
Listening to Programmers
— Taxonomies and Characteristics of Comments in Operating System Code

Yoann Padioleau, Lin Tan and Yuanyuan Zhou
University of Illinois, Urbana Champaign

{pad, lintan2, yyzhou}@cs.uiuc.edu

Abstract

Innovations from multiple directions have been proposed
to improve software reliability. Unfortunately, many of the
innovations are not fully exploited by programmers. To
bridge the gap, this paper proposes a new approach to “lis-
ten” to thousands of programmers: studying their program-
ming comments. Since comments express programmers’ as-
sumptions and intentions, comments can reveal program-
mers’ needs, which can provide guidance (1) for language/-
tool designers on where they should develop new techniques
or enhance the usability of existing ones, and (2) for pro-
grammers on what problems are most pervasive and im-
portant so that they should take initiatives to adopt some
existing tools or language extensions.

We studied 1050 comments randomly sampled from the
latest versions of Linux, FreeBSD, and OpenSolaris. We
found that 52.6% of these comments could be leveraged by
existing or to-be-proposed tools for improving reliability.
Our findings include: (1) many comments describe code
relationships, code evolutions, or the usage and meaning
of integers and integer macros, (2) a significant amount of
comments could be expressed by existing annotation lan-
guages, and (3) many comments express synchronization
related concerns but are not well supported by annotation
languages.

1 Introduction

1.1 Motivation

Software bugs hurt software reliability. Therefore, much
effort from multiple directions has been devoted to improve
software reliability by (1) designing and promoting pro-
gramming language extensions [7, 27], better programming
languages, or new development tools [8, 30] to prevent bug
introduction in the first place; (2) building bug detection
tools [9, 20] to find bugs before they cause damage; or (3)
designing annotation languages [2, 11, 23, 34] to provide
special information, such as buffer lengths, to facilitate and
improve the accuracy of bug detection.

Unfortunately, many of the above innovations are not
fully leveraged by programmers. This is mainly due to the
existing gap between programmers and tool/language de-
signers. In particular, what new language features or tools
should be developed or improved with enhanced usability
in order to address programmers’ most important needs?
Additionally, what problems are pervasive and critical so
that programmers should adopt some annotation languages,
code editor features or new bug detection tools in their soft-
ware development practice?

To bridge the gap, researchers conduct user studies [1, 3]
to understand programmers’ needs as well as tool usabil-
ity. While this is a promising direction, it raises many
challenges such as how to ensure the representativeness of
user studies, how to be objective, or how to avoid interfer-
ing with programmers’ activities. Additionally, developers
often do not realize what support/tools they need or need
most. While we definitely should promote and encourage
programmer user studies, we should also seek alternatives
in the mean time.

Code comments, while significantly under-exploited,
can provide a great data source for understanding program-
mers’ needs. As comments are more flexible and expressive
than source code, developers use them to complement their
source code for various purposes, such as explanations, as-
sumptions, specifications, etc. A significant amount of com-
ments is already available in most modern software. For ex-
ample, 23.1-29.7% (0.6-1.2 million lines) of the three pop-
ular operating systems (Linux, FreeBSD, and OpenSolaris),
are comments, excluding blank lines.

While many comments are simply explanations of the
code, we found that 52.6±2.9%1 of the comments from
Linux, FreeBSD, and OpenSolaris are not merely explana-
tions (Section 4). These comments could (1) motivate new
tools and language techniques or justify existing ones to ad-
dress programmers’ real needs, and (2) show where pro-
grammers need help and should adopt new or existing tools
and language extensions to address these problems.

1The statistical margin of error is shown with 95% confidence level.

Specifically, studying programmers’ comments could
help in the following aspects:

(1) Programming language: Comments could motivate
the design of new programming language extensions. The
comments in OpenSolaris shown below specify the field
name to which a value is assigned, e.g., assigning15 to
the length field. Specifying such information in com-
ments is not only inconvenient but also error-prone when
the struct definition changes. To address these limita-
tions, the GCCdesignatorextension was proposed to spec-
ify such field names in the code, e.g.,.length = 15 . This
example shows that some needs indicated by comments
havealreadybeen addressed by language extensions.

cons t s t r u c t s t d r i v e t y p e s t d r i v e t y p e s [] = { . . .
‘ ‘ Un isys . . . ’ ’ , /∗ . name . . . ∗ /
1 5 , /∗ . l e n g t h . . . ∗ / . . . } ;

(2) Software bug detection: Comments can be checked
against source code for bug detection. An example com-
ment from the Linux kernel is/* This function must

not be called from interrupt context */ . Our
previous work, iComment [33], leveraged around 1% of the
Linux kernel comments to automatically detect lock-related
and call-related bugs. Although iComment showed the po-
tential of using comments for software reliability, we won-
der what information we could extract for bug detection
from the remaining 99% of 1.2 million lines of the Linux
kernel comments.

(3) Annotation language: To broaden the impact of an-
notation languages, we would benefit from studying: (1)
How often programmers use comments instead of annota-
tions for concerns that are already covered by existing an-
notation languages. If there are a significant amount of
such comments, it may be possible to convert comments
into existing annotation languages for automated bug detec-
tion. (2) What important concerns expressed in comments
are not covered by existing annotation languages and could
thus motivate new types of annotations.

(4) Code editor features: Comments can be used
by editors to increase programmer productivity. For
example, to make it easier to find relevant code,
developers put cross reference information in com-
ments, such as/* See comment in struct sock

definition to understand ... */ . It would be
beneficial for an editor to utilize such comments and dis-
play correlated code and comments in the same window to
reduce code navigation time. Such a feature may greatly
increase programmer productivity as it has been found that
programmers spend on average 35% of their programming
time on code navigation [18].

State-of-the-art and Challenges: Although a large
amount of comments exist, comment characteristics are
poorly studied. In contrast, there is a flurry of work on bug

characteristics [5, 24, 32] and characteristics of other pro-
gram artifacts [25] which provided insights on improving
software reliability.

Studying comments has two major challenges. First, it
is difficult to understand comments. As comments are writ-
ten in natural language, they are ambiguous. Therefore, the
exact meaning and scope of comments may not be easy to
determine by just reading the comments, and may require
a thorough understanding of the semantics of the relevant
code and comments. Second, unlike software bugs, which
have a relatively well accepted classification, there is no
comment taxonomy based on commentcontentyet. It is dif-
ficult to discover the underlying recurring patterns among
comments, as many comments appear distinct.

1.2 Our Contributions
We take the first initiative, to the best of our knowl-

edge, in studying commentcontentcharacteristics compre-
hensively. We started from comments in operating system
code due to their overwhelming complexity and critical im-
portance of reliability. More specifically, we manually ex-
amined 1050 comments randomly selected from three pop-
ular open source operating systems written in C: Linux,
FreeBSD, and OpenSolaris (started as closed software).

We study the comments from several dimensions in-
cluding (1) what is in comments, (2)whom the com-
ments are written for or written by, (3)where the com-
ments are, and (4)whenthe comments were written. We
have made our comment database publically available at
http://opera.cs.uiuc.edu/CComment .

Our comment study reveals that 52.6±2.9% or roughly
736,1092 comments in the three operating systems are not
merely explanations and could be leveraged by various tech-
niques, either existing or to-be-proposed. We call these
commentsexploitablecomments.

Our major findings that can benefit language/tool design-
ers and system programmers include (§ denotes in which
section the finding and itsimplicationsare discussed):

• Finding 1 (§4.1): 22.1% of the exploitable comments
clarify the usage and meaning of integers and integer
macros that are used by programmers to represent var-
ious restricted data types. Each of these restricted data
types has its constraint, e.g., one should not confuse read-
only port macros with read-write port macros. Since such
constraints are not automatically assured by current com-
pilers, bugs can be introduced.

• Finding 2 (§4.2): 16.8% of the exploitable comments
specify or emphasize particular code relationships such
as which function is responsible for filling a specific vari-
able. These data flow, control flow, or other correlation
2Estimated based on the percentage (52.6%) and the total number of

comments (1,399,447). The breakdown of statistics in each OS is shown
in Section 6.

2

based comments are neither fully leveraged to check for
bugs nor used to help programmers navigate code easily.

• Finding 3 (§4.3): 5.6% of the exploitable comments de-
scribe code evolution aspects such as cloned code (copy-
pasted), deprecated code, and TODOs, which could be
leveraged to check for various consistency issues. For ex-
ample, a bug fix on one location should be propagated to
its cloned copies [20].

• Finding 4 (§4.4): There are a significant number (4.7%)
of comments related to properties of locks and synchro-
nization, which almost no existing annotation languages
except the proprietary tool LockLint [23] can express.

• Finding 5 (§5): 10.7% of the exploitable comments can
be expressed by existing annotation languages (ignoring
the easy-to-use aspect) to help bug detection.

• Finding 6 (§6): OpenSolaris, which started as closed
software, exhibits essentially the same comment charac-
teristics as its open source counterpart. Our result com-
plements the previous study that showscodecharacteris-
tics are similar in the three operating systems [28].

To further understand how tied to OS and C code our re-
sults are, we have performed a preliminary study on 1050
comments from open source software written in C++ and
Java (MySQL, Firefox and Eclipse), whose results are pre-
sented in Section 7.

2 Methodology
This section presents our comment classification pro-

cess, the evaluated operating systems, the tools we devel-
oped that made this study easier, and threats to validity. The
unit of comments we use is the comment block, not line.

2.1 Process
It is challenging to design a taxonomy classifying com-

pletely around 1.4 million comments using a limited num-
ber of mutually exclusive categories. Our main approach
is a combination of random sampling, iterative refinement,
and double verification by 2 independent opinions about the
taxonomies and comment labels.

In addition to manually reading comments and code, we
studied the last patch that modified a comment to better un-
derstand the comment and the motivation for the modifica-
tion. Furthermore, we automatically extracted many proper-
ties for all comments, such as where a comment is located,
the time a comment was written, and its author.

2.2 Evaluated Operating Systems
We randomly sampled and examined 1050 comments

from three open source operating system kernels (350 per
OS): Linux, FreeBSD, and OpenSolaris (an open source OS
branched from theclosedSolaris OS since June 2005) (Ta-
ble 1). The three OSs are written in C and we studied the

Software LOC LOM % # of Comments
Linux 5.2M 1.2M 23.1% 729,923

FreeBSD 2.4M 0.6M 25.0% 289,413
OpenSolaris 3.7M 1.1M 29.7% 380, 111

Table 1. Evaluated Operating Systems. LOC is lines of
code and LOM is lines of comments. % denotes the per-
centage of comments in the entire code base. Blank lines
are excluded.

versions retrieved on February 12, 2008. We chose to study
OSs because they are large, complex and their reliability is
critically important. Specifically, as OS code is developed
by many programmers, contains many components, uses a
variety of algorithms, data structures, and software architec-
tures, we hope it may exhibit a wide range of programmers’
needs. Additionally, by studying a completely open-source
code base (Linux), a code base with a strong academic com-
ponent (FreeBSD), and a code base with a commercial lin-
eage (OpenSolaris), we hope to find general software laws
or interesting specificities.

2.3 Our Navigation and Analysis Tool
We developed a compiler front-end and an interface to

version control systems to extract a rich amount of informa-
tion about comments, such as to which C constructs they are
attached, the time of their creation, and their authors. Un-
like classical C front-ends (including gcc), which remove
comments and C preprocessor constructs by first calling
cpp , we, in contrast, are precisely interested in such in-
formation. Our compiler front-end thus understands code
before it is transformed by C preprocessor and retains com-
ments. We also developed a GUI to conveniently navigate,
annotate, and analyze comments, using an interface inspired
by iTunes and faceted information retrieval. With the help
of simple heuristics, our tool can extract the location infor-
mation of a comment, e.g., next to a loop, next to a field
in a structure, etc. Therefore, our tool can group and dis-
play comments next to the same type of source code con-
structs/entities together, enabling us to focus on one group
of comments at a time. This functionality made it easier for
us to find recurring patterns in comments.

2.4 Threats to Validity
While we believe that the comments from the 3 exam-

ined OSs well represent comments in systems software, we
do not intend to draw any general conclusions about com-
ments in all software. Similar to any characteristic study,
our findings should be considered together with our evalua-
tion methodology. Section 7 presents a preliminary study
of comments in other large software written in C++ and
Java. Since we examined comments manually, subjectiv-
ity is inevitable. However, we tried our best to minimize
such subjectivity by using double verification. While we
sampled a fixed amount (350) of comments from each OS,

3

CommentsWhat

When

Where

Who
Content

Evolution

Beneficiary

Entity

Subsystem

Time
Author

Content (§4,§5) Beneficiary (§4,§5) Entity (§6.1) Subsystem (§6.1)
Type Programming Language Macro Core
Interface Bug Detection Tool Function Definition Architecture
Code Relationship Annotation Language Field File System
PastFuture Code/Text Editor Variable Drivers
Meta Version Control System If Network
Explanation Other Function Call Other

Loop
Assignment
...

Figure 1. Comment taxonomies. Comments that belong to the 4 categories above the dotted line areexploitablecomments.

an alternative is to sample comments proportional to the to-
tal number of comments in the software. However, as these
3 OSs have similar comment distribution (Section 6), the
two approaches should produce similar results. Infrequently
appearing comments may not show up in our sample, but
could still be very important. In the future, it would be inter-
esting to give comments different weight, e.g., more weight
for comments that take more effort to write, and less weight
for automatically generated comments.

3 Taxonomies of Comments
We classify comments from different angles, according

to the questions (inspired by Buckley et al. [4]) we are in-
terested in (Figure 1):

• What? Content:what is in a comment? Does it contain
useful information?

• Who? (1) Beneficiary:who (e.g., testers) or which tool
(e.g., a bug detection tool) can benefit from a comment?
(2) Author: who is the author of a comment, an expert, a
beginner, or was it generated by a tool?

• Where? (1) Code entity:where in a file is a comment
located (e.g., header, function, before a loop, in a macro)?
(2) Subsystem:in which subsystem is a comment (e.g.,
drivers, file system)?

• When? (1) Time: when was a comment written? (2)
Evolution: how do comments evolve over time?

In this paper we are mostly interested in theContentand
Beneficiarydimensions, considering that our main goal is
to listen to programmers through comments. As studying
these 2 dimensions requires manual examination of com-
ments, it is performed on the 1050 randomly sampled com-
ments. The other dimensions are studied automatically to
some extent using our tools on all comments.

TheContentdimension contains multiple levels of cate-
gories, but only the top level categories are shown in Fig-
ure 1. Due to space constraints, we only discuss some
subcategories of each top level category in this paper.
Typeencompasses many subcategories includingUnit, In-
tRange, andBitsBytes, whose definitions and comment ex-
amples will be given later in§4.1. Interface contains

subcategories such asErrorReturn(§4.1) andContextLock
(§4.4). Code Relationshipconsists of subcategories in-
cluding DataFlow and ControlFlow (§4.2). PastFuture
encompasses subcategories such asTODO (§4.3). Meta
comments describe copyright notices, authors, etc.Ex-
planation comments are all other comments that cannot
be classified into the 5 top level categories mentioned
above. A detailed description of our content taxonomy
and many comment examples are available on our website
http://opera.cs.uiuc.edu/CComment/ .

4 Comment Content (What)
In this section, we will discuss our findings based on

comment content. Although addressing the concerns re-
flected by programmers’ comments is out of the scope of
this paper, we try to suggest how a tool/language designer
or a system programmer can benefit from these comments
at the end of each subsection. While some of the concerns
may be known, our results confirm and reinforce them.

We found that 52.6±2.9% or roughly 736,109 of the
comments in the three OSs belong to the four top level
content categories,Type, Interface, Code Relationship, and
PastFuture. We call themexploitablecomments because
they can potentially be used by existing work (i.e., anno-
tation languages, bug detection tools, editor features, and
programming languages), or inspire new work. We will use
examples from these categories to illustrate this point later
in this section.

As we are mainly motivated to improve software reliabil-
ity, this study may be biased towards identifying comments
that could help build more reliable software. For example,
althoughExplanationandMetacomments can be useful for
documentation and software maintenance, we do not con-
sider them as exploitable comments, as they are less useful
for avoiding or detecting bugs.

All percentages in this section are relative to the ex-
ploitable comments unless specified otherwise. Note that
a small 1% of the exploitable comments represents roughly
7,400 comments in the three OSs altogether.

4.1 Integers and Integer Macros
Finding 1: 22.1% of the exploitable comments describe

the usage and meaning of integers and integer macros,

4

which are used to represent restricted data types such as
bitsets, IO ports, and units. Each of such restricted data
types has its constraint, for example, one should not write
to read-only ports and values in different units should not be
added directly. Since such constraints are not automatically
assured by current compilers, bugs can be introduced.

We present a few important categories of comments re-
lated to integers and macros:

• BitsBytes (7.1%):
1 . # d e f i n e E1000MCC 0x0401C /∗ M u l t i p l e C o l l i s i o n

Count − R / c l r ∗ /
d e f i n e E1000RCTL 0 x00100 /∗ Rx Con t ro l − RW ∗ /

2 . # d e f i n e IXGBGPTCL 0x02108 /∗ Good Packe ts
T r a n s m i t t e d Count (Low)∗ /

d e f i n e IXGBGPTCH 0 x0210C /∗ Good Packe ts
T r a n s m i t t e d Count (High)∗ /

3 . # d e f i n e EMUDOCK MINOR REV 0x26 /∗ 0000 xxx
3 b i t Audio Dock FPGA Minor rev∗ /

d e f i n e EMUDOCK BOARD ID 0x27 /∗ 00000 xx
2 b i t s Audio Dock ID p i n s ∗ /

An OS must perform low-level operations at the bit and
byte level, e.g., when interacting with devices through IO
ports. In the example above, comments are used to ex-
plain the usage of a port and the value that can be re-
trieved from that port. The first set of comments spec-
ify whether the port is read-only (R) or not (RW). These
read-only ports can be an argument to register read func-
tions as inE1000 READREG(hw, E1000 MCC) but not
to register write functions such asE1000 WRITEREG-

(E1000 RCTL). The second and third sets of comments
explain respectively how to combine the result from mul-
tiple ports (low bits and high bits) to construct a complete
value and which bits retrieved from a port should be used.

Programmers must pay special attention to using these
macros in the right context as the C type-checker can-
not detect, for instance, code using the wrong bits. The
need to specify and type-check low-level interactions has
already been recognized by Merillon et al. [22] with the
domain specific languages Devil. However, such domain
specific languages are not adopted by programmers.

• ErrorReturn (4.7%):
/∗ r e t u r n 1 i f ACK , 0 i f NAK,−1 i f e r r o r . ∗ /
s t a t i c i n t s l h c i t r a n s a c t i o n (. . .) { . . . }

Many comments describe certain return values that indi-
cate errors that a function can encounter. As different
functions use different conventions (an error can be indi-
cated by a negative value, zero, or a positive value), there
is no assurance that the call-sites follow the same con-
ventions. Explicit exception handling has already been
incorporated in higher level languages such as C++ and
Java, which can help to address this problem. Neverthe-
less, our results show that C++ and Java code still contain
such error return related comments (Section 7).

• Unit (4.7%):
1 . xge os mde lay (5 0) ; / / wa i t 5 0 m i l l i s e c o n d s
2 . i n t mem ; /∗ memory i n 1 2 8 MB u n i t s∗ /

Another kind of recurring comments specifies the unit of
a type. For example, the comments above indicate that
the time is in milliseconds, andmemis in a unit of 128
MB. Confusing different units (second, millisecond, byte,
kilobyte, etc.) can cause software bugs. As C and many
other programming languages (except the latest version
of Microsoft F#) do not provide different types for differ-
ent units, programmers can only use more general types
such asint for these different units.

• Bitset (1.3%):
1 . /∗ Per p r o c e s s f l a g s∗ /

d e f i n e PFALIGNWARN 0 x00000001
d e f i n e PFSTARTING 0 x00000002
d e f i n e PFEXITING 0 x00000004

2 . /∗ Clock f l a g s ∗ /
d e f i n e RATECKCTL (1 << 0)
d e f i n e RATEFIXED (1 << 1)
d e f i n e RATEPROPAGATES (1<< 2)

A common idiom used in C, the bitset, allows encoding
a set via an integer. Each bit of this integer represents
a different element where different elements are usually
represented via different macros as shown above. The
comments introduce the name of a new bitset, which in
some way introduce a new type. As OS code uses many
such bitsets, it introduces many such macros. Unfortu-
nately the C type checker can not detect, for instance, if a
macro from one bitset is misused, e.g., combined with a
macro from a different bitset.

• IntRange (1.3%):
shor t c h a r h e i g h t ; /∗ l i n e s per char (1−32) ∗ /

Surprisingly, although buffer ranges are the focus of
many existing annotation languages, a similar concern
about integer ranges, which appears as often in com-
ments, isnot covered by existing annotation languages.
One possible reason is that buffer overflows are consid-
ered more important as they have been a dominant cause
of security violations. The ADA programming language
directly supports the integer range constraints.

Implication 1: Bug detection tools and annotation lan-
guages, which currently focus on pointers and memory
bugs, should also pay attention to integers and macros.

4.2 Particular Code Relationships
Finding 2: 16.8% of the exploitable comments spec-

ify or emphasize some particular code relationships such as
which function is responsible for filling a specific variable
or in what order a group of functions should be invoked.
• DataFlow & Reserved (4.3%):

1 . t i m e o u t i d t m s d t i m e o u t i d ; /∗ i d r e t u r n e d by
t i m e o u t () ∗ /

2 . boo l v d e v n o w r i t e c a c h e ; /∗ t r u e i f f l u s h w r i t e c a c h e
f a i l e d ∗ /

3 . /∗ The argument t o t h e p e r i o d i c hand le r i s no t
c u r r e n t l y used , bu t i s r e s e r v e d f o r f u t u r e∗ /

Some comments express data flow relationships, such as
how data or events can affect the value of other data, or

5

the lack of such relationships. In the last comment above,
if the programmer tries to read the argument, the expres-
sion evaluates to junk which can cause unexpected be-
havior. Two annotation languages for C, SAL [2] and
Splint [11], can express some of those concerns and per-
form source code checking against these concerns.

• ControlFlow (5.4%):
1 . d e f a u l t : /∗ no t reached ∗ /
2 . case 1 0 : /∗ FALLTHROUGH ∗ / ;
2 . /∗ Ca l l ed from m m i o c t l p a g e r e t i r e . . . ∗ /
3 . /∗ Ca l l s c s i f r e e b e f o r e memfree . . . ∗ /

Some comments express control flow related concerns,
such as (1) a piece of code is not reachable; (2) a missing
break statement is intended; (3) which function should
be the caller of another function; and (4) in what order a
group of functions should be invoked.

As it is a common mistake to forget to add abreak

statement after acase statement, Splint and Lint [14] by
default report any missingbreak statement aftercase .
Developers can add theFALLTHROUGHannotation to sup-
press the warnings when abreak is indeed not wanted.

Implication 2: These data flow, control flow, or other cor-
relation based comments could be leveraged to check for
bugs and also to help system programmers navigate code
more easily. For example, while programmers should pay
attention to such relationship comments, IDEs and tools de-
signed to facilitate code navigation [15, 30] may want to
exploit such information in comments to provide better nav-
igation capabilities. They could even eliminate the need
for such navigations by pro-actively anticipating what cor-
related code a programmer would like to read together.

4.3 Software Evolution
Finding 3: 5.6% of the exploitable comments describe

code evolution aspects such as TODOs, deprecated code, or
cloned code (copy-pasted), which can be leveraged to check
for various consistency issues.

• Clone (1.1%):
/∗ t h e l o g i c o f t h e f a s t pa th i s d u p l i c a t e d from t h i s

f u n c t i o n . ∗ /

Many comments such as the example above are about
code segments that achieve similar functionality but are
scattered throughout program. If a bug is identified in a
code segment, all of its clones should also be examined
for similar bugs.

• TODO and FIXME (3.6%):
/∗ XXX − most f i e l d s i n k i r u s a g e c h are no t (y e t)

f i l l e d i n ∗ /

Typically, programmers use special names, such asXXX,
TODO, andFIXME to indicate to-do tasks. While develop-
ers can search for the special tags to collect and complete
the tasks listed in comments, they can easily forget to do
so, which can introduce bugs.

Implication 3: Tool/language designers should provide
better support for software evolution, either to ensure copy-
pasted code is updated consistently, deprecated code is not
used, or some TODO tasks are completed before software
release. On the other hand, OS developers may want to use
existing tools [20] to check for some of the cloned-code re-
lated inconsistencies.

4.4 Locking Specification
Finding 4: There is a significant number of comments

(4.7%) related to locks and synchronizations, which almost
no existing annotation languages except the closed propri-
etary tool LockLint [23] can express and check.

• ContextLock (3.3%):
/∗ . . . Assumes : tq−>t q l o c k i s he ld . ∗ /
s t a t i c vo id t a s k q e n t f r e e (. . .)

Many comments about the lock related context of a
function are similar to the one shown above. These
comments can be expressed by LockLint annotations,
e.g., the example above can be expressed by placing
annotation MUTEXHELD(&tq- >tq lock) in function
taskq ent free() .

• LockVarProtection (1.4%):
/∗ Lock ing key t o s t r u c t s o c k e t :
∗ (a) c o n s t a n t a f t e r a l l o c a t i o n , no l o c k i n g r e q u i r e d .
. . .
∗ (h) l o c k e d by g l o b a l mutex s og l o b a l m t x ∗ /

s t r u c t s o c k e t { . . .
shor t s o t y p e ; /∗ (a) g e n e r i c type , see s o c k e t . h∗ /
. . .
s o g e n t s o g e n c n t ; /∗ (h) g e n e r a t i o n coun t∗ / . . . }

Some other lock-related comments indicate which lock
is used to protect which shared variable. To express
comment(h) above, one can use the LockLint an-
notation MUTEXPROTECTSDATA(so global mtx,

so gencnt) after the struct definition.

Although many lock-related comments can be expressed
by Lock Lint, OpenSolaris still contain as many lock-
related comments as Linux and FreeBSD, showing that
Lock Lint is not even fully utilized by its own creator (Sun).

Implication 4: As concurrent code is error-prone and dif-
ficult to debug and maintain, and as concurrency bugs may
become more severe in the future due to the popularity of
multicore machines, it might be beneficial for language de-
signers to design some easy-to-use annotation languages for
synchronization related concerns. To speed up adoption,
annotation language designers may want to work together
with system programmers to design annotation languages
that handle most of their programming needs.

4.5 Other Categories
• Memory (2.2%):

1 . /∗ param wrch (may be NULL)∗ /
2 . /∗ AmlBu f fe rLeng th− S i z e o f AmlBu f fe r∗ /
3 . /∗ The c a l l e r w i l l f r e e mp ∗ /

6

Many comments express memory related concerns. (1)
a pointer may be null; (2) a buffer must be within a cer-
tain bound; or (3) which pointer/function is responsible
for deallocating the buffer storage. These issues are ad-
dressed by existing annotation languages, including SAL
and Splint. For example, one can add the Splint tag
owned to a pointer to indicate that the pointed storage
should be freed through this pointer. Such comments can
help detect double free bugs and memory leaks. Similar
concerns apply to other resources such as file handles that
must also be released.

• Context (3.4%):
1 . /∗ Assumes t h a t SGE i s s topped and a l l i n t e r r u p t s

are d i s a b l e d . ∗ /
2 . /∗ p e r m i s s i o n checks w i l l be done by t h e c a l l e r∗ /

The context of a function call is important for pro-
gram correctness. Besides lock-related context, other
context-related concerns are also commonly expressed in
comments such as (1) interrupt-related context, and (2)
security-related context. Many of these comments can
be seen as assertions on the structure of the program (e.g.,
its call graph), not assertions on the value of variables.
Some software evolution related comments can be seen
as assertions on the source code history of the program.

• ByteAddress:(2.5%)
s t r u c t a u d i o 1 5 7 5 a u d i o r e g s { . . .

u i n t 8 t m i c i l v i v r e g ; /∗ 65 h − 65h ∗ /
u i n t 1 6 t m i c i s r r e g ; /∗ 66 h − 67h ∗ /
u i n t 1 6 t m i c i p i c b r e g ; /∗ 68 h − 69h ∗ / . . . }

OS code contains many comments about the precise byte
layout of large structures such as the one above. Such lay-
outs about devices, network protocols, file systems, etc.
are specified in external documents. To follow the speci-
fication, programmers have to compute the exact number
of bytes and use the right type to declare the storage for
each field, e.g.,66h-67h is 2 bytes therefore it should
use typeuint16 t . It would be better if a tool can check
the consistency between the types and the comments.

The description of other categories can be found on our
websitehttp://opera.cs.uiuc.edu/CComment/ .

5 Annotation Languages
Finding 5: At least 10.7% of the exploitable comments can
be expressed via existing annotation languages (ignoring
the easy-to-use aspect).

Implication 5: There is a great potential of automatically
converting these comments into existing formal annotations
for automatic bug detection. Such approach could help de-
velopers to see the benefits of annotation languages without
paying the overhead of writing the annotations first.

Although annotation languages have been recognized as
a promising way to improve software reliability, they have
not been widely adopted yet. To help developers transition

Category % Supporting AnnoLang
(partially or fully)

Lock 44.1 Lock Lint
Memory 20.3 Deputy, SAL, Splint
Reserved10.2 SAL, Splint
Control 6.8 SAL, Splint, LockLint
Other 22.0 Deputy, SAL, Splint

AnnoLang # %
Splint 30 50.8

Lock Lint 27 45.8
SAL 19 32.2

Deputy 12 20.3
Sparse 2 3.4
Total 59 /

(a) Distribution (b) Coverage

Table 2. Distribution of Annotation Convertible Com-
ments and Coverage of Annotation Languages. AnnoLang
denotes annotation language.

to the era of writing annotations, we can help in two aspects:
(1) Currently, developers can not experience the benefits of
annotation languages without first learning the annotation
languages and spending extra effort to write annotations. If
we can use comments to suggest annotations, developer can
learn by example and could be more likely to write anno-
tations directly in the future. Therefore, as a first step, we
study what and how many comments are already covered by
existing annotation languages to show the potential of con-
verting the comments into existing annotation languages.
(2) As many annotation languages are available, it may be
difficult for developers to know all of them. By studying
both existing annotation languages and comments to learn
programmers’ needs, we hope to provide guidance on de-
velopers’ selection of annotation languages.

Specifically, we conducted a brief survey of five ma-
jor annotations languages supporting C, i.e., Microsoft
SAL [2], Linux’s Sparse [34], Sun’s LockLint [23],
Deputy [6], and Splint [11]. We then studied how many of
the manually sampled comments can be expressed by these
annotation languages.

Comments that can be converted to existing annotations,
calledannotation convertible comments, make up 10.7% of
the exploitable comments. We showed how some of the
comments can be expressed in a particular annotation lan-
guage in earlier sections such as bulletControlFlowin §4.2,
bulletsContextLockandLockVarProtectionin §4.4.

The category distribution is shown in Table 2(a). These
categories are aggregation of different subcategories. For
example,Lock is lock related comments including subcate-
goriesContextLockandLockVarProtection(§4.4). Memory
includes comments specifying null pointers, buffer bounds
and buffer ownership (bulletMemory in §4.5). Reserved
comments specify whether a variable is used or not (exam-
ple 3 in bulletDataFlow & Reservedin §4.2). Control de-
notes certain control flow related comments such as com-
ment 1 & 2 in bulletControlFlow in §4.2. The percent-
age numbers are relative to the annotation convertible com-
ments. The sum is not 100% because one block comment
can belong to multiple categories.

In addition, many important concerns are not or poorly
supported by existing annotations, including bitsets, units,

7

Type Inter-
face

Relati-
onship

Past-
Future

Meta Expla-
nation

Total Exploit-
able%

L 54 49 93 19 17 145 377 55.7%
F 34 46 97 21 5 166 369 51.7%
O 31 46 107 8 5 172 369 50.3%

Table 3. Comparison of Comment Content Distribution.
L, F, O are Linux, FreeBSD, OpenSolaris Respectively. Ex-
ploitable% is the percentage of exploitable comments.

integer value ranges, code relationships, cloned code, call-
ing context, and byte addresses. It would be beneficial to
design annotation languages for these concerns.

Table 2(b) shows that Splint has the best coverage
(50.8%) of the convertible comments. Sparse has a cover-
age of only 3.4%, probably for two reasons: (1) the expres-
siveness of Sparse is limited and (2) developer seldom write
comments for concerns that Sparse annotations can express
(e.g., address space modifieruser).

6 Where, When, and Who
In this section, we briefly study the remaining comment

dimensions:whereare the comments,whenthe comments
were written, andwhowrote them. There are many possi-
ble statistics to obtain for these dimensions. However, as
our goal in this paper is to listen to programmers through
comments, we focus on questions and statistics that may in-
validate our findings such as: Are the findings general to all
the three OSs? Are the studied comments recent enough or
do they correspond to obsolete needs? Have we actually
listened to many programmers? Although using version
control systems (e.g., commandcvs annotate) has some
known caveats [16] and the information extraction process
explained in Section 2 uses some heuristics, the resulting
approximations are good enough for our purpose as our goal
is only to check the validity of our findings.

6.1 Where

Finding 6: OpenSolaris, started as closed software, does
not exhibit much different comment characteristics from its
open source counterparts.

Implication 6: Programmers’ need in communicating in-
formation via comments is not affected by the software de-
velopment paradigm (i.e., open source or closed source).
This also shows that our findings about programmers’ needs
as reflected in their comments are general across OS code.

Table 3 shows that the distribution of comment content
in different OSs is almost identical. The total number of la-
bels for an OS is slightly bigger than 350 because a few
comments have multiple labels (7.4% of the entire sam-
ple have multiple labels and on average each comment has
1.09 labels). For our Finding 1 to 5, the individual per-
centage numbers for each OS are 17.6-26.7%, 14.9-19.5%,

4.0-8.3%, 3.4-5.5%, and 8.2-12.7%, which are very similar.
Figure 2(a) shows the distribution of comment locations in
the code. We also found that many comments are similar
regardless of the functionality of the code (e.g., drivers, file
systems, or core kernel code). As the three OSs share some
code, they also share some comments which may invalidate
our claim of generality. Therefore, we conducted a com-
ment clone detection experiment, and found that the pair-
wisecommentsharing between each pair of OSs projects is
on average less than 7.5%. Therefore, such a small sharing
should not threat the validity or generality of our findings.

By zooming in to finer-grained categories, we found that
certain types of comments occur more often in specific sub-
systems. For example,BitsBytescomments appear more
often in drivers and network protocol code as both require
more low-level data manipulation. This phenomenon sug-
gests maybe that some specialized training can be provided
to the different OS programmers to focus on their most rel-
evant needs, for example, to teach them the most relevant
annotations.

6.2 When
For Linux and FreeBSD, whose evolution information is

available from 1991 and 1994 respectively, the number of
comments continually increases over the years. Figure 2(b)
and 2(c) show the absolute time of comments’ last modifica-
tion (e.g., 5 years ago), and the time relative to the file (e.g.,
2 months after a file is created or imported in the repos-
itory). The former can give a hint about whether a type
of comments is still relevant today, the latter can suggest
the development phase (e.g., design, maintenance) when the
comment was written. We found that most categories in our
taxonomy have comments in the sample that were written in
the last 5 years, indicating that programmers still use com-
ments to express their needs and those needs have not yet
been fully fulfilled by the tools they know.

We can see from Figure 2(c) that most comments were
never modified after the file containing them was created or
imported in the repository. To understand why comments
were modified or added to an existing file in the other cases,
we studied the last patch that modified or added a comment
for our sample comments (using information derived from
cvs annotate). We found that most of these comment
modifications were either simple fixes of indentation prob-
lems and typos, addition of new comments introduced to-
gether with new code, or movement of existing comments
and code from another file. Only a few comment modifica-
tions were due to programmers’ desire to document a bug
fix or add more information to the software.

Outdated comments: Inevitably, some comments we
studied may be out of date. However, the outdated com-
ments were usually correct at the time when they were writ-
ten, therefore, these comments still express programmers’
real needs.

8

Mac
ro

Defi
nit

ion

Fun
ctio

n
Field

Vari
ab

le

Ini
tia

lize
r

Stru
ct/

Arra
y If

Call

Fun
ctio

n
Lo

op

Assi
gn

nm
en

t

Unk
no

wn
Othe

r

(en
um

, ,
etc

)

5

10

15

20

co
m

m
en

t %

Linux
FreeBSD
OpenSolaris

Comment location

19
91
19

92
19

93
19

94
19

95
19

96
19

97
19

98
19

99
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
0

5

10

15

co
m

m
en

t %

Linux
FreeBSD

Last modification of a comment

0 D
ay

1 D
ay

1 W
ee

k

1 M
on

th

3 M
on

ths

6 M
on

ths
1 Y

ea
r

2 Y
ea

rs

4 Y
ea

rs

8 Y
ea

rs
More

20

40

60

co
m

m
en

t %

Linux
FreeBSD

Last modification relative to file creation
(a) Location (b) Absolute Age (c) Relative Age

Figure 2. Distribution of Comment Location, Absolute Age and Relative Age. All comments, not only the samples, are included.
Note that year 2008 only contains less than 2 months’ data.

6.3 Who
By studying our 1050 comment sample, we have listened

to 309 different OS programmers, according to the version
control systems. We found that well-known experts includ-
ing Linus Torvalds also use comments to express needs that
can not be fulfilled by the language or the tools they use.

7 Comment Study on Non-OS Code
Although this study focused on comments in operating

systems, which are written in C, we have also tried to study
how tied to OS code and C our results are. To understand
comments in other types of software, written in other pro-
gramming languages, we performed a preliminary comment
study using 1050 comments from three other open source
code bases (350 from each): MySQL (a database server),
Firefox (a web browser) and Eclipse (an IDE). Eclipse is
written in Java while MySQL and Firefox are mostly a mix
of C and C++ (with a little of Java). We also extended our
tools to handle C++ and Java code.

Table 4 summarizes the similarities and differences be-
tween OS and non-OS code. For the 3 non-OS code bases,
21.8-28.5% of the lines are comments. By studying the
1050 randomly sampled non-OS comments, we found that
57.5±2.9% are exploitable comments. Among the ex-
ploitable comments, 21.2% are about particular code rela-
tionships (compared to Finding 2), 3.8% are code evolution
related comments (compared to Finding 3), and 13.7% can
be expressed by the 5 annotation languages we studied if
they were extended to process C++ and Java code (com-
pared to Finding 5). These results are similar to the corre-
sponding numbers for OS code, which shows that Findings
2, 3 and 5 seem true regardless of the type of software or
the programming language used.

There are still some lock/synchronization related com-
ments (especially in MySQL), although the percentage

Software Com% Exp% F2 F3 F5 F4 F1
OS 23.1-29.7%52.6±2.9% 16.8% 5.6% 10.7% 4.7% 22.1%

non-OS 21.8-28.5%57.5±2.9% 21.2% 3.8% 13.7% 1.7% 6.3%

Table 4. OS and non-OS comparison. Com% is the per-
centage of comments in software. Exp% is the percentage
of exploitable comments. F stands for Finding.

(1.7%) is smaller than OS’s (4.7% shown in Finding 4).
This difference is understandable as OSs inherently have
to deal with concurrent activities and shared resources, and
OS developers pay special attention to the correctness of
synchronization.

Non-OS code contains much fewer comments explain-
ing integers and integer macros (only 6.3% as opposed to
22.1% in Finding 1). Indeed, some C++ features, such as
templates, theinline andconst keywords, were invented
to avoid using C macros. Additionally, OS code needs to
handle many low-level bit and byte related operations which
are less common in desktop applications and servers.

Compared to an OS, MySQL and Firefox contain far
more comments about whether a pointer must be considered
as an input parameter, an output parameter, or both (called
In/Out comments). Such comments could be expressed by
annotation languages such as Splint. Developers could also
use theconst keyword instead of using comments in some
cases. Developers often choose not to, perhaps because the
const type checking is not flexible enough. We found al-
most no In/Out comments in Eclipse. This is probably be-
cause Eclipse uses clearer method interfaces where parame-
ters are the input and the return of a method is the output in
most cases. Such clear interfaces are made possible because
of the automatic memory management, the more consistent
use of exceptions, and object-oriented programming.

Eclipse contains 4-16 times more comments discussing
whether a reference can be null or not than in an OS. This is

9

probably because null pointer dereference is one of the few
types of memory related bugs that still exist in Java, leading
to a focus by Java programmers on such errors. Other than
null related comments, we have not found many memory
management related comments. However, even if memory
management is easier in Java, the more general problem of
resource management (such as who must close/dispose a
stream) is still present in Java.

Many comments in Eclipse (dominantly Javadoc com-
ments) are about error management, either explaining the
meaning of boolean and integer return values, or describing
the possible exceptions thrown by a method. The C++ part
of Firefox does not always make use of exceptions and still
relies on integers and comments about error code conven-
tions for error management.

Eclipse contains 2 new types of comments: links to
Bugzilla databases bugs and non-externalized string mark-
ers. MySQL contains a few comments that can be used by
its internal coverage and patch validation tools. We found
almost no comments specific to object oriented program-
ming or design patterns.

Although the MySQL and Firefox projects started with
C++, their code bases still contain a significant amount of
C code. Much of the C code is in externally developed C li-
braries that are included directly in the repository. C is prob-
ably preferred over C++ for writing libraries, as it is easier
for other languages (e.g., Python) to access C libraries. As
libraries are important for code reuse, C may still be a pop-
ular language for some time.

8 Related Work
We briefly discuss previous comment studies and tools

using comments.

Comment studies Comment studies in the 80’s and 90’s
were concerned with the usefulness of comments for pro-
gram understanding [36] and ratio metrics between code
and comments [29], under the assumption that software
quality is better if the code is more commented. More recent
work studied the evolution of comments during the software
life-cycle [13] and metrics about the co-evolution of code
and comments [12, 35]. Marin studied psychological fac-
tors that may push programmers to comment, e.g., whether
already commented code is an incentive for programmers to
comment more on their own modifications to the code [21].
Etzkornet al. [10] used link grammar to parse comments to
help program understanding. Yinget al. [37] and Storeyet
al. [31] studied a specific kind of comments, “TODO” com-
ments. None of the previous work comprehensively studied
the content or the semantics of comments. Moreover, they
did not quantify the use of different kinds of comments that
we studied.

iComment & Find-Concept Our previous work, iCom-
ment [33], leveraged existing comments to detect bugs and

bad comments. Different from iComment, the goal of this
paper isnot to detect bugs or bad comments. Instead, this
comprehensive comment study provides guidance and in-
sights on various aspects of improving software reliabil-
ity. To help discover major comment topics, iComment
automatically computed most frequently used keywords in
comments. However, there was no manual study of these
comments. As keywords alone are not enough to judge
the usefulness of comments, iComment could not answer
how much comments are useful for improving software re-
liability or the other questions this work addressed. Find-
Concept [26] applied natural language processing tech-
niques to find word paraphrases to expand code search. This
work did not study the characteristics of comment content.

Annotation languages Many annotation languages have
been proposed to extend the C type system [2, 6, 11, 14,
23, 34], to specify locking requirements [23, 34], to an-
notate function interfaces [2, 11, 34], or to mark control
flows [2, 11]. While some comments informally express
properties that could be described via existing annotations,
no previous work quantified the amount of such comments.
Moreover, previous studies did not leverage existing com-
ments to discover and motivate new types of annotations.

Automatic documentation generation Literate pro-
gramming [17] proposes to embed code inside documenta-
tion to produce “literature” instead of embedding comments
and documentation in the code. Javadoc [19] let program-
mers use specialtags to document functions or data struc-
tures. Those tags are later processed by a tool to automat-
ically produce hypertext documentation. While these tools
help developers write better documents, previous work did
not learn programmers’ needs by studying comments.

9 Conclusions

We have argued that many comments are written when
programmers cannot find another easy way in the languages
or tools they know to express their intentions. Studying
comments can thus be a way to listen to programmers’
needs. Using 1050 comments randomly sampled from the
latest versions of Linux, FreeBSD, and OpenSolaris, we
have shown that at least 52.6% of these comments express
needs that could be leveraged by existing or future lan-
guages and tools, revealing opportunities to improve soft-
ware reliability and increase programmer productivity.

We hope this study is of interest to tool/language design-
ers and system programmers, and inspires other researchers
to perform similar comment content study on other soft-
ware, from other communities, in different programming
languages, to discover different programmers’ needs and
other limitations of tools or languages. Finally, we hope
people will look differently at the nature of comments the
next time they see or write comments.

10

10 Acknowledgments
We greatly appreciate Julia Lawall, Darko Marinov,

and the anonymous reviewers for their invaluable feed-
back and comments. This research is supported by NSF
CNS-0720743 grant, NSF CNS-0615372 grant, NSF CNS-
0347854 (career award), DOE Early Career Award DE-
FG02-05ER25688, and Intel gift grants.

Availability
Our full comment taxonomies, classified samples, and

the tools we developed for this study are available on our
web page:http://opera.cs.uiuc.edu/CComment/ .

References

[1] Human interactions in programming.
http://research.microsoft.com/hip/.

[2] MSDN run-time library reference – SAL annotations.
http://msdn2.microsoft.com/en-us/library/ms235402.aspx.

[3] Natural programming project.
http://www.cs.cmu.edu/˜ NatProg/.

[4] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel.
Towards a taxonomy of software change.Journal of Soft-
ware Maintenance and Evolution: Research and Practice,
pages 309–332, 2005.

[5] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler. An
empirical study of operating system errors. InSOSP, 2001.

[6] J. Condit, M. Harren, Z. R. Anderson, D. Gay, and G. C.
Necula. Dependent types for low-level programming. In
ESOP, pages 520–535, 2007.

[7] R. Cox, T. Bergan, A. Clements, F. Kaashoek, and E. Kohler.
Xoc, an extension-oriented compiler for systems program-
ming. InASPLOS, 2008.

[8] R. DeLine, M. Czerwinski, B. Meyers, G. Venolia,
S. Drucker, and G. Robertson. Code thumbnails: Using spa-
tial memory to navigate source code. InVLHCC, 2006.

[9] D. R. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: A general approach to inferring
errors in systems code. InSOSP, 2001.

[10] L. H. Etzkorn, L. L. Bowen, and C. G. Davis. An approach to
program understanding by natural language understanding.
Nat. Lang. Eng., 5(3):219–236, 1999.

[11] D. Evans. Static detection of dynamic memory errors. In
PLDI, pages 44–53, 1996.

[12] B. Fluri, M. Wursch, and H. C. Gall. Do code and com-
ments co-evolve? on the relation between source code and
comment changes. InWorking Conference on Reverse En-
gineering, pages 70–79, 2007.

[13] Z. M. Jiang and A. E. Hassan. Examining the evolution of
code comments in PostgreSQL. InMSR, 2006.

[14] S. Johnson. Lint, a c program checker, 1978.
[15] M. Kersten and G. C. Murphy. Using task context to improve

programmer productivity. InFSE, 2006.
[16] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead. Au-

tomatic identification of bug-introducing changes. InASE,
pages 81–90, 2006.

[17] D. E. Knuth. Literate programming.Computer Journal,
27(2), 1984.

[18] A. J. Ko, H. Aung, and B. A. Myers. Eliciting design re-
quirements for maintenance-oriented IDEs: a detailed study
of corrective and perfective maintenance tasks. InICSE,
pages 126–135, 2005.

[19] D. Kramer. Api documentation from source code comments:
a case study of javadoc. InInternational Conference on
Computer Documentation, 1999.

[20] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A tool
for finding copy-paste and related bugs in operating system
code. InOSDI, 2004.

[21] D. P. Marin. What motivates programmers to comment? Re-
search report UCB/EECS-2005-18, University of California
Berkeley, November 2005.

[22] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and
G. Muller. Devil: An IDL for hardware programming. In
OSDI, 2000.

[23] S. Microsystems. LockLint - Static data
race and deadlock detection tool for C.
http://developers.sun.com/sunstudio/articles/locklint.html.

[24] T. Ostrand and E. Weyuker. The distribution of faults in a
large industrial software system. InISSTA, 2002.

[25] P. C. Rigby and A. E. Hassan. What can OSS mailing lists
tell us? A preliminary psychometric text analysis of the
apache developer mailing list. InMSR, 2007.

[26] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-
Shanker. Using natural language program analysis to locate
and understand action-oriented concerns. InAOSD, 2007.

[27] O. Spinczyk, A. Gal, and W. Schroder-Preikschat. As-
pectC++: An aspect-oriented extension to C++. InProc.
of the 40th Intern. Conf. on Technology of Object-Oriented
Languages and Systems, 2002.

[28] D. Spinellis. A tale of four kernels. InICSE, 2008.
[29] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris.

Code quality analysis in open source software development.
Information Systems Journal, 2002.

[30] M.-A. Storey, L.-T. Cheng, J. Singer, M. Muller, D. Myers,
and J. Ryall. How programmers can turn comments into
waypoints for code navigation. InICSM, 2007.

[31] M.-A. Storey, J. Ryall, R. I. Bull, D. Myers, and J. Singer.
TODO or to bug: Exploring how task annotations play a role
in the work practices of software developers. InICSE, 2008.

[32] M. Sullivan and R. Chillarege. A comparison of software
defects in database management systems and operating sys-
tems. In22nd Annual International Symposium on Fault-
Tolerant Computing, 1992.

[33] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /* iComment:
Bugs or bad comments? */. InSOSP, 2007.

[34] L. Torvalds. Sparse - A semantic parser for C.
http://www.kernel.org/pub/software/devel/sparse/.

[35] R. Warren. Understanding software evolution through com-
ment analysis. Research report, U. of Waterloo, 2002.

[36] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen. The ef-
fect of modularization and comments on program compre-
hension. InICSE, 1981.

[37] A. T. T. Ying, J. L. Wright, and S. Abrams. Source code that
talks: An exploration of eclipse task comments and their
implication to repository mining. InMSR, 2005.

11

