the fixed code, but not both. We mitigate

this threat by using an evaluation benchmark HumanEval-Java

that has not been seen by any of the CLMs during training.

We exclude the state-of-the-art code language model

Codex [36] from the results section because Codex is a black

box, and one cannot fine-tune it. Fine-tuning Codex remains

future work if Codex releases fine-tuning APIs in the future.

We did apply Codex without fine-tuning on the four APR

benchmarks. Codex correctly fixes 41 bugs from Defects4J

v1.2, 27 bugs from Defects4J v2.0, 34 bugs from QuixBugs,

and 71 bugs from HumanEval-Java (173 in total). While Codex

seems highly effective, it is particularly susceptible to the data-

leaking threat, because Codex models keep updating with the

latest open-source data and potential user input2. Making a

solid and fair evaluation of Codex remains an important and

challenging future work.

Another threat lies in the evaluation of patch correctness.

Instead of using automated metrics such as BLEU [58] and

CodeBLEU [39], we manually check if the patches pass the

test cases are semantically equivalent to the developer patches,

which could be subjective. Yet, our experiments show BLEU

and CodeBLUE are indeed misleading in comparing APR

techniques. The CodeBLUE score of RewardRepair’s patches

on the HumanEval-Java benchmark is 36.76, higher than the

fine-tuned CodeT5 model (33.47), but it fixes 19 fewer bugs.

We suspect this is because CLMs generate patches with more

diversity, and thus better automated metrics are needed.

IX. RELATED WORK

A. Language Models on Code Refinement

CLMs, including CodeBERT, GraphCodeBERT, PLBART,

and CodeT5 [24], have been studied for code refinement.

These models are fine-tuned on the code refinement dataset

offered by CodeXGLUE [39], where the input to the model

is an abstracted buggy function, and the models are trained

to generate the patched correct function. However, as we

2https://help.openai.com/en/articles/5722486-how-your-data-is-used-to-
improve-model-performance

discussed in Section I-A,(1) their performance is reported

by BLEU score [58], which could be misleading and dif-

ferent from real-world benchmarks such as Defects4J [40].

As the BLEU score only measures the similarity between

the generated function with the correct function, and since

no test cases are executed, the reported score cannot really

tell how many bugs can be correctly fixed by these code

language models. And (2) they do not study the characteristics

of the programs generated by CLMs, nor study the impact

of feeding buggy lines, and (3) they do not compare CLMs’

fixing capabilities with DL-based APR tools. Thus, our work

is different by providing a comprehensive, in-depth study of

the fixing capabilities of ten CLMs, with more details about

the impact of buggy lines, fine-tuning data size and their size,

time, and memory efficiency.

B. Automated Program Repair

Many template- [14], [15], heuristic- [16]–[18], constraint-

[19]–[21], and DL-based APR techniques [4]–[6], [8] have

been developed and evaluated on Defects4J and QuixBugs

benchmarks. None of these papers is fully built on large pre-

trained CLMs, and they all fix fewer bugs than the three DL-

based APR techniques studied in this work. Other DL-based

techniques fix compilation bugs and syntax issues [59]–[61]

instead of runtime bugs. Thus, the novelty, conclusion, and

implications of this work are not affected.

X. CONCLUSION

This paper studies the impact that CLMs bring to the APR

domain. We apply ten CLMs with and without fine-tuning on

four APR benchmarks, including a new benchmark created

in this work. Experiments show CLMs’ competitive fixing

capabilities, with the best CLM fixing 72% more bugs than

the state-of-the-art DL-based APR techniques. Fine-tuning

also significantly improves CLMs, enabling CLMs to fix

31%–1,267% more bugs and outperform the best DL-based

APR technique by 46%–164%. Thus, this paper shows that

developing APR techniques based on CLMs, bringing APR-

specific designs into the fine-tuning process of CLMs, and

addressing the over-reliance on buggy lines are promising

future directions to explore. In addition, this work also calls

for awareness of fair and comprehensive evaluation of CLMs,

including avoidance of data leaking and reporting of size, time,

and memory efficiency.

XI. DATA AVAILABILITY

Our replication package, including (1) the new APR bench-

mark HumanEval-Java, (2) the generated patches for all four

benchmarks by all CLMs, (3) the fine-tuned CLM models, and

(4) the source code for reproduction are available at [62].
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