
 Listening to Programmers
/* -- Taxonomies and Characteristics of

Comments in Operating System Code */

Lin Tan

Yoann Padioleau, Lin Tan, Yuanyuan Zhou
University of Illinois, Urbana-Champaign

Lin Tan

Motivation

• Many innovations to improve software quality &
productivity:

• PL, IDE, bug detection tools, annotation languages, ...

• Valgrind, Splint, Linux’s Sparse, Microsoft SAL, TagSEA, Mylyn, ...

2

Lin Tan

Motivation

• Many innovations to improve software quality &
productivity:

• PL, IDE, bug detection tools, annotation languages, ...

• Valgrind, Splint, Linux’s Sparse, Microsoft SAL, TagSEA, Mylyn, ...

• Helpful to know what developers want

2

Lin Tan

Comments Reveal Needs

• User studies:

• Examples: CMU, Microsoft Research HIP

• Challenges: Hard to collect representative data

3

Lin Tan

Comments Reveal Needs

• User studies:

• Examples: CMU, Microsoft Research HIP

• Challenges: Hard to collect representative data

• Our novel observation:

• Comments reveal what developers want.

3

Lin Tan

Potential of Comments (I)

• Developers want to express code relationships

4

opensolaris/sun/io/ms.c:
timeout_id_t msd_timeout_id; /* id returned
by timeout() */

Lin Tan

Potential of Comments (I)

• Developers want to express code relationships

• Motivate language support & bug detection tools

4

opensolaris/sun/io/ms.c:
timeout_id_t msd_timeout_id; /* id returned
by timeout() */

Lin Tan

Potential of Comments (I)

• Developers want to express code relationships

• Motivate language support & bug detection tools

• Motivate IDE features for better navigation capability

4

opensolaris/sun/io/ms.c:
timeout_id_t msd_timeout_id; /* id returned
by timeout() */

Lin Tan

Potential of Comments (II)

5

linux/drivers/scsi/in2000.c:
/* Caller must hold instance lock!*/
static int reset_hardware(…){…}

Lin Tan

Potential of Comments (II)

5

linux/drivers/scsi/in2000.c:
/* Caller must hold instance lock!*/
static int reset_hardware(…){…}

static int in2000_bus_reset(…){ …

reset_hardware(…); …
}

Lin Tan

Potential of Comments (II)

5

linux/drivers/scsi/in2000.c:
/* Caller must hold instance lock!*/
static int reset_hardware(…){…}

static int in2000_bus_reset(…){ …

reset_hardware(…); …
}

No lock acquisition ⇒ A bug!

Lin Tan

Potential of Comments (II)

• Developers want to express assumptions/intentions.

• Motivate bug detection tools [TanSOSP’07]

5

linux/drivers/scsi/in2000.c:
/* Caller must hold instance lock!*/
static int reset_hardware(…){…}

static int in2000_bus_reset(…){ …

reset_hardware(…); …
}

No lock acquisition ⇒ A bug!

Lin Tan

Potential of Comments (II)

• Developers want to express assumptions/intentions.

• Motivate bug detection tools [TanSOSP’07]

5

linux/drivers/scsi/in2000.c:
/* Caller must hold instance lock!*/
static int reset_hardware(…){…}

See our paper for more examples.

static int in2000_bus_reset(…){ …

reset_hardware(…); …
}

No lock acquisition ⇒ A bug!

Lin Tan

Prevalence of Comments

6

• Millions lines of comments (23-30%) exist.

• Various languages: C, C++, Java

• Written by thousands of developers or more

(kernel only for OSs, excluding blank lines, including copyright notices)

Software Linux FreeBS
D

OpenSolaris Mozilla MySQL Eclipse

Lines of
Comments

1.2M 0.6M 1.1M 1.2M 0.3M 1.7M

Lin Tan

Our Contributions

• First comprehensive comment study on semantics:

• Manually examine 2100 randomly sampled comments
from 6 large popular software projects (in C, C++, Java)

• Many findings and implications:

• Provide guidance to the design of tools/languages

• New comment taxonomies & analysis tools

• Available at http://ece.uwaterloo.ca/~lintan/CComment

7

http://ece.uwaterloo.ca/~lintan/CComment
http://ece.uwaterloo.ca/~lintan/CComment

Lin Tan

Outline

• Motivation

• Methodology & Taxonomies

• OS Comments: Findings and Implications

• Non-OS Comments: Similarities & Differences

• Related Work & Conclusions

8

Lin Tan

Our OS Comment Source

9

Software Linux FreeBSD OpenSolaris

Lines of Code 5.2M 2.4M 3.7M

Lines of Comments 1.2M 0.6M 1.1M

% of Comments 23.1% 25.0% 29.7%

of Comments
(delimited by /* */ or //) 729,923 289,413 380,111

Sample Size 350 350 350

(kernel only, excluding blank lines, including copyright notices)

Lin Tan

Our OS Comment Source

9

Software Linux FreeBSD OpenSolaris

Lines of Code 5.2M 2.4M 3.7M

Lines of Comments 1.2M 0.6M 1.1M

% of Comments 23.1% 25.0% 29.7%

of Comments
(delimited by /* */ or //) 729,923 289,413 380,111

Sample Size 350 350 350

(kernel only, excluding blank lines, including copyright notices)

Lin Tan

Our OS Comment Source

• Randomly sampled 1050 comments

• Causing reasonably small margin of error

9

Software Linux FreeBSD OpenSolaris

Lines of Code 5.2M 2.4M 3.7M

Lines of Comments 1.2M 0.6M 1.1M

% of Comments 23.1% 25.0% 29.7%

of Comments
(delimited by /* */ or //) 729,923 289,413 380,111

Sample Size 350 350 350

(kernel only, excluding blank lines, including copyright notices)

Lin Tan

Our OS Comment Source

• Randomly sampled 1050 comments

• Causing reasonably small margin of error

9

Software Linux FreeBSD OpenSolaris

Lines of Code 5.2M 2.4M 3.7M

Lines of Comments 1.2M 0.6M 1.1M

% of Comments 23.1% 25.0% 29.7%

of Comments
(delimited by /* */ or //) 729,923 289,413 380,111

Sample Size 350 350 350

Java & C++
code later

(kernel only, excluding blank lines, including copyright notices)

Lin Tan

Who

Dimensions of Taxonomies

10

What

When

Where

Lin Tan

Who

Dimensions of Taxonomies

10

What

When

Where

• What can be utilized & how much?

• How to use these comments?

Lin Tan

Who

Dimensions of Taxonomies

10

What

When

Where

• What can be utilized & how much?

• How to use these comments?

Studied 309
unique OS
developers.

Lin Tan

Classification Process

• Iterative process

• Double verification

• A tool to help

• Automatically extract author, time and
related entities

11

Lin Tan

Threats to Validity

• Focused on OS/C code (only 3 C++/Java projects)

12

Lin Tan

Threats to Validity

• Focused on OS/C code (only 3 C++/Java projects)

• Sampled 2100 comments

12

Lin Tan

Threats to Validity

• Focused on OS/C code (only 3 C++/Java projects)

• Sampled 2100 comments

• Same amount of comments from each software

12

Lin Tan

Threats to Validity

• Focused on OS/C code (only 3 C++/Java projects)

• Sampled 2100 comments

• Same amount of comments from each software

• Subjectivity

12

Lin Tan

Threats to Validity

• Focused on OS/C code (only 3 C++/Java projects)

• Sampled 2100 comments

• Same amount of comments from each software

• Subjectivity

• Outdated comments

12

Lin Tan

Outline

• Motivation

• Methodology & Taxonomies

• OS Comments: Findings and Implications

• Non-OS Comments: Similarities & Differences

• Related Work & Conclusions

13

Lin Tan

Exploitable Comments

• At least 52.6 ±2.9% or ~736,109 comments in the 3 OSs:

• Could be leveraged by existing or to-be-proposed techniques

• Could guide the design of language features, IDE features,
annotation languages and bug detection tools

14

Lin Tan

Finding 1: Integers

15

1. #define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
 #define E1000_RCTL 0x00100 /* Rx Control - RW */

• 22.1% of the exploitable comments clarify the usage and
meaning of integers and integer macros.

Lin Tan

Finding 1: Integers

15

1. #define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
 #define E1000_RCTL 0x00100 /* Rx Control - RW */

E1000_WRITE_REG (hw, E1000_MCC);

E1000_READ_REG (hw, E1000_MCC);

• 22.1% of the exploitable comments clarify the usage and
meaning of integers and integer macros.

Lin Tan

Finding 1: Integers

15

1. #define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
 #define E1000_RCTL 0x00100 /* Rx Control - RW */

E1000_WRITE_REG (hw, E1000_MCC);

E1000_READ_REG (hw, E1000_MCC);

• 22.1% of the exploitable comments clarify the usage and
meaning of integers and integer macros.

Const doesn’t solve the problem!

Lin Tan

Finding 1: Integers

15

1. #define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
 #define E1000_RCTL 0x00100 /* Rx Control - RW */

2. #define EMU_DOCK_MINOR_REV 0x26 /* 0000xxx 3 bit ... Minor rev */

E1000_WRITE_REG (hw, E1000_MCC);

E1000_READ_REG (hw, E1000_MCC);

• 22.1% of the exploitable comments clarify the usage and
meaning of integers and integer macros.

Const doesn’t solve the problem!

3. int mem; /* memory in 128 MB units */

Lin Tan

Finding 1: Integers

15

1. #define E1000_MCC 0x0401C /* Multiple Collision Count - R/clr */
 #define E1000_RCTL 0x00100 /* Rx Control - RW */

2. #define EMU_DOCK_MINOR_REV 0x26 /* 0000xxx 3 bit ... Minor rev */

E1000_WRITE_REG (hw, E1000_MCC);

E1000_READ_REG (hw, E1000_MCC);

• Should pay more attention to integers and integer macros

• Domain specific languages, extended types, bug detection tools, ...

• 22.1% of the exploitable comments clarify the usage and
meaning of integers and integer macros.

Const doesn’t solve the problem!

3. int mem; /* memory in 128 MB units */

Lin Tan

Finding 2: Code Relationships

• 16.8% of exploitable comments are about code relationships.

16

Lin Tan

Finding 2: Code Relationships

• 16.8% of exploitable comments are about code relationships.

16

1. /* See comment in struct sock definition to understand ... */

Lin Tan

Finding 2: Code Relationships

• 16.8% of exploitable comments are about code relationships.

16

1. /* See comment in struct sock definition to understand ... */
2. /* Called from mmioctl_page_retire ... */

Lin Tan

Finding 2: Code Relationships

• 16.8% of exploitable comments are about code relationships.

16

1. /* See comment in struct sock definition to understand ... */
2. /* Called from mmioctl_page_retire ... */
3. /* Call scsi_free before mem_free since ... */

Lin Tan

Finding 2: Code Relationships

• 16.8% of exploitable comments are about code relationships.

16

1. /* See comment in struct sock definition to understand ... */
2. /* Called from mmioctl_page_retire ... */
3. /* Call scsi_free before mem_free since ... */

 /* WARNING: If you change any of these defines, make sure
to change ... */

Lin Tan

Finding 2: Code Relationships

• 16.8% of exploitable comments are about code relationships.

16

1. /* See comment in struct sock definition to understand ... */
2. /* Called from mmioctl_page_retire ... */
3. /* Call scsi_free before mem_free since ... */

• Exploit such comments to provide better navigation capabilities

• Inspire techniques to express code relationships and evolution

 /* WARNING: If you change any of these defines, make sure
to change ... */

Lin Tan

Finding 3: Locking

17

• 4.7% of the non-trivial comments are synchronization/lock related.

1. /* Caller must hold instance lock! */
 static int reset_hardware(…) {…}

Lin Tan

Finding 3: Locking

17

• 4.7% of the non-trivial comments are synchronization/lock related.

2. /* Locking key to struct socket:
 * (a) constant after allocation, no locking required.
 * ...
 * (h) locked by global mutex so_global_mtx. ... */
 struct socket { ...
 short so_type; /* (a) generic type, see socket.h */
 ...
 so_gen_t so_gencnt; /* (h) generation count */ ...
 }

1. /* Caller must hold instance lock! */
 static int reset_hardware(…) {…}

Lin Tan

Finding 3: Locking

17

• 4.7% of the non-trivial comments are synchronization/lock related.

1. /* Caller must hold instance lock! */
 static int reset_hardware(…) {…}

2. /* Locking key to struct socket:
 * (a) constant after allocation, no locking required.
 * ...
 * (h) locked by global mutex so_global_mtx. ... */
 struct socket { ...
 short so_type; /* (a) generic type, see socket.h */
 ...
 so_gen_t so_gencnt; /* (h) generation count */ ...
 }

Lin Tan

Finding 3: Locking

• Design easy-to-use annotations to express lock-related concerns

17

• 4.7% of the non-trivial comments are synchronization/lock related.

1. /* Caller must hold instance lock! */
 static int reset_hardware(…) {…}

2. /* Locking key to struct socket:
 * (a) constant after allocation, no locking required.
 * ...
 * (h) locked by global mutex so_global_mtx. ... */
 struct socket { ...
 short so_type; /* (a) generic type, see socket.h */
 ...
 so_gen_t so_gencnt; /* (h) generation count */ ...
 }

Lin Tan

Finding 4: Annotation Convertible

18

• At least 10.7% of the exploitable comments can be
expressed by existing annotations languages.

• Linux’s Sparse, Microsoft’s SAL, Sun’s Lock_Lint, Splint, Deputy

 opensolaris/intel/io/acpica/resources/rscalc.c:
 /* … AmlBufferLength - Size of AmlBuffer … */
 ACPI_STATUS AcpiRsGetListLength (
 UINT8 *AmlBuffer,
 UINT32 AmlBufferLength, ...)

Lin Tan

Finding 4: Annotation Convertible

18

• At least 10.7% of the exploitable comments can be
expressed by existing annotations languages.

• Linux’s Sparse, Microsoft’s SAL, Sun’s Lock_Lint, Splint, Deputy

 opensolaris/intel/io/acpica/resources/rscalc.c:
 /* … AmlBufferLength - Size of AmlBuffer … */
 ACPI_STATUS AcpiRsGetListLength (
 UINT8 *AmlBuffer,
 UINT32 AmlBufferLength, ...)__ecount(AmlBuffer)

Lin Tan

Finding 4: Annotation Convertible

18

• At least 10.7% of the exploitable comments can be
expressed by existing annotations languages.

• Linux’s Sparse, Microsoft’s SAL, Sun’s Lock_Lint, Splint, Deputy

 opensolaris/intel/io/acpica/resources/rscalc.c:
 /* … AmlBufferLength - Size of AmlBuffer … */
 ACPI_STATUS AcpiRsGetListLength (
 UINT8 *AmlBuffer,
 UINT32 AmlBufferLength, ...)__ecount(AmlBuffer)

• Automatically convert these comments into annotations

Lin Tan

Open vs. Closed Source

19

Software
Comm
ents

Exploit
able Integers

Relation
ship Locking

Annotation
Convertible

Linux 23.1% 55.7% 26.7% 19.5% 5.1% 8.2%

FreeBSD 25% 51.7% 21.5% 14.9% 5.5% 12.7%

OpenSolaris 29.7% 50.3% 17.6% 15.9% 3.4% 11.4%

Lin Tan

Open vs. Closed Source

19

Software
Comm
ents

Exploit
able Integers

Relation
ship Locking

Annotation
Convertible

Linux 23.1% 55.7% 26.7% 19.5% 5.1% 8.2%

FreeBSD 25% 51.7% 21.5% 14.9% 5.5% 12.7%

OpenSolaris 29.7% 50.3% 17.6% 15.9% 3.4% 11.4%

Lin Tan

Open vs. Closed Source

19

Software
Comm
ents

Exploit
able Integers

Relation
ship Locking

Annotation
Convertible

Linux 23.1% 55.7% 26.7% 19.5% 5.1% 8.2%

FreeBSD 25% 51.7% 21.5% 14.9% 5.5% 12.7%

OpenSolaris 29.7% 50.3% 17.6% 15.9% 3.4% 11.4%

Lin Tan

Open vs. Closed Source

19

Software
Comm
ents

Exploit
able Integers

Relation
ship Locking

Annotation
Convertible

Linux 23.1% 55.7% 26.7% 19.5% 5.1% 8.2%

FreeBSD 25% 51.7% 21.5% 14.9% 5.5% 12.7%

OpenSolaris 29.7% 50.3% 17.6% 15.9% 3.4% 11.4%

Lin Tan

Open vs. Closed Source

• OpenSolaris (started as closed software) exhibits similar
characteristics from its open source counterparts.

• Complement the results of previous study [SpinellisICSE’08]

• Our findings are general across different OSs.

19

Software
Comm
ents

Exploit
able Integers

Relation
ship Locking

Annotation
Convertible

Linux 23.1% 55.7% 26.7% 19.5% 5.1% 8.2%

FreeBSD 25% 51.7% 21.5% 14.9% 5.5% 12.7%

OpenSolaris 29.7% 50.3% 17.6% 15.9% 3.4% 11.4%

Lin Tan

Outline

• Motivation

• Methodology & Taxonomies

• OS Comments: Findings and Implications

• Non-OS Comments: Similarities & Differences

• Related Work & Conclusions

20

Lin Tan

Non-OS Comment Source

• Randomly sampled 1050 comments

21

Software Linux FreeBSD OpenSolaris Mozilla MySQL Eclipse

Software
Type OS OS OS Browser DB Server IDE

Language C C C C/C++ C/C++ Java

Lines of
Code 5.2M 2.4M 3.7M 4.5M 1.2M 6.1M

Lines of
Comments 1.2M 0.6M 1.1M 1.2M 0.3M 1.7M

Sample
Size

350 350 350 350 350 350

Lin Tan

Non-OS Comment Findings

• Mostly similar, but OS has more locking & integer comments

• See our paper for other differences

22

Software Comments Exploit
able

Relation
ship

Annotation
Convertible

Locking Integers

OS 23.1-
29.7%

52.6±2.
9%

16.8% 10.7% 4.1% 22.1%

Non-OS 21.8-
28.5%

57.5±2.
9%

21.2% 13.7% 1.7% 6.3%

Lin Tan

Non-OS Comment Findings

• Mostly similar, but OS has more locking & integer comments

• See our paper for other differences

22

Software Comments Exploit
able

Relation
ship

Annotation
Convertible

Locking Integers

OS 23.1-
29.7%

52.6±2.
9%

16.8% 10.7% 4.1% 22.1%

Non-OS 21.8-
28.5%

57.5±2.
9%

21.2% 13.7% 1.7% 6.3%

Lin Tan

Non-OS Comment Findings

• Mostly similar, but OS has more locking & integer comments

• See our paper for other differences

22

Software Comments Exploit
able

Relation
ship

Annotation
Convertible

Locking Integers

OS 23.1-
29.7%

52.6±2.
9%

16.8% 10.7% 4.1% 22.1%

Non-OS 21.8-
28.5%

57.5±2.
9%

21.2% 13.7% 1.7% 6.3%

Lin Tan

Non-OS Comment Findings

• Mostly similar, but OS has more locking & integer comments

• See our paper for other differences

22

Software Comments Exploit
able

Relation
ship

Annotation
Convertible

Locking Integers

OS 23.1-
29.7%

52.6±2.
9%

16.8% 10.7% 4.1% 22.1%

Non-OS 21.8-
28.5%

57.5±2.
9%

21.2% 13.7% 1.7% 6.3%

Lin Tan

Non-OS Comment Findings

• Mostly similar, but OS has more locking & integer comments

• See our paper for other differences

22

Software Comments Exploit
able

Relation
ship

Annotation
Convertible

Locking Integers

OS 23.1-
29.7%

52.6±2.
9%

16.8% 10.7% 4.1% 22.1%

Non-OS 21.8-
28.5%

57.5±2.
9%

21.2% 13.7% 1.7% 6.3%

Lin Tan

• Exceptions are not always used.

• Still use comments to explain the exception types

Non-OS Comment Findings

• Mostly similar, but OS has more locking & integer comments

• See our paper for other differences

22

/* return 1 if ACK, 0 if NAK, -1 if error. */
static int slhci_transaction(...) { ... }

Software Comments Exploit
able

Relation
ship

Annotation
Convertible

Locking Integers

OS 23.1-
29.7%

52.6±2.
9%

16.8% 10.7% 4.1% 22.1%

Non-OS 21.8-
28.5%

57.5±2.
9%

21.2% 13.7% 1.7% 6.3%

Lin Tan

Related Work

• Comment studies
[WoodfieldICSE’81], [Etzkorn’99], [Stamelos’02], [Warren’02], [YingMSR05], [Marin’05],
[JiangMSR’06], [Fluri’07], [StoreyICSE’08], ...

• Usefulness of comments for program understanding
[WoodfieldICSE’81]

• Impact of already commented code [Marin’05]

• TODO comments [YingMSR05], [StoreyICSE’08]

23

Lin Tan

Conclusions

•Comments reveal interesting findings,
which guide the design of new tools and languages:

• Abusive use of integers

• Lack of expressing power on code relationship and evolution

• Many can be expressed by existing annotation languages

•New taxonomies, tools & examined comments

• Available at http://ece.uwaterloo.ca/~lintan/CComment

24

More findings and
implications in our paper

http://ece.uwaterloo.ca/~lintan/CComment
http://ece.uwaterloo.ca/~lintan/CComment

