
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Bug Characteristics in Open Source Software

Lin Tan · Chen Liu · Zhenmin Li ·
Xuanhui Wang · Yuanyuan Zhou ·
Chengxiang Zhai

Received: date / Accepted: date

Abstract To design effective tools for detecting and recovering from soft-
ware failures requires a deep understanding of software bug characteristics.
We study software bug characteristics by sampling 2,060 real world bugs in
three large, representative open-source projects—the Linux kernel, Mozilla,
and Apache. We manually study these bugs in three dimensions—root causes,
impacts, and components. We further study the correlation between categories
in different dimensions, and the trend of different types of bugs. The findings
include: (1) semantic bugs are the dominant root cause. As software evolves,
semantic bugs increase, while memory-related bugs decrease, calling for more
research effort to address semantic bugs; (2) the Linux kernel operating sys-
tem (OS) has more concurrency bugs than its non-OS counterparts, suggesting
more effort into detecting concurrency bugs in operating system code; and (3)
reported security bugs are increasing, and the majority of them are caused
by semantic bugs, suggesting more support to help developers diagnose and
fix security bugs, especially semantic security bugs. In addition, to reduce the
manual effort in building bug benchmarks for evaluating bug detection and

Lin Tan ()
University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
Tel: +1-519-8884567, Fax: +1-519-7463077, E-mail: lintan@uwaterloo.ca

Chen Liu
University of Waterloo, E-mail: c92liu@uwaterloo.ca

Zhenmin Li
VMware, Inc., E-mail: zhenmin.li@gmail.com

Xuanhui Wang
Facebook, Inc., E-mail: xuanhui@gmail.com

Yuanyuan Zhou
University of California, San Diego & Pattern Insight, Inc., E-mail: yyzhou@cs.ucsd.edu

Chengxiang Zhai
University of Illinois, Urbana-Champaign, E-mail: czhai@cs.illinois.edu

2 Lin Tan et al.

diagnosis tools, we use machine learning techniques to classify 109,014 bugs
automatically.

Keywords Software bug characteristics · Empirical study · Software
reliability · Open source · Bug detection

1 Introduction

Software defects severely hurt software dependability. To design effective tools
for improving software dependability requires a good understanding of software
defect characteristics in representative software. In this paper, we use “defect”
and “bug” interchangeably, which is in accordance with their definitions [16].
Such characteristics include bug root cause, bug impact, bug location, their
distributions, and their correlation. For example, if simple typos or copy-pastes
cause many bugs [53], software development tools can provide more support
to help detect such bugs automatically.

Empirical studies [17,23,33,39,57,65,83,84] have been performed to un-
derstand the characteristics of software bugs. For example, researchers have
studied software errors occurring during software development, testing, and
validation phases [33,39]. Sullivan and Chillarege analyzed error type, defect
type and error trigger distribution for shipped code of two IBM database man-
agement products and one IBM operating system [83,84]. They found that
undefined state errors dominated but did not have high impact on availability,
while memory allocation errors, pointer errors, and synchronization errors had
high impact. A recent study [80] on bug reports in server applications shows
that about 77% of the failures are caused by bugs that can be reproduced
with just one input request. These studies provide insights and guidelines for
software engineering tool designers and reliable system builders.

Given the benefits of empirical studies, we want to answer new research
questions (RQ) that have not been studied or not thoroughly studied before
to provide new inspirations and guidance for building high quality software.
Therefore, we study bug characteristics in three large, representative open
source projects—one client-side application, Mozilla, one server-side applica-
tion, Apache web server, and one operating system (OS), the Linux kernel.
We first randomly sample 1,135 fixed bug reports from Mozilla, Apache, and
Linux kernel bug databases, manually examine them, and identify 583 bugs.
To ensure correct results, we only study fixed bug reports, because root causes
described in unfixed reports can be wrong. A detailed explanation is in Sec-
tion 2. The number of bugs is smaller than the number of bug reports, because
many bug reports are invalid bugs, new feature requests, etc. (Section 2). We
study the bug distribution in three dimensions—root causes, impacts, and
components. In addition, we study the statistical correlation between these
dimensions, which has not been systematically studied before (to the best of
our knowledge). Furthermore, we study 1,387 security bugs and 90 concurrency
bugs to understand the characteristics of these emerging types of bugs.

Bug Characteristics in Open Source Software 3

In summary, we classified and studied 2,060 bugs in the three large open
source projects. In addition, we applied machine learning techniques to auto-
matically classify a large number (109,014) of bugs.

The findings and their implications include:

– RQ1: As software becomes mature, what are the dominant types of bugs,
e.g., memory bugs, concurrency bugs, or semantic bugs? Memory bugs are
bugs that are caused by improper handling of memory objects. “Concur-
rency bugs are synchronization problems among the concurrent tasks in
concurrent programs” [55], including data races and deadlocks. Semantic
bugs are inconsistencies with the requirements or the programmers inten-
tion that are not memory bugs or concurrency bugs. The definition and
detailed explanation of memory bugs, concurrency bugs, and semantic bugs
are in Table 3, Table 4 and Section 3.1.

The motivation of studying RQ1 is as follows. Software such as the
Mozilla suites, the Linux kernel, and the Apache web server has been used
for decades. As software becomes more mature and stable, many bugs are
still reported everyday [1–3]. Maybe more effort should be investigated into
addressing the dominant types of bugs in mature and stable software.

Memory bugs—bugs caused by improper handling of memory objects—
only account for 11.8±3.4% in Mozilla, 12.4±6.6% in Apache, and 16.3±6.0%
in the Linux kernel, much less than the 28–38% reported in previous stud-
ies [83,84]. In this paper, we calculate and present the statistical margin
of error with a 95% confidence level to indicate the random sampling error
in our results. In addition, memory bugs decrease as the evaluated soft-
ware evolves. These results indicate that memory bugs are becoming less
pervasive as the evaluated software becomes mature and stable. This may
be attributed to the available techniques to automatically detect them, as
developers actively use bug detection tools to find bugs during the devel-
opment process [7]. (§4.1)

Despite the decreasing trend of memory bugs as a whole, Mozilla, Apache,
and the Linux kernel contain many simple memory bugs such as NULL
pointer dereferences and uninitialized memory reads. These simple bugs
can be detected by bug detection tools such as Coverity [6], Purify [46],
and Valgrind [10]. This situation indicates that memory bug detection tools
may have not been used with their full capacity. Therefore, it is impor-
tant for researchers and tool builders to understand why these tools have
not been fully utilized and address the relevant issues, e.g., reducing false
positives, simplifying the usage procedure, promoting these tools to more
developers, improving the detection capability of the current bug detection
tools, etc. (§4.1)

Semantic bugs are the major root cause, accounting for 87.0% in Mozilla,
82.5% in Apache, and 70.1% in the Linux kernel; and their percentages
increase with the maturity of these software projects. In addition, semantic
bugs have severe impacts on system availability, contributing to 18.2–59.3%
of crashes in the evaluated software. Our results suggest that more effort

4 Lin Tan et al.

should be put into automatically detecting and diagnosing semantic bugs.
(§4.2)

Careless programming causes many bugs in the evaluated software. For
example, simple bugs such as typos account for 7.8–15.0% of semantic bugs
in Mozilla, Apache, and the Linux kernel. The result indicates that it would
be beneficial for software development environments such as Microsoft Vi-
sual Studio and Eclipse to provide more support to avoid them in the early
stages of software development. (§4.2)

– RQ2: What are the impact of bugs and what types of bugs have severe
impact? One may want to spend more effort on addressing bugs with severe
impact.

Most bugs result in incorrect functionality in Mozilla, Apache, and the
Linux kernel due to the dominance of semantic bugs. In contrast, only
11.3–27.2% bugs in these projects result in crashes. The main root cause of
crashes is memory bugs, accounting for 38.9–72.7% of crashes, which may
indicate that the diagnosis of crashes should focus on memory bugs. (§5)

– RQ3a: Are there many graphical user interfaces (GUI) related bugs? RQ3b:
Since GUI modules and their development process are quite different from
other modules, do they have different root cause distributions?

In order to provide friendly user interface, GUIs have become one of the
major components in many systems. Although GUIs have become more
complex and widely used, GUI testing techniques still significantly lag be-
hind [60]. Therefore, we would like to study the questions above regarding
GUI-related bugs.

GUI bugs have become the major type of bugs in graphical interface
software, accounting for 50.1% of bugs in Mozilla, and resulting in 45.6% of
all crashes. In addition, GUI bugs are more likely to be caused by semantic
bugs. The results imply that effective GUI bug avoidance and detection
techniques [13] are needed, and the focus of GUI testing should be on
semantic bugs. (§6)

– RQ4: Does operating system (OS) code such as the Linux kernel have
different characteristics from its non-OS counterparts, and require different
bug detection and diagnosis techniques? As operating systems inherently
need to manage shared resources, do operating system code contain more
concurrency bugs?

An OS runs between hardware and application software. They can have
different roles and characteristics from application software, because they
by nature are unique, e.g., the daunting complexity and size, hardware
dependence, the ability to manage interrupts, and many different kinds
of resources. Therefore, we want to compare and contrast OS bugs with
non-OS bugs.

The Linux kernel has many similar bug characteristics as its non-OS
counterparts, e.g., similar percentage of memory bugs. One striking dif-
ference is that the Linux kernel has significantly more concurrency bugs
(13.6%) than Mozilla (1.2%) and Apache (5.2%) probably due to its inher-
ent nature of dealing with concurrent activities and shared resources. The

Bug Characteristics in Open Source Software 5

results imply that more effort should be put into detecting OS concurrency
bugs, especially given that many current concurrency bug detection tech-
niques are ineffective or not applicable to OS code due to the complexity
of OS synchronization and the difficulty of instrumenting an OS. In addi-
tion, 52.9% of the reported Linux kernel bugs are in device driver code,
which is similar to the results from prior studies [24,86]. Different from the
previous study [24], we study field kernel bugs that are reported by users
and developers to show that driver bugs dominate. In addition, a signifi-
cant proportion (10.2%) of the Linux kernel bugs are related to interrupt
handling, e.g., forgetting to disable or enable interrupts, missing certain
interrupts, not ignoring certain interrupts, etc. We may want to provide
more support to help the Linux kernel developers write correct driver code
and interrupt-related code. (§7)

– RQ5a: Does the number and proportion of reported security bugs increase?
RQ5b: Is the common belief “buffer overflows are the most common type
of security vulnerabilities” [27] true? If not (as suggested by a recent
study [63]), what types of bugs cause more security vulnerabilities? An-
swers to these questions can provide guidance in addressing the important
types of security vulnerabilities.

We are interested in the trend of security bugs, because over recent years,
security is becoming increasingly important, as many malicious users ex-
ploit software vulnerabilities to tamper system integrity, steal confidential
data, and make systems unavailable [26,74].

Our results show that security bugs increased significantly over time in
terms of number and proportion in Mozilla, Apache, and the Linux ker-
nel. Among different root causes of security vulnerabilities, memory bugs
contribute to only 27.7–34.5% but are usually severe, while semantic bugs
are the dominant cause, accounting for 61.8–71.5%. This distribution is
against the common belief that buffer overflows are the major cause of
security vulnerabilities [27], which is consistent with a recent study [63].
The result suggests that while it is important to detect buffer overflows
to reduce security vulnerabilities, we should also provide support for de-
tecting, diagnosing, and fixing security vulnerabilities caused by semantic
bugs. (§8)

– RQ6a: Are concurrency bugs hard-to-reproduce? RQ6b: Do these concur-
rency bugs cause severe impacts on software systems? If concurrency bugs
cause severe impacts and are hard-to-reproduce, maybe we should call for
new techniques in detecting and reproducing concurrency bugs.

Due to the recent advances in hardware, modern computer systems, es-
pecially server systems, are configured with multi-processors. As a result,
many software systems are multithreaded or multiprocessed to exploit the
parallelism provided by hardware. This shift will continue especially due to
the trend of multithreaded/multicore micro-architecture. To exploit these
technologies, increasingly more software is becoming multithreaded. There-
fore, it would be interesting to study the questions above regarding con-
currency bugs.

6 Lin Tan et al.

Most Mozilla concurrency bugs are hard-to-reproduce: They could not
be reproduced by developers with an acceptable probability (e.g., more
than once out of ten times). Therefore, to help developers diagnose and fix
concurrency bugs, it would be beneficial to provide support to help develop-
ers reproduce concurrency bugs or increase the probability of manifesting
concurrency bugs [72,73]. In addition, to help reproduce reported concur-
rency bugs, it is important for bug reporters to include more information
about how to reproduce concurrency bugs. We also found that 55.5% of
Mozilla concurrency bugs cause hangs or crashes, indicating that simple
generic recovery techniques such as restart or rollback and re-execute can
be effective for concurrency bugs. (§9)

– RQ7: Is it possible to automatically identify memory bugs and seman-
tic bugs from bug databases to reduce the manual effort in building bug
benchmarks [56]?

Bug benchmarks can help one evaluate bug detection and diagnosis
tools [90]; however, building bug bechmakrs requires a significant amount
of manual effort to find many real-world bugs of certain types. In addition,
bug benchmarks may help developers understand certain categories of bugs
for better bug diagnosis and fixing. Different from previous work that au-
tomatically collects bugs from version control systems and test cases [29]
and records software development history to collect bugs [31], we want to
study how to automatically find bugs of certain types, e.g., memory bugs
and semantic bugs. The reason is that typical bug detection and diagnosis
tools can only address certain types of bugs. For example, if we compare
several memory bug detection tools, we need to evaluate them on memory
bugs only.

We show that it is feasible to automatically identify memory bugs and se-
mantic bugs in Mozilla bug database with reasonable precisions and recalls.
This technique could reduce the manual effort in building bug benchmarks
for evaluating bug detection and diagnosis tools. (§10.2)

Overall, our results not only provide software development with a good
understanding of software bugs, but also enlighten bug detection and recovery
techniques, suggesting where effort should be put into.

The rest of the paper is laid out as follows. Section 2 describes how we col-
lect bugs from various sources. Our bug taxonomies, classification, and analy-
sis methods are presented in Section 3. Section 4 discusses root cause related
findings and implications; Section 5 presents our results regarding impacts
and their correlation with the root causes; and Section 6 shows the findings
and implications related to software components, and their correlation with
the root causes. The comparison between OS and non-OS bugs are summa-
rized in Section 7. The discussion of security bugs and concurrency bugs is
presented in Section 8 and Section 9 respectively. Section 10 describes our
automatic bug classification approach and results. Related work is discussed
in Section 11, and Section 12 concludes the paper. Appendix A describes how
we combine the two data sets to maintain the pure randomness of sampling.

Bug Characteristics in Open Source Software 7

Table 1 Software studied. BR denotes bug reports.

Soft- #BR #Fixed Date of Sampl- Lang- Description
ware BR First BR ing Date uage
Mozilla 515.8K 189.1K Apr. 1998 Sep. 2010 C/C++ Browser Suite
Apache 4.9K 1.5K Jan. 2001 Sep. 2010 C HTTP/Web Server
Linux 17.8K 4.7K Nov. 2002 Feb. 2010 C Operating System

Table 2 Bugs studied. BR denotes bug reports. “Bugs” is the number of bugs in the set of
randomly “sampled BR” after our manual examination. “Security Bugs” and “Concurrency
Bugs” are the number of security bugs and concurrency bugs that we studied in addition to
the randomly sampled bugs.

Software Sampled BugSet1: BugSet2: BugSet3:
BR Bugs Security Bugs Concurrency Bugs

Mozilla 635 339 640 90
Apache 200 97 65 /
Linux 300 147 682 /
Total 1,135 583 1,387 90

Sum of all bugs 2,060

Appendix B presents bug examples and their classification. Appendix C gives
the detailed numbers for the bar graphs whose bars show the break down of
different categories.

2 Bug Sources

To answer the research questions, we study bugs from three large widely-used
open source projects, Mozilla, Apache, and the Linux kernel (Table 1). Bug
reports (BR) opened between the dates shown in Column “Date of First BR”
and “Sampling Date” are the population of bug reports studied in this paper.

Table 2 summarizes the number of bugs studied in this paper; the rest of
this Section describes how we collect these bugs. In total, we have studied 2,060
real-world bugs in three large and popular open source projects. The 2,060 bugs
come from three data sets: BugSet1—randomly sampled bugs from Bugzilla
databases, BugSet2—all classified security bugs in the National Vulnerability
Database (NVD) [4], and BugSet3—concurrency bugs in Bugzilla databases
retrieved using keyword searches.

2.1 Randomly Collecting Bugs (BugSet1).

In our study, we focus on the characteristics of software defects that mani-
fest at runtime (referred to as runtime bugs), that is, excluding new feature
requests, compile-time errors, configuration errors, environmental errors, and
software maintenance requests. We focus on runtime bugs because they can

8 Lin Tan et al.

cause production software to fail, e.g., crashes and data corruption. To ensure
correct classification, we only study fixed runtime bugs whose root causes can
be identified from bug reports and the relevant commit messages, because un-
fixed bugs may be invalid and the root causes described in the reports can be
wrong. Similarly, if the root causes cannot be identified from the bug report,
we cannot correctly classify the bug report. In the rest of this paper, we sim-
ply use the term fixed runtime bugs to refer to fixed runtime bugs whose root
causes can be identified from bug reports and the relevant commit messages.

In this way, we randomly sampled 635 fixed bug reports (Column “Sampled
BR” in Table 2) from the Mozilla Bugzilla database [3]. As not every fixed bug
report describes a valid runtime bug, we manually read the 635 bug reports
and find that 339 of (Column “Bugs” in Table 2) them are fixed runtime bugs,
and the rest are not, e.g., invalid bug reports, new feature requests, compile-
time errors, bug reports with insufficient information, etc. We then manually
classify the 339 bugs to the categories defined in Section 3.1. We first study
the characteristics of these manually classified bug reports, and then use them
to train and evaluate automatic classifiers for the whole Bugzilla database
as described in Section 10.1. Similarly, we randomly sample 200 fixed bug
reports from the Apache Bugzilla database [1], and then manually classify 97
fixed runtime bugs.

To understand whether our findings apply to operating system code, we
manually study fixed runtime bugs in the Linux kernel [2] in a manner that is
similar to our non-OS bug collecting and analyzing process. We first randomly
sampled 300 fixed bug reports from the Linux kernel Bugzilla database [2]. We
then manually examine them, narrow down to 147 fixed runtime bugs. As we
focus on studying bugs in high-level programming languages, we exclude bugs
in assembly code (only 1 in our 300 sampled bug reports).

To show that we have sampled enough number of bug reports, we present
the standard statistical margin of errors with a 95% confidence level in our
results. The margin of errors is reported as part of a range x± i, which means
that if we obtain the value x in a random sample, the actual value x in the
entire population will fall in the range [x− i, x+ i] with a probability of 95%.
For example, later Figure 1 shows that there are 11.8±3.4% memory bugs
and 87.0±3.6 semantic bugs in Mozilla, indicating we are 95% confident that
in the entire Mozilla Bugzilla, the portion of memory bugs is between 11.8-
3.4% and 11.8+3.4%, and the portion of semantic bugs is between 87.0-3.6%
and 87.0+3.6%. The result indicates that it is statistically significant to state
that semantic bugs dominate in Mozilla, because 87.0-3.6% is still bigger than
11.8+3.4%.

In the rest of this paper, we use the general name “bugs” to refer to fixed
runtime bugs. Section 4, Section 5, and Section 6 present the findings and im-
plications on the non-OS bugs. Section 7 summarizes the comparison between
OS bugs and non-OS bugs. Section 10.2 describes our automatic classifica-
tion technique that uses Mozilla bugs for building classifiers, and the relevant
results.

Bug Characteristics in Open Source Software 9

2.2 Collecting Security Bugs (BugSet2).

We collect security vulnerabilities from the National Vulnerability Database
(NVD) [4]. Most NVD security vulnerabilities have already been classified by
NVD into one of the NVD root cause categories, such as buffer errors, au-
thentication issues, race conditions, SQL injection, etc. To ensure correctness
of classification, we only study NVD security vulnerabilities that have already
been classified into these categories. There are 640 security vulnerabilities in
Mozilla, 65 security vulnerabilities in Apache, and 682 security vulnerabilities
in the Linux kernel (Column “Security Bugs” in Table 2), and we study all of
them. The discussion of security bugs is presented in Section 8.

2.3 Collecting Concurrency Bugs (BugSet3).

Concurrency bugs only constitute a small percentage of all reported bugs.
Therefore, random sampling cannot provide enough concurrency bugs for a
representative study. To collect enough concurrency bugs, we use keywords,
i.e., “race”, “lock”, “deadlock”, “synchronization”, “starvation”, and “atomic”,
to search bug reports and extract reports that contain these keywords as poten-
tial concurrency bugs. We then manually verify whether they are concurrency
bugs. Using this method, we collect 90 concurrency bugs from Mozilla (Col-
umn “Concurrency Bugs” in Table 2). The Apache and Linux kernel Bugzilla
databases only contain 1.5K–4.7K fixed bug reports, which are two orders of
magnitude smaller than that of Mozilla (Table 1). In addition, there is only
a small percentage of concurrency bugs as shown in Figure 1(a). Therefore,
due to the small number of concurrency bugs in the Apache and Linux kernel
Bugzilla databases, the results for Apache and the Linux kernel concurrency
bugs are not discussed in this paper. The discussion of Mozilla concurrency
bugs is presented in Section 9.

3 Bug Classification and Analysis

In this section, we first define the basic terminology used in this paper, and
describe the bug categories. We then describe how we study the trend and
the correlation of different bug categories. Lastly, we discuss the threats to
validity.

3.1 Terminology and Bug Taxonomies

For the definitions of our basic terminology, we follow the literature [16]. Specif-
ically, a failure is “an event that occurs when the delivered service deviates
from correct service” [16]. Crashes and performance degradation are exam-
ples of software failures. A fault is the cause of a failure, and “bugs” and

10 Lin Tan et al.

Table 3 Bug categories of the three dimensions: Root Cause, Impact, and Component

Dimension Category Description Abbreviation
Memory Bugs caused by improper handling

of memory objects.
Mem

Root
Cause

Concurrency “Synchronization problems among
the concurrent tasks in concurrent
programs” [55], including data races
and deadlocks.

Con

Semantic Inconsistencies with the require-
ments or the programmers’ intention
that do not belong to the categories
above.

Sem

Hang Program keeps running but does not
respond.

Hang

Crash Program halts abnormally. Crash
Impact Data Corrup-

tion
Mistakenly change user data. Corrupt

Performance
Degradation

Functions correctly but
runs/responds slowly.

Perf

Incorrect Func-
tionality

Not behaving as expected. Func

Other Bugs that cause other impacts. OtherImp
Software Core Bugs related to core functionality

implementations.
Core

Component GUI Bugs related to graphical user inter-
faces.

GUI

(Mozilla Network Bugs related to network environ-
ment and network communication.

Network

& Apache) I/O Bugs related to I/O handling. I/O
Drivers Bugs related to device drivers. Drivers

OS Core Bugs in the kernel directory ‘mm’,
‘kernel’, and ‘include’.

Core

Component Network Bugs related to network environ-
ment and network communication.

Network

(Linux) File System Bugs related to file system. FS
Architecture Bugs related to hardware architec-

ture.
Arch

“defects” are synonyms of faults [16]. Failures are the observable impact of
software faults.

Classifying OS and non-OS Bugs (BugSet1). Based on our experience
with many real-world bug reports and the inspirations from BugBench [56]
and the software testing book by Beizer [18], we designed bug taxonomies in
three dimensions, Root Cause (the fault), Impact (the failure caused by the
bug), and Component (the location of the bug). Each bug is classified in all
three dimensions. For example, a bug could be a semantic bug according to the
root cause dimension, a performance bug according to the impact dimension,
and a GUI bug according to the component dimension.

According to root causes, we classify bugs into three disjoint categories,
Memory Bugs, Concurrency Bugs, and Semantic Bugs, whose definitions are
shown in Table 3. To ensure disjoint classification, we give these categories an

Bug Characteristics in Open Source Software 11

Table 4 Subcategories of memory and semantic bugs

Category Subcategory Description Abbreviation
Memory Leak Failures to release unused memory. MLK
Uninitialized
Memory Read

Read memory data before it is ini-
tialized.

UMR

Memory Dangling
Pointer

Pointers still keep freed memory ad-
dresses.

Dangling

Bug NULL Pointer
Dereference

Dereference of a null pointer. NULL

Overflow Illegal access beyond a buffer bound-
ary.

Overflow

Double Free One memory location is freed twice. 2Free
Other Other memory bugs. OtherMem
Missing Fea-
tures

A feature is supposed to be but is
not implemented.

MissF

Missing Cases A case in a functionality is not im-
plemented.

MissC

Corner Cases Some boundary cases are considered
incorrectly or ignored.

CornerC

Semantic Wrong Control
Flow

The control flow is incorrectly imple-
mented.

CtrlFlow

Bug Exception Han-
dling

Does not have proper exception han-
dling.

Except

Processing Processing such as evaluation of ex-
pressions and equations is incorrect.

Process

Typo Typographical mistakes. Typo
Other Wrong
Functionality
Implementa-
tion

Any other semantic bug that does
not meet the design requirement.

FuncImpl

order shown in the Table. A bug that belongs to a higher category will not be
considered for a lower category. An alternative is to allow one bug to belong
to multiple categories. It is uncommon for one bug to belong to multiple root
cause categories (no such cases were found in our random samples); therefore
either design choice should produce similar results. Memory bugs and semantic
bugs are further classified into subcategories shown in Table 4.

In addition, Table 3 shows the impact and component categories and their
definitions. Regarding components, we use different taxonomies for OS bugs
and non-OS bugs as operating system components are inherently different
from non-OS software: we classify non-OS bugs into the categories defined in
the Software Component dimension, and the OS Component categories
are used for OS bugs. Different from root causes, it is common for bugs to
have multiple failure symptoms (multiple impact categories). For example,
a bug can cause a crash and data corruption. When we count the impact
distribution, multiple impact categories per bug are considered, this is why
the percentages may add to over 100%. Specifically, 11 Mozilla bugs have
more than one impact category, 17 Linux kernel bugs have more than one
impact category, and no Apache bugs have more than one impact category in
our random samples (BugSet1). Similarly, one bug may require fixes across

12 Lin Tan et al.

Table 5 Bug categories for security bugs of the impact dimension

Category Description
Confidentiality allows unauthorized disclosure of information
Integrity allows unauthorized modification
Availability allows disruption of service
Access provides unauthorized access

several components (multiple component categories). In our random samples
(BugSet1), two Mozilla bugs have more than one component category, four
Apache bugs have more than one component category, and one Linux kernel
bug has more than one component category.

The authors read the bug reports to determine the categories of each bug
report. When the information in the bug reports is not enough to make a de-
cision, the authors consult the commits related to the bug report in a manner
similar to prior work [19,51,82,94]. Specifically, if a bug report contains a link
to the commit or a commit ID, we simply follow the link or use the commit
ID to locate the commit in the software repository. Otherwise, we search the
bug ID or the bug report title in the software repository. As discussed before,
we only study bugs whose root causes can be identified from these sources to
ensure correct classification. We minimize the subjectivity in manual exami-
nation through double verification: each bug report is examined at least twice
by two different people independently. If they disagree, they will discuss and
reach a consensus. Appendix B presents bug examples and their classification.
In addition, we apply machine learning techniques to automatically classify
around 109,014 bugs (Section 10).

Classifying Security Vulnerabilities (BugSet2). Security vulnerabilities
are classified in three dimensions. The root cause dimension is the same as that
of OS and non-OS bugs. As mentioned earlier, to ensure correctness of clas-
sification, we only study NVD security vulnerabilities that have already been
classified into NVD root cause categories. We then map these NVD root cause
categories to our root cause categories—memory bugs, semantic bugs, and
concurrency bugs. Similar to general bug reports, we focus on runtime bugs
whose root causes are known and exclude vulnerabilities of the following NVD
root cause categories—Insufficient Information, Not in CWE, Configuration,
and Other. NVD database lists the categories for two additional dimensions—
impacts and severity. Based on impact, vulnerabilities are classified into four
categories as shown in Table 5, confidentiality (allows unauthorized disclo-
sure of information), integrity (allows unauthorized modification), availabil-
ity (allows disruption of service), and access (provides unauthorized access).
The third dimension is the NVD severity, which contains three levels, High,
Medium, and Low, as defined in the NVD databases based on the Common
Vulnerability Scoring System (CVSS) scores [8]. We automatically collect the
classifications of NVD root causes, impacts, and severity, as the classifications
are already available in the NVD database.

Bug Characteristics in Open Source Software 13

3.2 Trend of Different Categories of Bugs

Previous work investigates the trend of bug density over releases [64]. It would
be interesting to zoom in and learn the trend of different categories of bugs,
e.g., how the number of memory bugs and semantic bugs change over time,
which would help us answer our first research question. To do so, we calculate
the percentage of memory bugs and semantic bugs reported in each year.

3.3 Correlation of Bug Categories

To study the correlation between two categories in different dimensions, we
use a statistical metric called lift [45]. The lift of category Ai in dimension

A and category Bj in dimension B, lift(Ai, Bj), is calculated as
P (AiBj)

P (Ai)∗P (Bj) ,

where P (AiBj) is the probability that a bug belongs to both category Ai and
Bj . For example, if there are a total of 100 bugs, 10 of which are memory bugs,
20 of which cause crashes, and 5 of which are memory bugs that cause crashes,
we can calculate the lift correlation as follows. P (AiBj), where Ai is memory
bugs and Bj is crashes, is 5/100. P (Ai) is 10/100, and P (Bj) is 20/100. The

lift correlation lift(Ai, Bj) =
P (AiBj)

P (Ai)∗P (Bj) = 5/100
(10/100)∗(20/100) = 500/200 = 2.5.

If lift(Ai, Bj) is equal to 1, it means P (AiBj) = P (Ai)P (Bj), which in-
dicates that category Ai and Bj are not correlated. If it is greater than 1,
category Ai and Bj are positively correlated, which means that if a bug be-
longs to Ai, it is more likely to also belongs to Bj . Symmetrically, if it is
less than 1, Ai and Bj are negatively correlated, which means that if a bug
belongs to Ai, it is less likely to also belongs to Bj . In the example above,
since lift(Ai, Bj) is 2.5, we can learn that memory bugs are more likely to
cause crashes, and that crashes are more likely to be caused by memory bugs.
Specifically, in the entire population of 100 bugs, the probably of a bug causing
crashes is 20/100, which is 20%. But if we know that a bug is a memory bug,
the probably of that bug causing a crash is 5/10 (50%), which is much higher
than the 20% average in the population. Similarly, in the entire population
of 100 bugs, the probably of a bug being a memory bug is 10/100, which is
10%. However, if we know that a bug causes crashes, then the probably of that
bug being a memory bug is 5/20 (25%), which is much higher than the 10%
average in the population.

3.4 Threats to Validity

While we believe that the bugs from the examined open source software well
represent bugs in many software projects, we do not intend to draw any general
conclusions about bugs in all software. Similar to any characteristic study, our
findings should be considered together with our evaluation methods.

14 Lin Tan et al.

All three subject systems are open source projects developed in C/C++.
Therefore, our results may not generalize to commercial software or software
written in other programming languages.

Since we randomly sample bug reports from Bugzilla databases, the dis-
tribution of bug categories may be different in the entire Bugzilla databases
from that of our sample. However, the reported margins of error give us confi-
dence that the disagreement would be low. For some subcategories, the confi-
dence intervals are large, e.g., for the memory leak (MLK) categories and Null
pointer dereference categories (NULL). Therefore, we do not have 95% con-
fidence that the results regarding these categories hold in the entire Bugzilla
databases. However, our findings regarding our research questions RQ1–RQ7
(other than the ones about MLK and NULL mentioned above) are based on
main categories with small confidence intervals, e.g., 11.8±3.4% memory bugs
in Mozilla. Therefore, these results should hold in the entire Bugzilla databases
with 95% confidence.

Some bugs are reported in mailing lists instead of the Bugzilla databases,
or are fixed in the source code repository directly without being recorded in
the Bugzilla databases. As we only study bugs in the Bugzilla databases, we
did not sample from all the possible bugs in the evaluated software, which is
prohibitively expensive, if possible. However, as the Bugzilla databases contain
up to hundreds of thousands of bug reports, and are actively updated, bugs
we study should be a representative view of post-release software bugs.

Since we examined bug reports manually, subjectivity is inevitable. How-
ever, we tried our best to minimize such subjectivity through double veri-
fication: each bug report is examined at least twice by two different people
independently. If they disagree, they will discuss and reach a consensus.

We compare our root cause distribution results against previous work. For
example, semantic bugs account for 87.0% in Mozilla and 82.5% in Apache,
which are much higher than the 55–66% reported in a previous study [84].
While we tried our best to map their bug types with ours, it is possible that
our definition of semantic bugs is different from theirs. However, due to the big
difference in the percentage numbers, it is unlikely that the mismatch in the
definitions of semantic bugs will revert the “higher than” relation. In addition,
our trend results show that semantic bugs increase as the evaluated software
becomes mature.

When a bug report does not contain enough information for classification,
the authors consult the commits related to the bug report. Specifically, if a
bug report contains a link to the commit or a commit ID, we simply follow
the link or use the commit ID to locate the commit in the software reposi-
tory. Otherwise, we search the bug ID or the bug report title in the software
repository. A prior study [19] shows that relying on that a commit message
contains a bug ID may miss related commits. To minimize such misses, we
also follow the link in the bug report and search for the bug report title in
the software repository. In addition, most of the bug reports contain enough
information for us to classify, and do not require us to look for the related
commits; therefore, the impact of missing links should be small.

Bug Characteristics in Open Source Software 15

Some security bugs are initially only accessible by authorized users to pre-
vent attackers from exploiting the security vulnerabilities before they are fixed.
The private security bugs are often made publicly available after they have
been fixed. Therefore, the actual number of reported security bugs in the re-
cent years are likely to be bigger than the number of security bugs we studied.

Similar to another concurrency bug study [57], we use keywords to search
for more concurrency bugs, which may miss some concurrency bugs in the
Bugzilla databases. Since it is prohibitively expensive to manually examine all
hundreds of thousands of bug reports in the bug databases, keyword search is
our best effort approach to understand reported concurrency bugs.

4 Root Cause Analysis

This section answers RQ1: As software becomes mature, what are the domi-
nant types of bugs, e.g., memory bugs, concurrency bugs, or semantic bugs?
In addition, we study the subcategories of memory bugs and semantic bugs.
The bug set used for this section is BugSet1—randomly sampled 583 bugs
from Bugzilla databases (Section 2.1).

Figure 1 summarizes the distribution of bugs with different root causes
and their corresponding impacts on the bug sets that are randomly sampled
and manually analyzed by us. The statistical margin of error is shown with a
95% confidence level. While the bar graphs can better visualize the big picture
(e.g., which categories are dominant), we provide the detailed numbers in the
tables in Appendix C.

Figure 2 shows how the percentage of memory bugs and semantic bugs
changes over time on the bug sample in Mozilla and the Linux kernel. Since
there is only a small number of concurrency bugs (Figure 1), there is not
enough data to study the trend of concurrency bugs. As described in Section 2,
we use keyword based approach to study concurrency bugs (BugSet3), the
results are presented in Section 9. To focus on memory and semantic bugs,
the triangles are the ratio of semantic bugs to the sum of semantic bugs and
memory bugs; and the circles are the ratio of memory bugs to the sum of
semantic bugs and memory bugs. Since the first year and last year of each
project contain only a few months’ data, they are excluded from the figures
(1998 and 2010 for Mozilla; and 2002 and 2010 for the Linux kernel). If there
is only a couple of bugs per year, then the trend results are not meaningful;
therefore, we also show the total number of semantic and memory bugs per
year and the number of sampled bug reports per year in Figure 2 (c) and (d).
There are dips in these two figures (e.g., year 2003–2005 for Mozilla), which are
in proportion to the total number reported bug reports in the entire Bugzilla
databases of the corresponding years. We did not perform a trend study on
Apache due to the relatively small number of bug reports in Apache (only 0–2
memory bugs per year in our random sample BugSet1).

From Figure 1 and Figure 2, we can learn the following findings and im-
plications.

16 Lin Tan et al.

M
em C
on

S
em

M
em C
on

S
em

M
em C
on

S
em

Mozilla Apache Linux

%
 o

f B
ug

s

0

20

40

60

80

100

11
.8

±
3.

4

1.
2

±
1.

1

87
.0

±
3.

6

12
.4

±
6.

6

5.
2

±
4.

4

82
.5

±
7.

6

16
.3

±
6.

0

13
.6

±
5.

5

70
.1

±
7.

4

Unknown
Others
Func
Perf
Corrupt
Crash
Hang

(a) Sampled bugs

M
LK

U
M

R

D
an

gl
in

g

N
U

LL

O
ve

rf
lo

w

O
th

er
s

M
LK

U
M

R

D
an

gl
in

g

N
U

LL

O
ve

rf
lo

w

O
th

er
s

M
LK

U
M

R

D
an

gl
in

g

N
U

LL

O
ve

rf
lo

w

O
th

er
s

Mozilla Apache Linux

%
 o

f A
ll

B
ug

s

0

10

20

30

40

50

60

40
.0

±
15

.2

10
.0

±
9.

3

5.
0

±
6.

8

30
.0

±
14

.2

0.
0

±
0.

0

15
.0

±
11

.1

16
.7

±
21

.1

25
.0

±
24

.5

0.
0

±
0.

0

33
.3

±
26

.7

25
.0

±
24

.5

0.
0

±
0.

0

25
.0

±
17

.3

4.
2

±
8.

0

4.
2

±
8.

0

20
.8

±
16

.2

20
.8

±
16

.2

25
.0

±
17

.3

(b) Memory bugs

M
is

sF
M

is
sC

C
or

ne
r

C
tr

lF
lo

w
E

xc
ep

t
P

ro
ce

ss
Ty

po
F

un
cI

m
pl

O
th

er
s

M
is

sF
M

is
sC

C
or

ne
r

C
tr

lF
lo

w
E

xc
ep

t
P

ro
ce

ss
Ty

po
F

un
cI

m
pl

O
th

er
s

M
is

sF
M

is
sC

C
or

ne
r

C
tr

lF
lo

w
E

xc
ep

t
P

ro
ce

ss
Ty

po
F

un
cI

m
pl

O
th

er
s

Mozilla Apache Linux

%
 o

f A
ll

B
ug

s

0

10

20

30

40

50

60

9.
5

±
3.

3

7.
1

±
2.

9

9.
2

±
3.

3

6.
8

±
2.

9

3.
7

±
2.

2

3.
4

±
2.

1

9.
2

±
3.

3

42
.7

±
5.

6

8.
1

±
3.

1

7.
5

±
5.

8

18
.8

±
8.

6

7.
5

±
5.

8

8.
8

±
6.

2

1.
2

±
2.

4

5.
0

±
4.

8

15
.0

±
7.

8

36
.2

±
10

.5

0.
0

±
0.

0

3.
9

±
3.

7

23
.3

±
8.

2

5.
8

±
4.

5

3.
9

±
3.

7

2.
9

±
3.

2

3.
9

±
3.

7

7.
8

±
5.

2

40
.8

±
9.

5

7.
8

±
5.

2

(c) Semantic bugs

Fig. 1 Distribution of root causes with impacts (BugSet1). The numbers show 95% con-
fidence intervals. (x ± i means that the value would fall in the range [x − i, x + i] with a
probability of 95% based on our sampling.)

Bug Characteristics in Open Source Software 17

●

●
●

●

●

●

●

●
●

● ●

2000 2002 2004 2006 2008

0
20

40
60

80
10

0

Time(year)

%
 o

f B
ug

s

●

Semantic
Memory

(a) Trend of in Mozilla

●

●

●

●

●

●

●

2003 2004 2005 2006 2007 2008 2009

20
40

60
80

Time(year)

%
 o

f B
ug

s

●

Semantic
Memory

(b) Trend of in the Linux kernel

●
●

●

●

●
●

●

● ●

●

●

2000 2002 2004 2006 2008

0
20

40
60

80

Time(year)

N
um

be
r

of
 B

ug
 R

ep
or

ts

● #Sample
#Bug

(c) Number of sampled bug reports
(#Sample) and number of memory and

semantic bugs (#Bug)

●
●

●

●

●
●

●

2003 2004 2005 2006 2007 2008 2009

0
20

40
60

80

Time(year)

N
um

be
r

of
 B

ug
 R

ep
or

ts

● #Sample
#Bug

(d) Number of sampled bug reports
(#Sample) and number of memory and

semantic bugs (#Bug)

Fig. 2 Trend of memory and semantic bugs in Mozilla and the Linux kernel from the
random sample (BugSet1)

4.1 Memory Bugs Have Been Decreasing.

Figure 2 shows that as Mozilla and the Linux kernel become mature and sta-
ble, their memory bugs decrease. Figure 1(a) shows that memory bugs account
for a small fraction of all bugs, 11.8% in Mozilla, 12.4% in Apache, and 16.3%
in the Linux kernel. These percentages are much lower than the 28–38% re-
ported in previous work [83,84]. One possible reason for this reduction could be
the use of debugging tools during the development process in recent years. A
developers’ document [7] indicates that recent debugging tools, such as Cover-
ity [6], Purify [46], and Valgrind [10], are used by Mozilla developers during
the development process, and the Mozilla developers have even augmented
tools including Purify for more effective memory bug detection. As part of the

18 Lin Tan et al.

Mozilla software process, “static analysis tools (Coverity and another similar
tool) were run over the codebase, ...” as pointed out by a known Mozilla de-
veloper in the mozilla dev-quality mailing list. We have spotted bug reports
and commit messages written by Apache and Linux kernel developers stating
that they used tools such as Coverity [6] and Valgrind [10] to catch bugs.

Figure 1(b) shows that among memory bugs in Mozilla, Apache, and the
Linux kernel, NULL pointer dereference is a major cause, accounting for 20.8–
33.3% of the memory bugs, and most of them result in a crash. Memory
leak is another major cause in the three projects, accounting for 16.7–40.0%,
which is much more than the 8% reported previously [84]. Since many of
these memory bugs can be detected by the existing tools such as Purify [46],
Valgrind [10], and Coverity [6], and developers indicated that they used these
tools during the development process as shown earlier, our results indicate that
these debugging tools have not been used in the development process with their
full capacity yet. Therefore, it is important to understand why these tools have
not been used with their full capacity and address the relevant issues, e.g.,
improving the detection capability of the current bug detection techniques,
reducing false positives, simplifying the usage procedure, promoting these tools
to more developers, etc.

4.2 Semantic Bugs Are Dominant Root Causes.

Figure 1(a) shows that the dominant root causes are semantic bugs in Mozilla,
Apache, and the Linux kernel, accounting for 87.0% in Mozilla, 82.5% in
Apache, and 70.1% in the Linux kernel. These numbers are much higher than
the 55–66% reported in a previous study [84] (bugs excluding memory bugs
and concurrency bugs). Figure 2 shows that semantic bugs increase, as Mozilla
and the Linux kernel become mature and stable. In summary, semantic bugs
are not only the dominant root causes, but also have become more dominant.

One possible reason may be that most semantic bugs are application-
specific, and thus a programmer can easily introduce semantic bugs due to a
lack of thorough understanding of the system, its requirements, or its specifica-
tions. Additionally, it is harder to automatically detect semantic bugs because
they are application-specific, which is different from memory bugs which are
general across applications.

In order to further understand what are the major causes among semantic
bugs, we show the breakdown of semantic bugs into subcategories in Fig-
ure 1(c). Most semantic bugs are caused by wrong functionality implementa-
tion that does not meet the design requirements. In addition, missing features
and missing cases also account for a large portion of semantic bugs, which
is consistent with the previous study [23]. Since knowledge about the target
system is critical for avoiding and detecting such semantic bugs, these results
suggest that it would be beneficial to develop techniques to automatically
extract specifications from programs [35,88,89].

Bug Characteristics in Open Source Software 19

H
an

g

C
ra

sh

C
or

ru
pt

P
er

f

F
un

c

O
th

er
s

U
nk

no
w

n

H
an

g

C
ra

sh

C
or

ru
pt

P
er

f

F
un

c

O
th

er
s

U
nk

no
w

n

H
an

g

C
ra

sh

C
or

ru
pt

P
er

f

F
un

c

O
th

er
s

U
nk

no
w

n

Mozilla Apache Linux

%
 o

f A
ll

B
ug

s

0

20

40

60

80

2.
1

±
1.

5

15
.9

±
3.

9

1.
5

±
1.

3

1.
2

±
1.

1

70
.2

±
4.

9

6.
8

±
2.

7

5.
0

±
2.

3

3.
1

±
3.

4 11
.3

±
6.

3

1.
0

±
2.

0 11
.3

±
6.

3

66
.0

±
9.

4

3.
1

±
3.

4

4.
1

±
4.

0

21
.1

±
6.

6

27
.2

±
7.

2

5.
4

±
3.

7

10
.9

±
5.

0

49
.0

±
8.

1

0.
7

±
1.

3

2.
7

±
2.

6

Semantic
Concurrency
Memory

Fig. 3 Distribution of bug impacts (BugSet1)

Interestingly, there are quite a few simple semantic bugs in the evaluated
software. For example, typos account for 7.8–15.0% of the semantic bugs in
Mozilla, Apache and the Linux kernel. It indicates that careless programming
is causing many bugs, suggesting that the development environment should
provide some tools for programmers to check for simple errors such as typos.

5 Impact Analysis

In this section, we study the distribution of impacts and the correlation be-
tween impacts and root causes. We answer RQ2: What are the impact of bugs
and what types of bugs have severe impact? The bug set used for this section is
BugSet1—randomly sampled 583 bugs from Bugzilla databases (Section 2.1).

5.1 Impact Distribution

Figure 3 summarizes the distribution of different impacts with the correspond-
ing root causes. It shows that incorrect functionality is the dominant impact
in Mozilla, Apache, and the Linux kernel: the percentage of incorrect func-
tionality is 49.0–70.2%, much larger than the 35% reported in the previous
work [83].

The severe impacts that compromise software availability, i.e., crashes and
hangs, account for 14.4–48.3% of bugs in the three projects, which is a consid-
erable portion. Thus, generic recovery techniques such as restart or checkpoint
and replay are still needed to provide highly available services.

20 Lin Tan et al.

Table 6 Correlation between root causes and impacts in Mozilla (BugSet1). The correlation
metric lift is defined in Section 3.3. Categories with too few examples (fewer than 3) are not
shown due to statistical insignificance. MLK is memory leak, UMR is uninitialized memory
read, and NULL is NULL pointer dereference.

Impact Memory Concurrency Semantic Memory Subcategories
MLK UMR NULL

Hang 0.00 24.21 0.82 0.00 0.00 0.00
Crash 3.30 1.57 0.68 0.39 4.71 5.75
Func 0.18 0.00 1.13 0.36 0.00 0.12

Impact Semantic Subcategories
MissF MissC CornerC CtrlFlow Except Process Typo FuncImpl

Hang 0.00 2.31 0.00 2.42 8.81 0.00 0.00 0.38
Crash 0.22 0.60 1.63 0.31 2.85 0.63 0.93 0.55
Func 1.32 1.36 0.95 1.21 0.52 1.28 0.79 1.24

Table 7 Correlation between root causes and impacts in Apache (BugSet1). The correlation
metric lift is defined in Section 3.3. Categories with too few examples (fewer than 3) are
not shown due to statistical insignificance. UMR is uninitialized memory read, and NULL
is NULL pointer dereference.

Impact Memory Concurrency Semantic Memory Subcategories
UMR NULL

Hang 0.00 0.00 1.21 0.00 0.00
Crash 5.88 1.76 0.22 8.82 8.82
Func 0.13 0.91 1.14 0.00 0.00

Impact Semantic Subcategories
MissF MissC CornerC CtrlFlow Process Typo FuncImpl

Hang 0.00 2.16 5.39 4.62 0.00 0.00 0.00
Crash 0.00 1.18 0.00 0.00 0.00 0.00 0.00
Func 1.52 0.91 1.26 1.30 1.14 1.14 1.10

Table 8 Correlation between root causes and impacts in the Linux kernel (BugSet1). The
correlation metric lift is defined in Section 3.3. Categories with too few examples (fewer
than 3) are not shown due to statistical insignificance. MLK is memory leak, and NULL is
NULL pointer dereference.

Impact Memory Concurrency Semantic Memory Subcategories
MLK NULL

Hang 0.79 2.37 0.78 2.37 0.00
Crash 2.45 0.73 0.71 2.45 3.67
Func 0.51 0.51 1.21 0.00 0.00

Impact Semantic Subcategories
MissF MissC CornerC CtrlFlow Except Process Typo FuncImpl

Hang 1.19 0.79 0.79 0.00 1.58 0.00 0.00 1.02
Crash 0.00 0.92 1.23 0.92 1.23 0.00 1.84 0.35
Func 1.53 0.94 1.02 1.53 0.00 2.04 0.51 1.41

5.2 Correlation Between Causes and Impacts

Figure 3 also shows that the major cause of crashes in Mozilla, Apache, and the
Linux kernel is memory bugs, accounting for 38.9–72.7%, which is similar to

Bug Characteristics in Open Source Software 21

what has been found in the previous work [83]. Semantic bugs are more likely
to cause incorrect functionality, accounting for 84.7–97.9%, which is also con-
sistent with the previous studies. However, 18.2–59.3% of crashes are caused
by semantic bugs, which is higher than that reported in the previous work [83].
It indicates that although most semantic bugs result in incorrect functionality,
they are also one of the important factors of causing unavailability.

In order to further understand the correlation between causes and impacts,
we show the correlation metric lift (defined in Section 3.3) in Table 6, Table 7,
and Table 8. Numbers greater than 1 (positive correlation) are shown in bold.
Not surprisingly, the crash symptom have a strong correlation with mem-
ory bugs, while the hang symptom has an extremely strong correlation with
concurrency bugs. The incorrect functionality impact (Func) has a positive
correlation with semantic bugs, though no specific subcategory of semantic
bug has an exceptionally high correlation.

6 Bugs in Different Components

In this section, we study in which software components the dominant bugs
are located, including core, GUI, network, I/O, and others. Since friendly user
interfaces are becoming increasingly important for software, we are particularly
interested in studying characteristics of GUI bugs. We answer the following
research questions: RQ3a: Are there many GUI-related bugs? RQ3b: Since
GUI modules and their development process are quite different from other
modules, do they have different root cause distributions? The bug set used for
this section is BugSet1—randomly sampled 583 bugs from Bugzilla databases
(Section 2.1). As operating system components are inherently different from
non-OS software components, we present and discuss the component-related
results for Mozilla and Apache in this Section, and show the results for the
Linux kernel in Section 7.

Figure 4 shows the distribution of bugs within different components and
their impacts. As we can see, GUI modules are critical for software reliability
in graphical interface software Mozilla. GUI bugs account for 50.1% of bugs in
Mozilla and also cause around 45.6% of Mozilla crashes. It is understandable
that Apache contains a smaller percentage of GUI bugs as it is mostly a
command-line server application.

The correlation between software components and root causes for Mozilla
and Apache are shown in Table 9 and Table 10. The lift numbers greater than
1 (positive correlation) are shown in bold. Interestingly, the results indicate
that bugs in GUI and core modules have quite different root causes. The major
root cause of bugs in core modules is memory related, while that of GUI bugs
is semantic bugs. Such difference is likely because the GUI modules and their
development process are quite different from other modules.

In summary, Mozilla contains a significant number of GUI bugs, which can
cause severe damage including crashes. The result calls for more support for
GUI-related testing and debugging for GUI applications. In addition, Mozilla

22 Lin Tan et al.

C
or

e

G
U

I

N
et

w
or

k

I/O

O
th

er
s

C
or

e

G
U

I

N
et

w
or

k

I/O

O
th

er
s

Mozilla Apache

%
 o

f B
ug

s

0

20

40

60

80

33
.3

±
4.

5

50
.1

±
4.

8

7.
3

±
2.

5

4.
7

±
2.

0

4.
5

±
2.

0

65
.7

±
9.

1

3.
8

±
3.

7

21
.9

±
7.

9

6.
7

±
4.

8

1.
9

±
2.

6

Unknown
Others
Func
Perf
Corrupt
Crash
Hang

Fig. 4 Distribution of Mozilla and Apache bugs in software components (BugSet1)

Table 9 Correlation between root causes and software components in Mozilla (BugSet1).
The correlation metric lift is defined in Section 3.3. Categories with too few examples (fewer
than 3) are not shown due to statistical insignificance. MLK is memory leak, UMR is unini-
tialized memory read, and NULL is NULL pointer dereference.

Component Memory Concurrency Semantic Memory Subcategories
MLK UMR NULL

Core 1.89 1.40 0.87 1.93 1.40 2.10
GUI 0.42 0.52 1.09 0.26 1.04 0.35

Component Semantic Subcategories
MissF MissC CornerC CtrlFlow Except Process Typo FuncImpl

Core 0.70 0.67 1.35 1.26 0.76 0.56 0.62 0.87
GUI 1.34 1.09 0.77 0.83 0.95 1.04 1.31 1.11

and Apache GUI bugs are more likely to be caused by semantic bugs instead
of memory bugs. Therefore, the existing debugging tools aiming at memory
bugs may be unsuitable for GUI bugs, while support for semantic bugs [13]
can be helpful for GUI bugs. In the future, it would be interesting to study
what percentage of Mozilla and Apache code is GUI-related to understand the
density of GUI bugs.

Bug Characteristics in Open Source Software 23

Table 10 Correlation between root causes and software components in Apache (BugSet1).
The correlation metric lift is defined in Section 3.3. Categories with too few examples (fewer
than 3) are not shown due to statistical insignificance. UMR is uninitialized memory read,
and NULL is NULL pointer dereference.

Component Memory Concurrency Semantic Memory Subcategories
UMR NULL

Core 1.43 0.63 0.96 1.56 1.56
GUI 0.00 0.00 1.21 0.00 0.00

Component Semantic Subcategories
MissF MissC CornerC CtrlFlow Process Typo FuncImpl

Core 1.04 1.25 1.04 1.12 1.17 1.04 0.70
GUI 4.04 0.00 0.00 0.00 0.00 4.04 0.84

7 Bugs in Operating Systems

We are interested in learning the similarity and difference between OS bugs
and non-OS bugs. In this section, we answer RQ4: Does operating system
code such as the Linux kernel have different characteristics from its non-OS
counterparts, and require different bug detection and diagnosis techniques?
As operating systems inherently need to manage shared resources, do oper-
ating system code contain more concurrency bugs? The bug set used for this
section is BugSet1—randomly sampled 583 bugs from Bugzilla databases
(Section 2.1).

Similar Percentage of Memory Bugs: Among all the studied Linux
kernel bugs, 16.3% are memory bugs (Figure 1(a)). This result is similar to
that for Mozilla (11.8%) and Apache (12.4%). Although it may be impractical
to run dynamic memory bug detection tools such as Purify and Valgrind on
the Linux kernel due to the prohibitively expensive runtime overhead, a static
tool developed by Engler et. al [34] can and are used by the kernel developers.
This static tool become available around 2001 and we have spotted bug reports
and commit messages written by the kernel developers stating that they used
this tool to catch memory bugs.

More Concurrency Bugs and Hang Bugs: Figure 1(a) shows that the
Linux kernel has significantly more concurrency bugs (13.6%) than Mozilla
(1.2%) and Apache (5.2%). This difference is understandable as the Linux
kernel inherently have to deal with concurrent activities and shared resources.
By and large, the impact distribution of OS bugs is similar to non-OS bugs
(Figure 3). The only main difference is that the Linux kernel has many more
hang bugs (21.1%) than non-OS software (2.1-3.1%). As concurrency bugs are
more likely to cause deadlocks or hangs (discussed later this Section) and the
Linux kernel contains more concurrency bugs, the difference in the number of
hang bugs is not surprising.

Dominating Driver Bugs: Figure 5 shows that 52.9% of the bugs are
in device driver code, which confirms the results from prior studies [24,86].

24 Lin Tan et al.

C
or

e

D
riv

er

N
et

w
or

k

F
S

A
rc

h

O
th

er
s

 Linux

%
 o

f B
ug

s

0

20

40

60

80

7.
0

±
3.

8

52
.9

±
7.

5

9.
9

±
4.

5

8.
7

±
4.

2

16
.3

±
5.

5

5.
2

±
3.

3

Fig. 5 Distribution of Linux kernel bugs in OS components (BugSet1). ‘FS’ stands for file
systems. ‘Arch’ denotes architecture. ‘Core’ includes bugs in 3 kernel directories: ‘kernel’,
‘mm’ (memory management), and ‘include’.

Previous study [24] studied injected bugs in the Linux kernel. In contrast, we
study field kernel bugs that are reported by users and developers to show that
driver bugs dominate.

Interrupt-related Bugs: A significant proportion (10.2%) of the ker-
nel bugs are related to interrupt handling, e.g., forgetting to disable or en-
able interrupts, missing certain interrupts, not ignoring certain interrupts,
etc. Among these interrupt-related bugs, 20.0% of them are concurrency bugs,
and 80.0% are semantic bugs. As correct interrupt handling are important for
the correctness of an operating system and the applications running on top
of the OS, and they cause severe damage, such as hang, crash, performance
degradation and wrong functionality, we may want to provide more support
to help developers write correct interrupt related code.

Correlation Between Causes, Impacts, and Components: Table 8
shows that similar to non-OS software, the hang symptom has a strong correla-
tion with concurrency bugs, while the crash symptom has a strong correlation
with memory bugs. The incorrect functionality impact has a relatively strong

Bug Characteristics in Open Source Software 25

correlation with semantic bugs. These results are similar to our non-OS bug
results (Table 6 and Table 7).

Table 11 shows that null pointer dereference bugs have a strong correlation
with the file system component. This implies that it can be beneficial to apply
null pointer dereference bug detection techniques specifically on the file system
module instead of blindly on the entire Linux kernel. Such an approach may
increase the scalability of the bug detection techniques. Similarly, we may
want to focus our concurrency bug detection techniques on the network and
file system modules.

Table 11 Correlation between root causes and components in the Linux kernel. The corre-
lation metric lift is defined in Section 3.3. Categories with too few examples (fewer than 3)
are not shown due to statistical insignificance. MLK is memory leak, and NULL is NULL
pointer dereference.

Component Memory Concurrency Semantic Memory Subcategories
MLK Overflow NULL

Drivers 0.86 0.75 1.08 0.94 1.13 0.38
Core 1.84 2.21 0.57 2.45 0.00 0.00
Network 0.00 2.30 0.98 NA NA NA
FS 1.31 2.10 0.71 0.00 0.00 6.30
Arch 1.11 0.33 1.10 1.11 1.34 0.00

8 Security Related Bugs

We answer the following research questions: RQ5a: Does the number and
proportion of reported security bugs increase? RQ5b: Is the common belief
“buffer overflows are the most common type of security vulnerabilities” [27]
true? If not (as suggested by a recent study [63]), what types of bugs cause
more security vulnerabilities? Answers to these questions can provide guidance
in addressing the important types of security vulnerabilities.

The bug set used for this section is BugSet2—all 1,387 classified security
bugs in Mozilla, Apache, and the Linux kernel in the National Vulnerability
Database (NVD) [4] (Section 2.2). Most NVD security vulnerabilities have
already been classified by NVD into one of the NVD root cause categories,
such as buffer errors, authentication issues, race conditions, SQL injection,
etc. To ensure correctness of classification, we only study NVD security vul-
nerabilities that have already been classified into these categories: 640 security
vulnerabilities in Mozilla, 65 security vulnerabilities in Apache, and 682 secu-
rity vulnerabilities in the Linux kernel (Column “Security Bugs” in Table 2).

8.1 Security Related Bugs Have Been Increasing.

Figure 6(a) shows the number of vulnerabilities over time in Mozilla (the
dots). We also normalize the numbers to relative percentage by comparing

26 Lin Tan et al.

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

%
 o

f A
ll

B
ug

s

0.0

0.5

1.0

1.5

2.0

4 1 5 6

49
60

109

152

132
122

● ● ●
●

●
● ●

●

●

●

●

●

●

(a) Trend of Mozilla

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

%
 o

f A
ll

B
ug

s

0

5

10

15

20

1 1
2

0

2
1

12 12
11

9

14

●

●

●

●

●

●

●

●

● ●

●

●

●

(b) Trend of Apache

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

%
 o

f A
ll

B
ug

s

0

10

20

30

40

50

1 0 0 1
8

1

22
31

67

102

120

174

155

● ● ● ●

●

●

●

●

●

●

●

●

●

(c) Trend of Linux

Fig. 6 Trend of security related bugs collected from NVD (BugSet2)

M
em C
on

S
em

M
em C
on

S
em

M
em C
on

S
em

Mozilla Apache Linux

%
 o

f A
ll

B
ug

s

0

20

40

60

80

27
.7

0.
8

71
.5

27
.8

1.
9

70
.4

34
.5

3.
7

61
.8Low

Medium
High

(a) Causes and Severity

C
on

fid
en

tia
lit

y

In
te

gr
ity

A
va

la
bi

lit
y

A
cc

es
s

C
on

fid
en

tia
lit

y

In
te

gr
ity

A
va

la
bi

lit
y

A
cc

es
s

C
on

fid
en

tia
lit

y

In
te

gr
ity

A
va

la
bi

lit
y

A
cc

es
s

Mozilla Apache Linux

%
 o

f A
ll

B
ug

s

0

10

20

30

40

50

60

34
.3

31
.4

31
.4

3.
0

25
.4

31
.0

42
.3

1.
4

35
.8

20
.9

42
.4

1

Sem
Con
Mem

(b) Impacts and Causes

Fig. 7 Distributions of causes and impacts of security related bugs in NVD (BugSet2)

Bug Characteristics in Open Source Software 27

Table 12 Correlation between root causes and severity/impacts for security related bugs
(BugSet2) in Mozilla. The correlation metric lift is defined in Section 3.3. Categories with
too few examples (fewer than 3) are not shown due to statistical insignificance.

Cause Severity Impact
High Medium Low Confidentiality Integrity Availability Access

Mem 1.82 0.43 0.31 0.92 0.85 1.29 0.47
Con 0.60 0.92 5.57 1.10 1.20 0.80 0.00
Sem 0.69 1.22 1.22 1.04 1.08 0.85 1.30

Table 13 Correlation between root causes and severity/impacts for security related bugs
(BugSet2) in Apache. The correlation metric lift is defined in Section 3.3. Categories with
too few examples (fewer than 3) are not shown due to statistical insignificance.

Cause Severity Impact
High Medium Low Confidentiality Integrity Availability

Mem 1.67 0.90 0.00 0.46 0.00 2.10
Sem 0.77 1.03 1.42 1.14 1.37 0.64

with the total fixed bugs reported in Bugzilla during the corresponding year
(the bars). Similarly, Figure 6(b) and (c) shows the number and percentage of
vulnerabilities over time in Apache and the Linux kernel. The trend shows that
the numbers and the percentage of vulnerabilities are increasing for Mozilla,
Apache, and the Linux kernel. However, it does not necessarily indicate that
software is less secure. Instead, it may demonstrate that people have paid
more attention to security issues and security issues is becoming increasingly
important for client, server, and OS software.

Despite the increasing percentage, the absolute number of Mozilla classified
security bugs in the last two years decreases. This is understandable because it
takes time for security bugs to be classified since this step is manual; therefore,
recently reported security bugs are less likely to be classified, contributing to
the relatively smaller number of classified security bugs in the last two years
of Mozilla.

8.2 Semantic Bugs Are the Dominant Cause of Security Vulnerabilities.

Figure 7(a) shows the distribution of root causes and severity for security
bugs. Surprisingly, memory bugs account for only 27.7–34.5%, while semantic
bugs cause 61.8–71.5% of vulnerabilities. This finding is against the belief that
buffer overflows are the most common form of security vulnerability [27]; and it
agrees with a recent study [63]. The result suggests that while it is important
to detect buffer overflows to reduce security vulnerabilities, we should also
provide support for detecting, diagnosing, and fixing security vulnerabilities
caused by semantic bugs.

On the other hand, Figure 7(a) shows that compared to semantic bugs,
memory bugs are more likely to cause more severe security vulnerabilities
(High). This result has been supported by the correlation metric lift shown
in Table 13–14 as well. In addition, Table 13–14 show that memory bugs are

28 Lin Tan et al.

Table 14 Correlation between root causes and severity/impacts for security related bugs
(BugSet2) in the Linux kernel. The correlation metric lift is defined in Section 3.3. Categories
with too few examples (fewer than 3) are not shown due to statistical insignificance.

Cause Severity Impact
High Medium Low Confidentiality Integrity Availability Access

Mem 1.47 0.98 0.21 0.72 1.05 1.22 NA
Con 0.43 1.68 NA 0.70 0.93 1.31 0.00
Sem 0.77 0.97 1.47 1.21 0.97 0.83 1.34

likely to cause unavailability. Since many memory bugs can be detected by the
existing tools such as Purify, Valgrind, and Coverity [6], and developers indi-
cated that they used these tools during the development process (Section 4),
our results indicate that it is important to understand why these tools have
not been used with their full capacity and address the relevant issues [44], e.g.,
improving the detection capability of the current bug detection techniques, re-
ducing false positives, simplifying the usage procedure, promoting these tools
to more developers, etc.

The different distribution of impacts shown in Figure 7(b) indicates that
vulnerabilities have different impacts on client, server, and OS systems. For
servers (Apache) and operating systems (the Linux kernel), unavailability is
the most common type of vulnerabilities, which is not the case for client sys-
tems (Mozilla).

9 Concurrency Bugs

In addition to program inputs, the scheduling affects the manifestation of
concurrency bugs. Therefore, it is often expected that concurrency bugs are
hard-to-reproduce. Is this true for the reported bugs in real-world software such
as Mozilla? In this section, we answer the following research questions: RQ6a:
Are concurrency bugs hard-to-reproduce? RQ6b: Do these concurrency bugs
cause severe impacts on software systems?

The bug set used for this section is BugSet3—concurrency bugs in Bugzilla
databases retrieved using keyword searches (Section 2.2). Concurrency bugs
only constitute a very small percentage of all reported bugs. Therefore, random
sampling cannot provide enough concurrency bugs for a representative study.
To collect enough concurrency bugs, we use keywords, i.e., “race”, “lock”,
“deadlock”, “synchronization”, “starvation”, and “atomic”, to search bug re-
ports and extract reports that contain these keywords as potential concurrency
bugs. We then manually verify whether they are concurrency bugs. Using this
method, we collect 90 concurrency bugs from Mozilla. Apache and the Linux
kernel Bugzilla databases only contain 1.5K–4.7K fixed bug reports, which are
two orders of magnitude smaller than that of Mozilla (Table 1). In addition,
there is only a very small percentage of concurrency bugs as shown in Figure
1(a). Therefore, due to the small number of concurrency bugs in the Apache

Bug Characteristics in Open Source Software 29

H
an

g

C
ra

sh

C
or

ru
pt

P
er

f

F
un

c

O
th

er
s

%
 o

f C
on

cu
rr

en
cy

 B
ug

s

0

10

20

30

40

50

42
.2

13
.3

1.
1

12
.2

24
.4

6.
7

Fig. 8 Impact distribution of concurrency bugs in Mozilla (BugSet3).

and Linux kernel Bugzilla databases, the results for Apache and Linux kernel
concurrency bugs are not discussed in this paper.

9.1 Concurrency Bugs Are Hard-to-Reproduce.

We found that most Mozilla concurrency bugs could not be reproduced by
developers with an acceptable probability (e.g., more than once out of ten
times). Therefore, even though Mozilla still contains many concurrency bugs,
failures caused by concurrency bugs were unlikely to be reported by users or to
be fixed by developers because they were difficult to reproduce. Techniques to
help reproduce concurrency bugs and increase the probability of manifesting
concurrency bugs [72,73] would be helpful for diagnosing concurrency bugs. In
addition, it would be beneficial to encourage users and developers to include
more information about how to reproduce concurrency bugs when they report
such bugs.

9.2 Most Concurrency Bugs Lead to Hangs or Crashes.

Figure 8 shows the distribution of impacts from Mozilla concurrency bugs.
Compared to the general Mozilla bugs shown in Figure 3, Mozilla concurrency
bugs cause much more severe impacts on software systems, which is consistent
with previous work [84]. Specifically, 42.2% of Mozilla concurrency bugs cause

30 Lin Tan et al.

system hangs due to synchronization errors and deadlocks, 21 times higher
than general Mozilla bugs. Further, 55.5% of Mozilla concurrency bugs lead
to crashes and hangs, which are likely to be detected and recovered by generic
recovery techniques.

10 Automatic Bug Classification

In this section, we answer RQ7: Would it be possible to automatically find
memory bugs and semantic bugs? Automatic classification can help reduce the
manual effort in building bug benchmarks [56] and evaluating bug detection
and diagnosis tools [90]. In addition, automatic classification may help devel-
opers understand certain categories of bugs for better bug diagnosis and fixing.
To automatically find a large number of bugs of a certain type, we leverage
machine learning techniques to automatically classify a large number of bug
reports into different bug types.

10.1 Approach

As fixed bug reports do not always describe valid runtime bugs as discussed
earlier, we must first automatically identify fixed runtime bugs from the fixed
bug reports in Bugzilla databases. Therefore, we employ a two-level classifi-
cation approach. The first level classifier classifies whether a given fixed bug
report is a fixed runtime bug. The second level classifiers classify fixed run-
time bugs according to their root causes. We build one multi-class second
level classifier for memory bugs and semantic bugs. Our method consists of
the following steps: (1) preprocessing bug reports; (2) training; (3) evaluating
classification performance; and (4) applying classification models on the entire
Bugzilla databases.

– Preprocessing. In Bugzilla databases, a typical bug report contains the
following information: bug ID, summary, reporting time, priority, bug sever-
ity, product, component, bug description, discussion comments, and re-
porter. We use all these fields except the bug ID for classification. We
represent the summary, the bug description, and the discussion comments
in the word level, called bag-of-words approach. Each word in bug doc-
uments is parsed into an index. Each bug document is represented by a
vector.

– Training. We use the manually-labeled bug reports in our random sample
(BugSet1) for automatic classification. To avoid evaluation bias caused by
tuning, we randomly divide the whole sample into two halves: training set
for learning and tuning, and test set for performance evaluation. As the
test set does not affect the learning and tuning, and the test set is a random
sample of the entire Bugzilla databases, the performance evaluated on the
test set should be representative for the entire Bugzilla database. We ex-
perimented with four classification methods in Weka [11]—Support Vector

Bug Characteristics in Open Source Software 31

Machines using Sequential Minimal Optimization (SMO) [9], libSVM [22],
and Bayes Net [5], and J48 decision tree [78]. In addition, we explore the
different parameter settings of these classification methods.

We use 10-fold cross validation [49] on the training set to find out the
best classification method with the best parameter setting based on the
performance metrics described next. The 10-fold cross validation is a stan-
dard approach to mitigate the randomness in the data set. It randomly
divides the data set into 10 equal parts, i.e., fold1, fold2, ..., and fold10, It
builds 10 classifiers by learning from 9 folds at a time, i.e., using fold1–9 to
build a classifier, using fold1–8 and fold10 to build another classifier, and so
on and so forth. The performance is measured on the remaining fold, e.g.,
we use the classifier built from fold1–9 to classify fold10 and measure its
performance. The performance from all 10 folds are combined to indicate
the overall performance. We use this overall performance to evaluate the
effectiveness of the different parameters and classification algorithms. Note
that we use 10-fold cross validation on the training set to find the best
parameters and classification algorithms to build the classifier; and then
we use the classifier to classify bug reports in the test set to evaluate the
performance of the classifier. This approach ensures that the test set does
not affect the parameter tuning for a fair evaluation. We run SMO with all
six kernels (-K). We apply libSVM with two different kernels (-k)—linear
kernel (0) and RBF kernel (2). We run Bayes Net with the maximum num-
ber of parents (-P) from 1 to 3 in increment of 1. We run J48 decision tree
with confidence factor (-c) from 0.1 to 0.3 in increment of 0.05, and the
minimum number of instances per leaf (-m) from 1 to 3 in increment of 1.
The detailed classification results are shown in Section 10.2.

The Mozilla training set contains 318 fixed bug reports, 177 of which
are fixed runtime bugs. In other words, for our first level classification, the
training set contains 318 instance, 177 of which are positive instances (all
of the fixed runtime bugs), and the rest are negative instances. Among
the 177 fixed runtime bugs, 155 are semantic bugs, 19 are memory bugs,
and three are concurrency bugs. Therefore, for the second-level memory
bug classification, the training set contains 177 instance, with 19 memory
bug instances, and 155 semantic bug instances. The concurrency bugs will
received a negative label for the second level. The test set contain 317 bug
reports, 162 of which are fixed runtime bugs. Among these fixed runtime
bugs, 21 are memory bugs, 140 are semantic bugs, and one is a concurrency
bug. We apply multi-class classification to classify bugs into a memory bug,
a semantic bug, or neither.

– Evaluating Classification Performance. To evaluate how good the
classification models are, we measure the prediction performance. Four
different types of prediction results are possible from a binary classifier:
We use three metrics to evaluate the classification performance, which are
Precision (P = T+

T++F+
), Recall (R = T+

T++F−
), and F1, which is an even

combination of precision and recall (F1 = 2PR
P+R). When precision and recall

32 Lin Tan et al.

Predicted Label
Yes No

Actual Yes True Positive (T+) False Negative (F−)
Label No False Positive (F+) True Negative (T−)

Table 15 Distribution of root causes based on automatic classification

Percentage Classification on Test Set
in Bugzilla Precision Recall F1

First-Level: Bugs 57.6% 0.64 0.79 0.71
Second-Level: Memory 14.0% 0.67 0.57 0.62
Second-Level: Semantic 85.8% 0.93 0.95 0.94

are equally important, F1 can be used. For bug classification, the goal is
both high precision and high recall, so we use F1 as the tuning metric.

– Applying Classification Model. After we obtain classification models
for each category, we apply them on the whole database to predict which
categories a bug probably belongs to. The two level classification techniques
described earlier are applied to automatically identify fixed runtime bugs,
memory bugs, and semantic bugs. The detailed two-level classification re-
sults are shown in Section 10.2.

10.2 Automatic Classification Results

We presents our automatic classification results on Mozilla to show that it is
feasible to automatically identify memory bugs and semantic bugs.

As described in Section 10.1, we apply four classification algorithms with
different parameters on the training set to find classifiers with the highest F1.
These classifiers are then applied on the Mozilla test set for performance eval-
uation. As the test set does not affect the selection of classification algorithms
or parameter tuning, and the test set is a random sample of the entire bug
database, the performance evaluated on the test set should be representative
for the entire bug database. The first level classifier has a precision of 0.64,
a recall of 0.79, and a F1 of 0.71 (Table 15) by Support Vector Machines us-
ing Sequential Minimal Optimization (SMO) [9]. The kernel used (-K) is the
normalized PolyKernel. The precision, recall, and F1 of the second-level clas-
sification on the test set by Bayes Network [5] are shown in Table 15 as well.
We use value 2 for the maximum number of parents (-P) parameter.

We then apply the classifiers on all 189,097 fixed bug reports in the whole
Mozilla Bugzilla database; 109,014 are identified as fixed runtime bugs. Next,
the multi-class classifier is applied on the 109,014 fixed runtime bugs to identify
memory bugs and semantic bugs. Table 15 column “Percentage” shows the
distribution of bug root causes on the entire Mozilla Bugzilla database by our
automatic classification. Figure 1(a) shows that in Mozilla’s random sample,
11.8% are memory bugs and 87.0% are semantic bugs. Compared with these
results using randomly sampled bug reports, the percentage of memory and

Bug Characteristics in Open Source Software 33

semantic bugs from our automatic classification is similar, which indicates that
the distribution based on sampled bugs and that based on a large data set are
consistent for Mozilla. Similarly, Table 2 shows that 53.4% (339/635) of the
randomly sample bug reports in Mozilla are bugs. The percentage from our
automatic classification is similar.

Although the performance of the automatic classification is reasonable, it
is desirable to have higher precisions and recalls. The main challenge is to
improve the performance of the first level classification, because it is hard for
a classifier to tell whether a fixed bug report is a fixed runtime bug for the
following main reason. Many types of bug reports are not considered fixed
runtime bugs, e.g., new feature requests, compile-time errors, configuration
errors, etc. These types of bug reports are difficult to be characterized in the
bag-of-words level. It remains as our future work to further improve the first
level classification.

11 Related Work

Much effort has been made to study fault related characteristics of large soft-
ware systems [15,17,23–25,33,36,39,41,50,57,61,62,64,66,65,76,77,80,83,84,
95]. They show important results and have also identified some counter-intuitive
findings. By analyzing the error type, defect type and error trigger distribution
for shipped code of three IBM software systems, Sullivan and Chillarege [84]
found that memory bugs are a major type and have high impact. Ostrand and
Weyuker [64] found that the majority of post-release faults occurred in files
that had no pre-release faults. This observation contradicts the conventional
wisdom and suggests most testing effort for post-release software be put on
previous fault-free or less-faulty parts instead of most faulty parts.

Lu et. al [57] conducted a detailed empirical study of concurrency bugs.
While they focused on the bug root causes, bug manifestation, bug fix strate-
gies, and bug avoidance of concurrency bugs, this paper studies the percent-
age of concurrency bugs, and the correlation between bug root causes and
bug impact of concurrency bugs. A recent study [80] on bug reports in server
applications shows that about 77% of the failures are caused by bugs that
can be reproduced with just one input request. Yin et. al [95] studied how
bug fixes become bugs. Other work studies different aspects of bug fixes in-
cluding examining bug fixes that are cross-referenced between FreeBSD and
OpenBSD [21], and identifying bug-fixing commits [91]. German studied and
visualized fine-grained modifications [38]. Herraiz et. al [47] showed that the
bug priority/importance field is not a good indicator of the bug resolution
time. This paper answers different research questions from the previous stud-
ies.

Ozment and Schechter [67] measure the rate of code addition and the rate
of reported security vulnerabilities in OpenBSD operating system to determine
whether its security increases over time. Massacci et al. [58] study reported
security vulnerabilities in six major versions of Mozilla Firefox. Neuhaus and

34 Lin Tan et al.

Zimmermann [63] study the trend of security vulnerabilities without distin-
guishing different software projects. Zaman et al. [97] use Firefox as a case
study to understand how security bugs and performance bugs are different
from other types of bugs. For example, they find that security bugs are fixed
faster, but are more likely to be reopened. In addition to the trend of secu-
rity vulnerabilities over time, this paper studies the correlation between the
root cause and the severity and the correlation between the root cause and
the impact of security vulnerabilities. On the other hand, this paper studies
the reported security vulnerabilities in different software, i.e., Apache and the
entire Mozilla suite (Firefox is only one of many projects in the Mozilla suite).

Many studies apply text mining and machine learning techniques to iden-
tify security bug reports [37] and duplicate bug reports [79,85,92]. Many other
studies predict the most appropriate developers for fixing a bug report [14,28,
59,68,71], the bug lifetime and bug-fix time [20,48,69,70], which bugs will be
fixed [43] or re-opened [32], the quality of bug reports [75], the severity of
bug reports [12], source files that need to be changed [87,96], and what files,
classes, and modules are more fault-prone [30,40,42,66,52,81,93]. Podgurski
et al cluster software failures based on automatically recorded function call
profiles [77]. Our classifiers address a different classification problem of iden-
tifying memory and semantic bugs automatically.

Our previous work [54] studied the bug characteristics of two open source
projects Mozilla and Apache. This paper makes several new contributions.
First, we randomly sampled and studied additional 300 bug reports from an-
other piece of software, the widely-used Linux kernel operating system, com-
pared and contrasted our findings in OS and non-OS software (Section 4–7).
We also studied the trend of the Linux kernel bugs (Figure 2(b) and (d) in Sec-
tion 4), and the security bugs in the Linux kernel (Section 8). Many findings
are new, e.g., regarding interrupt-related bugs, driver bugs, and the strong
correlation between null pointer dereferences and bugs in file systems. Sec-
ond, we updated our study with recent data and added new data. Specifically,
we randomly sampled and studied additional 461 bug reports from the year
2005 to 2010 in Mozilla and Apache Bugzilla databases, while our previous
work only sampled bug reports until 2005. We discuss how we combine the
two data sets to maintain the randomness of sampling in Appendix A. The
security vulnerability data is updated as well: We analyzed all 1,387 classi-
fied security vulnerabilities in NVD for Mozilla, Apache, and the Linux kernel
until December 31st, 2011. Almost all figures and tables are either new or
regenerated. Our results in this paper combined with the results in our pre-
vious paper [54] show that the distributions of the data sets sampled by 2005
and 2010 are similar. This indicates that the variance in different data sets is
small, which increases the confidence and reproducibility of our results. Third,
we used a new multi-class classification to build classifiers on the new com-
bined sample and applied the new classifiers on the entire Mozilla Bugzilla
database. We now use the standard 10-fold cross-validation instead of 5-fold
cross-validation. Fourth, we extended the related work and threats to validity
sections, and added more details about how we collect bug samples, how we

Bug Characteristics in Open Source Software 35

classify bug reports, etc. Lastly, we have added three appendices: Appendix A
describes how we combine the two data sets to maintain the pure randomness
of sampling. Appendix B presents bug examples and their classification. Ap-
pendix C gives the detailed numbers for the bar graphs whose bars show the
break down of different categories.

12 Conclusions and Future Work

This paper studies the bug characteristics in three large open-source software
projects to guide the design of effective tools for detecting and recovering
from software failures. We manually study 2,060 randomly-sampled real world
bugs in three dimensions—root causes, impacts, and components. We further
study the correlation between categories in different dimensions, and the trend
of different types of bugs. Our findings and their implications include: (1)
semantic bugs are the dominant root cause. As software evolves, semantic
bugs increase, while memory-related bugs decrease, calling for more research
effort to address semantic bugs; (2) the Linux kernel operating system (OS) has
more concurrency bugs than its non-OS counterparts, suggesting more effort
into detecting concurrency bugs in operating system code; and (3) reported
security bugs are increasing, and the majority of them are caused by semantic
bugs, suggesting more support to help developers diagnose and fix security
bugs, especially semantic security bugs.

To reduce the manual effort in building bug benchmarks for evaluating bug
detection and diagnosis tools, we use machine learning techniques to automat-
ically classify hundreds of thousands of bugs. In the future, we would like to
study bug characteristics of software written in other languages such as Java
so that we can learn the language impact on bug characteristics.

Acknowledgments

We thank Luyang Wang and Yaoqiang Li for classifying some bug reports.
We thank Shan Lu for the early discussion and feedback. The work is par-
tially supported by the National Science and Engineering Research Council
of Canada, the United States National Science Foundation, the United States
Department of Energy, a Google gift grant, and an Intel gift grant.

References

1. ASF bugzilla. http://issues.apache.org/bugzilla (2010)
2. Kernel Bug Tracker. http://bugzilla.kernel.org/ (2010)
3. Mozilla.org Bugzilla. https://bugzilla.mozilla.org (2010)
4. National vulnerability database. http://nvd.nist.gov (2011)
5. Bayes net. http://www.cs.waikato.ac.nz/ remco/weka bn/ (2013)
6. Coverity: Automated error prevention and source code analysis. http://www.coverity.

com (2013)

36 Lin Tan et al.

7. Debugging memory leaks. https://wiki.mozilla.org/Performance:Leak_Tools (2013)
8. NVD common vulnerability scoring system. http://nvd.nist.gov/cvss.cfm?version=

2 (2013)
9. Support vector machines using sequential minimal optimization.

http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/SMO.html (2013)
10. Valgrind. http://www.valgrind.org/ (2013)
11. Weka. http://www.cs.waikato.ac.nz/ml/weka/ (2013)
12. Ahmed, L., Serge, D., Quinten, S., Tim, V.: Comparing mining algorithms for predicting

the severity of a reported bug. In: Proceedings of the 15th European Conference on
Software Maintenance and Reengineering, pp. 249–258 (2011)

13. Amir, M., Tao, X.: Helping users avoid bugs in gui applications. In: Proceedings of the
27th International Conference on Software Engineering, pp. 107–116 (2005)

14. Anvik, J., Hiew, L., Murphy, G.C.: Who should fix this bug? In: Proceedings of the
28th International Conference on Software Engineering, pp. 361–370 (2006)

15. Aranda, J., Venolia, G.: The secret life of bugs: Going past the errors and omissions in
software repositories. In: Proceedings of the 31st International Conference on Software
Engineering, pp. 298–308. IEEE (2009)

16. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic concepts and taxonomy
of dependable and secure computing. IEEE Trans. Dependable Secur. Comput. 1(1),
11–33 (2004)

17. Basili, V.R., Perricone, B.T.: Software errors and complexity: an empirical investigation.
Commun. ACM 27(1), 42–52 (1984)

18. Beizer, B.: Software testing techniques (2nd ed.). Van Nostrand Reinhold Co., New
York, NY, USA (1990)

19. Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V., Devanbu, P.: Fair
and balanced?: Bias in bug-fix datasets. In: Proceedings of the the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, ESEC/FSE ’09, pp. 121–130 (2009)

20. Bougie, G., Treude, C., German, D.M., Storey, M.A.: A comparative exploration of
FreeBSD bug lifetimes. In: 2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010), pp. 106–109. IEEE (2010)

21. Canfora, G., Cerulo, L., Cimitile, M., Di Penta, M.: Social interactions around cross-
system bug fixings: the case of freebsd and openbsd. In: Proceedings of the 8th Working
Conference on Mining Software Repositories, pp. 143–152 (2011)

22. Chang, C.C., Lin, C.J.: Libsvm—a library for support vector machines (2001). URL
http://www.csie.ntu.edu.tw/~cjlin/libsvm/. The Weka classifier works with version
2.82 of LIBSVM

23. Chillarege, R., Kao, W.L., Condit, R.G.: Defect type and its impact on the growth
curve. In: Proceedings of the 13th International Conference on Software Engineering,
pp. 246–255 (1991)

24. Chou, A., Yang, J., Chelf, B., Hallem, S., Engler, D.R.: An empirical study of operating
system errors. In: Proceedings of the eighteenth ACM Symposium on Operating Systems
Principles, pp. 73–88 (2001)

25. Compton, B.T., Withrow, C.: Prediction and control of ADA software defects. Journal
of Systems and Software 12(3), 199–207 (1990)

26. Cowan, C.: Software security for open-source systems. IEEE Security and Privacy 1(1),
38–45 (2003)

27. Cowan, C., Wagle, P., Pu, C., Beattie, S., Walpole, J.: Buffer overflows: Attacks and
defenses for the vulnerability of the decade. In: Proceedings of the DARPA Information
Survivability Conference and Exposition (2000)

28. Cubranic, D., Murphy, G.C.: Automatic bug triage using text categorization. In: Pro-
ceedings of the 16th international conference on Software Engineering and Knowledge
Engineering, pp. 92–97 (2004)

29. Dallmeier, V., Zimmermann, T.: Extraction of bug localization benchmarks from his-
tory. In: Proceedings of the twenty-second IEEE/ACM international conference on
Automated software engineering, pp. 433–436 (2007)

30. D’Ambros, M., Lanza, M., Robbes, R.: Evaluating defect prediction approaches: a
benchmark and an extensive comparison. Empirical Software Engineering 17(4-5), 531–
577 (2012)

Bug Characteristics in Open Source Software 37

31. Edwards, A., Tucker, S., Demsky, B.: Afid: an automated approach to collecting software
faults. Automated Software Engg. 17(3), 347–372 (2010)

32. Emad, S., Akinori, I., Yasutaka, K., Walid, M.I., Masao, O., Bram, A., Ahmed, E.H.,
Ken-ichi, M.: Predicting re-opened bugs: A case study on the Eclipse project. In:
Proceedings of the 2010 17th Working Conference on Reverse Engineering, pp. 249–258
(2010)

33. Endres, A.: An analysis of errors and their causes in system programs. In: Proceedings
of the international conference on Reliable software, pp. 327–336 (1975)

34. Engler, D., Chen, D.Y., Chou, A.: Bugs as deviant behavior: A general approach to
inferring errors in systems code. In: Proceedings of the eighteenth ACM Symposium on
Operating Systems Principles, pp. 57–72 (2001)

35. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering likely
program invariants to support program evolution. IEEE Transactions on Software En-
gineering 27(2), 99–123 (2001)

36. Fenton, N.E., Ohlsson, N.: Quantitative analysis of faults and failures in a complex
software system. IEEE Transactions on Software Engineering 26(8), 797–814 (2000)

37. Gegick, M., Rotella, P., Xie, T.: Identifying security bug reports via text mining: An
industrial case study. In: Proceedings of the 7th Working Conference on Mining Software
Repositories, pp. 11–20 (2010)

38. Germán, D.M.: An empirical study of fine-grained software modifications. Empirical
Software Engineering 11(3), 369–393 (2006)

39. Glass, R.: Persistent software errors. IEEE Transactions on Software Engineering 7(2),
162–168 (1981)

40. Graves, T., Karr, A., Marron, J., Siy, H.: Predicting fault incidence using software
change history. IEEE Transactions on Software Engineering 26(7), 653–661 (2000)

41. Gu, W., Kalbarczyk, Z., Iyer, R.K., Yang, Z.Y.: Characterization of linux kernel behavior
under errors. In: Proceedings of the 2003 International Conference on Dependable
Systems and Networks, pp. 459–468 (2003)

42. Guo, L., Ma, Y., Cukic, B., Singh, H.: Robust prediction of fault-proneness by random
forests. In: 15th International Symposium on Software Reliability Engineering, pp.
417–428 (2004)

43. Guo, P.J., Zimmermann, T., Nagappan, N., Murphy, B.: Characterizing and predicting
which bugs get fixed. In: Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering, ICSE ’10, vol. 1, pp. 495–504 (2010)

44. Hafiz, M.: Security on demand. Ph.D. thesis (2010)
45. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann

Publishers (2001)
46. Hastings, R., Joyce, B.: Purify: Fast detection of memory leaks and access errors. In:

Proceedings of the Winter USENIX Conference, pp. 125–136 (1992)
47. Herraiz, I., German, D.M., Gonzalez-Barahona, J.M., Robles, G.: Towards a simpli-

fication of the bug report form in eclipse. In: Proceedings of the 2008 international
workshop on Mining Software Repositories, MSR ’08, pp. 145–148. ACM Press (2008)

48. Hooimeijer, P., Weimer, W.: Modeling bug report quality. In: Proceedings of the twenty-
second IEEE/ACM international conference on Automated software engineering, pp.
34–43 (2007)

49. Joachims, T.: Learning to classify text using support vector machines. Kluwer Academic
Publishers (2002)

50. Kaâniche, M., Kanoun, K., Cukier, M., de Bastos Martini, M.R.: Software reliability
analysis of three successive generations of a switching system. In: Proceedings of the
First European Dependable Computing Conference on Dependable CompProceedings
of the First European Dependable Computing Conference on Dependable Computing,
pp. 473–490 (1994)

51. Kim, S., Zimmermann, T., Pan, K., Whitehead Jr., E.: Automatic Identification of
Bug-Introducing Changes. In: 21st IEEE/ACM International Conference on Automated
Software Engineering (ASE’06), pp. 81–90 (2006)

52. Kpodjedo, S., Ricca, F., Galinier, P., Guéhéneuc, Y.G., Antoniol, G.: Design evolution
metrics for defect prediction in object oriented systems. Empirical Software Engineering
16(1), 141–175 (2011)

38 Lin Tan et al.

53. Li, Z., Lu, S., Myagmar, S., Zhou, Y.: CP-Miner: A tool for finding copy-paste and
related bugs in operating system code. In: Sixth Symposium on Operating Systems
Design and Implementation, pp. 289–302 (2004)

54. Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., Zhai, C.: Have things changed now? An
empirical study of bug characteristics in modern open source software. In: Proceed-
ings of the 1st workshop on Architectural and system support for improving software
dependability, ASID ’06 (2006)

55. Lu, S.: Understanding, detecting and exposing concurrency bugs. Ph.D. thesis (2008)
56. Lu, S., Li, Z., Qin, F., Tan, L., Zhou, P., Zhou, Y.: BugBench: A benchmark for evalu-

ating bug detection tools. In: Workshop on the Evaluation of Software Defect Detection
Tools (2005)

57. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study on
real world concurrency bug characteristics. In: Proceedings of the 13th international
conference on Architectural support for programming languages and operating systems,
pp. 329–339 (2008)

58. Massacci, F., Neuhaus, S., Nguyen, V.H.: After-life vulnerabilities: a study on firefox
evolution, its vulnerabilities, and fixes. In: Proceedings of the Third international con-
ference on Engineering secure software and systems, pp. 195–208 (2011)

59. Matter, D., Kuhn, A., Nierstrasz, O.: Assigning bug reports using a vocabulary-based
expertise model of developers. In: Proceedings of the 2009 6th IEEE International
Working Conference on Mining Software Repositories, pp. 131–140 (2009)

60. Memon, A.M.: GUI testing: Pitfalls and process. Computer 35(8), 87–88 (2002)
61. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source software

development: Apache and Mozilla. ACM Transactions on Software Engineering Method-
ology (TOSEM) 11(3), 309–346 (2002)

62. Moller, K.H., Paulish, D.J.: An empirical investigation of software fault distribution. In:
Proceedings of the First International Software Metrics Symposium, pp. 82–90 (1993)

63. Neuhaus, S., Zimmermann, T.: Security trend analysis with cve topic models. In: Pro-
ceedings of the 2010 IEEE 21st International Symposium on Software Reliability Engi-
neering, pp. 111–120 (2010)

64. Ostrand, T., Weyuker, E.: The distribution of faults in a large industrial software sys-
tem. In: Proceedings of the 2002 ACM SIGSOFT international symposium on Software
testing and analysis, pp. 55–64 (2002)

65. Ostrand, T.J., Weyuker, E.J.: Collecting and categorizing software error data in an
industrial environment. Journal of Systems and Software 4(4), 289–300 (1984)

66. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Predicting the location and number of faults
in large software systems. IEEE Transactions on Software Engineering 31(4), 340–355
(2005)

67. Ozment, A., Schechter, S.E.: Milk or wine: does software security improve with age?
In: Proceedings of the 15th conference on USENIX Security Symposium - Volume 15
(2006)

68. Pamela, B., Iulian, N.: Fine-grained incremental learning and multi-feature tossing
graphs to improve bug triaging. In: Proceedings of the 2010 IEEE International Con-
ference on Software Maintenance (2010)

69. Pamela, B., Iulian, N.: Bug-fix time prediction models: can we do better? In: Proceedings
of the 8th Working Conference on Mining Software Repositories (2011)

70. Panjer, L.D.: Predicting Eclipse bug lifetimes. In: Proceedings of the Fourth Interna-
tional Workshop on Mining Software Repositories, pp. 29–32 (2007)

71. woo Park, J., woong Lee, M., Kim, J., won Hwang, S., Kim, S.: CosTriage: A cost-
aware triage algorithm for bug reporting systems. In: In Proceedings of Twenty-Fifth
Conference on Artificial Intelligence (2011)

72. Park, S., Lu, S., Zhou, Y.: CTrigger: exposing atomicity violation bugs from their hiding
places. In: Proceedings of the 14th international conference on Architectural support
for programming languages and operating systems, pp. 25–36 (2009)

73. Park, S., Zhou, Y., Xiong, W., Yin, Z., Kaushik, R., Lee, K.H., Lu, S.: PRES: proba-
bilistic replay with execution sketching on multiprocessors. In: Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, pp. 177–192 (2009)

74. Payne, C.: On the security of open source software. Information Systems Journal 12(1),
61–78 (2002)

Bug Characteristics in Open Source Software 39

75. Philipp, S., Juergen, R., Philippe, C.: Mining bug repositories–a quality assessment.
In: Proceedings of the 2008 International Conference on Computational Intelligence for
Modelling Control and Automation (2008)

76. Pighin, M., Marzona, A.: An empirical analysis of fault persistence through software
releases. In: Proceedings of the International Symposium on Empirical Software Engi-
neering, p. 206 (2003)

77. Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J., Wang, B.: Au-
tomated support for classifying software failure reports. In: Proceedings of the 23th
International Conference on Software Engineering, pp. 465–475 (2003)

78. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San
Mateo, CA (1993)

79. Runeson, P., Alexandersson, M., Nyholm, O.: Detection of duplicate defect reports using
natural language processing. In: Proceedings of the 29th international conference on
Software Engineering, pp. 499–510 (2007)

80. Sahoo, S.K., Criswell, J., Adve, V.: An empirical study of reported bugs in server
software with implications for automated bug diagnosis. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - ICSE ’10, vol. 1, p.
485. ACM Press (2010)

81. Shin, Y., Bell, R.M., Ostrand, T.J., Weyuker, E.J.: On the use of calling structure
information to improve fault prediction. Empirical Software Engineering 17(4-5), 390–
423 (2012)

82. Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? In: MSR ’05:
Proceedings of the 2005 international workshop on Mining Software Repositories, pp.
1–5 (2005)

83. Sullivan, M., Chillarege, R.: Software defects and their impact on system availability
- a study of field failures in operating systems. In: 21st Int. Symp. on Fault-Tolerant
Computing, pp. 2–9 (1991)

84. Sullivan, M., Chillarege, R.: A comparison of software defects in database management
systems and operating systems. In: 22nd Annual International Symposium on Fault-
Tolerant Computing, pp. 475–484 (1992)

85. Sun, C., Lo, D., Wang, X., Jiang, J., Khoo, S.C.: A discriminative model approach
for accurate duplicate bug report retrieval. In: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering, pp. 45–54 (2010)

86. Swift, M.M., Bershad, B.N., Levy, H.M.: Improving the reliability of commodity oper-
ating systems. In: Proceedings of the ACM SIGOPS Symposium on Operating Systems
Principles, pp. 207–222 (2003)

87. Syed, A., Franz, W.: Impact analysis of scrs using single and multi-label machine learn-
ing classification. In: Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement (2010)

88. Tan, L., Yuan, D., Krishna, G., Zhou, Y.: /* iComment: Bugs or bad comments? */.
In: Proceedings of the 21st ACM Symposium on Operating Systems Principles (2007)

89. Tan, L., Zhou, Y., Padioleau, Y.: aComment: Mining annotations from comments and
code to detect interrupt-related concurrency bugs. In: Proceedings of the 33rd Interna-
tional Conference on Software Engineering (2011)

90. Tang, Y., Tang, Y., Gao, Q., Gao, Q., Qin, F., Qin, F.: LeakSurvivor: Towards safely
tolerating memory leaks for garbage-collected languages. In: USENIX 2008 Annual
Technical Conference on Annual Technical Conference, pp. 307–320 (2008)

91. Tian, Y., Lawall, J., Lo, D.: Identifying linux bug fixing patches. In: Proceedings of the
International Conference on Software Engineering

92. Wang, X., Zhang, L., Xie, T., Anvik, J., Sun, J.: An approach to detecting duplicate
bug reports using natural language and execution information. In: Proceedings of the
30th International Conference on Software Engineering, pp. 461–470 (2008)

93. Weyuker, E.J., Ostrand, T.J., Bell, R.M.: Comparing the effectiveness of several model-
ing methods for fault prediction. Empirical Software Engineering 15(3), 277–295 (2010)

94. Wu, R., Zhang, H., Kim, S., Cheung, S.C.: ReLink: Recovering links between bugs
and changes. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, pp. 15–25 (2011)

40 Lin Tan et al.

95. Yin, Z., Yuan, D., Zhou, Y., Pasupathy, S., Bairavasundaram, L.: How do fixes become
bugs? In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, pp. 26–36 (2011)

96. Ying, A.T.T., Murphy, G.C., Ng, R.T., Chu-Carroll, M.: Predicting source code changes
by mining change history. IEEE Trans. Software Eng. 30(9), 574–586 (2004)

97. Zaman, S., Adams, B., Hassan, A.E.: Security versus performance bugs: A case study on
Firefox. In: Proceedings of the 8th Working Conference on Mining Software Repositories,
pp. 93–102 (2011)

41

Appendices
A Combining Two Data Sets

To leverage the randomly sampled bug reports studied in our prior work in 2005 [54], each
of the two bug report samples from Mozilla and Apache Bugzilla databases is combined
from two random samples. The combination is performed in the following way to maintain
the pure randomness of sampling. The goal is to ensure that the combined set of fixed bug
reports is no different from a random sample of fixed bug reports on the entire Bugzilla
databases now.

Figure 9 illustrates the combination approach. We randomly sampled 2X% of fixed bug
reports in one Bugzilla database by the cutoff date of our prior work, referred to as Date1.
Now we randomly select half of the 2X% of fixed bug reports, referred to as Set1; the other
half is discarded. Note that Set1 is a random sample of X% of bug reports fixed by Date1.
On our new sampling date (Table 1), denoted as Date2, we sample another X% of the fixed
bug reports that were opened after Date1 and before Date2, denoted as Set2. We keep only
half of the bug reports fixed by Date1 so that the sampled bug reports before Date1 and
sampled bug reports after Date1 are in proportion to the bug reports belong to the two
time ranges.

Date1 Date2

Opened Fixed

Set1

Set2

Opened Fixed

Set3

Opened Fixed Not Fixed

Set4

Opened Fixed

Set1 (x%)

Set3

Se
t4

 (
x

%
)

Discarded
(x%)

Set2 (x%)Set1 (x%)

Set3

Se
t4

 (
x

%
)

Old Data Set

New Data Set

Fig. 9 Combining Two Data Sets. “Not Fixed” denotes any status other than “Fixed”,
e.g., reopened, invalid, etc. “Old Data Set” is the data set used in our previous work [54]
and “New Data Set” is the data set used in this paper.

The status of a bug report may have changed since Date1 in the following two ways:
(1) a fixed bug report by Date1 is no longer fixed by Date2; or (2) a unfixed bug report by
Date1 is fixed by Date2. To compensate for these two scenarios, we identify all the fixed bug
reports in Set1 that are no longer marked as fixed on Date2, denoted as Set3. Bug reports
in Set3 should not be included in our sample, because if we take a random sample of fixed
bug reports on Date2, those bug reports would not be sampled as they are not fixed. From
the bug reports that are unfixed by Date1 but are fixed by Date2, we randomly sample X%
of them, denoted as Set4. Our final random sample is the union of Set1, Set2, and Set4
with Set3 excluded.

Table 16 lists sizes of the four data sets for the three software projects. No combining
is needed for the Linux kernel since it was sampled in 2010.

There is no difference between our combined sample and a sample randomly picked
from the fixed bug reports on Date2, as either is a random sample of X% on the popula-
tion. Therefore, the combined sample is representative of fixed bug reports in the Bugzilla
database. In addition, our results show the distributions of these sets are similar, mean-
ing that the variance in different data sets is small, which increases the confidence and
reproducibility of our results.

42

Table 16 Number of bug reports in Set1–4

Software Set1 Set2 Set3 Set4
Mozilla 274 336 0 25
Apache 101 82 1 18
Linux 300

Developer may update bug reports after the bugs are fixed. Therefore, we check all
bugs in Set1 to find out whether the later activities affect our classifications of the bugs.
Fortunately, only 5 of those bug reports in Mozilla and none in Apache have activities after
Date1. We manually read these 5 bug reports again; and find that those activities change
the product, the QA contact, or the component of the bug reports, and do not change our
original classifications. The component field used in the bug reports is finer-grained than
the definition of component in Table 3. Therefore, the finer-grained component change in
bug reports does not affect the higher-level component used in this paper.

43

B Bug Examples

Table 17 Bug examples for each category

Dimension Category Software Bug
ID

Relevant Title & Description

Memory Linux 11364 Memory Leak: ... The ‘uccf’ variable
is not deallocated before ‘return -
ENOMEM’ is called

Root
Cause

Concurrency Apache 8124 mod ssl fails to get and release
semaphore mutex

Semantic Mozilla 267365 wrong homonym ... Actual Results:
Text reads “Overwritten” Ex-
pected Results: Text should read
“Overridden ...”

Hang Apache 29901 If the size of the file test.html reaches
65321 bytes, apache hangs and the
page is never returned.

Crash Linux 12591 my box crashes during startup when
hddtemp tries to start.

Impact Data Cor-
ruption

Mozilla 327907 Ending process firefox.exe can lead to
database corruption

Performance
Degradation

Linux 6417 it results in ... severe slowdowns.

Incorrect
Functional-
ity

Mozilla 4593 style changes (bold,italic,underline)
aren’t transparent thru high-lighted
selection

Core Mozilla 169296 race condition in PK11SDR Encrypt
Software
Compo-
nent

GUI Mozilla 4593 style changes (bold,italic,underline)
aren’t transparent thru high-lighted
selection

(Mozilla &
Apache)

Network Apache 37911 The fix is: (in Secure Sockets layer
(SSL)) — ssl engine init.c

I/O Apache 29964 I’m seeing a non-terminating loop in
ssl io input getline().

Drivers Linux 715 Product: SCSI Drivers
OS Core Linux 8476 kernel BUG at in-

clude/linux/slub def.h
Component Network Linux 780 Timing related bug in the RPC client

code
(Linux) File System Linux 6831 after io getevents reports that

write/appen was done, the data in
file is still unaccessible

Architecture Linux 8870 Platform Specific/Hardware ... Prob-
lem disappears with i386-kernel or if
noapic or acpi=off kernel option is
used.

44

C Detailed Numbers for the Figures

Table 18 Distribution of root causes with impacts (BugSet1). The table shows data for
Figure 1(a)

Software Category Hang Crash Corrupt Perf Func Others Unknown
Mem 0.00 6.04 0.00 0.28 1.43 2.01 2.01

Mozilla Con 0.59 0.29 0.00 0.00 0.00 0.00 0.29
Sem 1.43 9.19 1.43 0.86 66.91 4.59 2.58
Mem 0.00 8.24 0.00 2.06 1.03 1.03 0.00

Apache Con 0.00 1.03 0.00 0.00 3.09 1.03 0.00
Sem 3.09 2.06 1.03 9.27 61.85 1.03 4.12
Mem 1.81 7.25 1.36 2.26 2.72 0.00 0.90

Linux Con 5.44 2.17 1.63 1.63 2.72 0.00 0.00
Sem 10.73 12.62 1.26 5.04 38.50 0.63 1.26

Table 19 Distribution of root causes with impacts (BugSet1). The table shows data for
Figure 1(b)

Software Category Hang Crash Corrupt Perf Func Others Unknown
MLK 0.00 2.50 0.00 0.00 10.00 12.50 15.00
UMR 0.00 7.50 0.00 0.00 0.00 0.00 2.50

Mozilla Danling 0.00 5.00 0.00 0.00 0.00 0.00 0.00
NULL 0.00 25.38 0.00 0.00 2.30 2.30 0.00
Overflow 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Others 0.00 10.00 0.00 2.50 0.00 2.50 0.00
MLK 0.00 0.00 0.00 8.33 0.00 8.33 0.00
UMR 0.00 25.00 0.00 0.00 0.00 0.00 0.00

Apache Danling 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NULL 0.00 33.33 0.00 0.00 0.00 0.00 0.00
Overflow 0.00 8.33 0.00 8.33 8.33 0.00 0.00
Others 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MLK 6.25 8.33 0.00 10.41 0.00 0.00 0.00
UMR 0.00 0.00 0.00 0.00 0.00 0.00 4.16

Linux Danling 0.00 4.16 0.00 0.00 0.00 0.00 0.00
NULL 0.00 20.83 0.00 0.00 0.00 0.00 0.00
Overflow 1.89 7.57 5.68 0.00 5.68 0.00 0.00
Others 0.00 8.33 0.00 0.00 12.50 0.00 4.16

45

Table 20 Distribution of root causes with impacts (BugSet1). The table shows data for
Figure 1(c)

Software Category Hang Crash Corrupt Perf Func Others Unknown
MissF 0.00 0.33 0.00 0.00 8.81 0.00 0.33
MissC 0.30 0.61 0.00 0.00 6.19 0.00 0.00
Corner 0.00 2.37 0.33 0.00 6.10 0.33 0.00
CtrlFlow 0.32 0.32 0.00 0.32 5.48 0.32 0.00

Mozilla Except 0.67 1.69 0.00 0.00 1.35 0.00 0.00
Process 0.00 0.30 0.30 0.00 2.77 0.00 0.00
Typo 0.00 1.30 0.00 0.00 4.90 1.96 0.98
FuncImpl 0.32 3.61 0.98 0.32 36.14 0.00 1.31
Others 0.00 0.00 0.00 0.35 4.59 2.82 0.35
MissF 0.00 0.00 0.00 0.00 7.50 0.00 0.00
MissC 1.25 2.50 0.00 3.75 11.25 0.00 0.00
Corner 1.25 0.00 0.00 0.00 6.25 0.00 0.00
CtrlFlow 1.25 0.00 0.00 0.00 7.50 0.00 0.00

Apache Except 0.00 0.00 0.00 0.00 1.25 0.00 0.00
Process 0.00 0.00 0.00 0.00 3.75 0.00 1.25
Typo 0.00 0.00 0.00 2.50 11.25 1.25 0.00
FuncImpl 0.00 0.00 1.25 5.00 26.25 0.00 3.75
Others 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MissF 0.97 0.00 0.00 0.00 2.91 0.00 0.00
MissC 3.72 5.59 1.86 0.93 10.25 0.00 0.93
Corner 0.83 1.66 0.00 0.83 2.49 0.00 0.00
CtrlFlow 0.00 0.97 0.00 0.00 2.91 0.00 0.00

Linux Except 0.97 0.97 0.00 0.97 0.00 0.00 0.00
Process 0.00 0.00 0.00 0.00 3.88 0.00 0.00
Typo 0.00 3.88 0.97 0.00 1.94 0.00 0.97
FuncImpl 7.64 3.39 0.00 4.24 24.63 0.84 0.00
Others 0.86 1.72 0.00 0.00 5.17 0.00 0.00

Table 21 Distribution of bug impacts (BugSet1). The table shows data for Figure 3

Software Category Memory Concurrency Semantic
Hang 0.00 0.59 1.47
Crash 6.19 0.29 9.43
Corrupt 0.00 0.00 1.47

Mozilla Perf 0.29 0.00 0.88
Func 1.47 0.00 68.73
Others 2.06 0.00 4.71
Unknown 2.06 0.29 2.65
Hang 0.00 0.00 3.09
Crash 8.24 1.03 2.06
Corrupt 0.00 0.00 1.03

Apache Perf 2.06 0.00 9.27
Func 1.03 3.09 61.85
Others 1.03 1.03 1.03
Unknown 0.00 0.00 4.12
Hang 2.72 6.80 11.56
Crash 10.88 2.72 13.60
Corrupt 2.04 2.04 1.36

Linux Perf 3.40 2.04 5.44
Func 4.08 3.40 41.49
Others 0.00 0.00 0.68
Unknown 1.36 0.00 1.36

46

Table 22 Distribution of Mozilla and Apache bugs in software components (BugSet1). This
table shows data for Figure 4.

Software Category Hang Crash Corrupt Perf Func Others Unknown
Core 0.23 7.32 0.94 1.41 17.25 3.07 3.07
GUI 0.70 4.72 0.23 0.70 41.13 1.41 1.18

Mozilla Network 0.47 1.65 0.00 0.47 4.01 0.47 0.23
I/O 0.23 1.18 0.23 0.00 2.83 0.00 0.23
Others 0.00 0.47 0.00 0.00 2.12 1.89 0.00
Core 3.80 11.42 2.85 5.71 37.14 1.90 2.85
GUI 0.00 0.00 0.00 0.95 2.85 0.00 0.00

Apache Network 0.00 0.00 0.00 1.90 20.00 0.00 0.00
I/O 0.95 0.95 0.00 1.90 1.90 0.00 0.95
Others 0.00 0.00 0.00 0.00 0.95 0.95 0.00

Table 23 Distribution of Linux bugs in software components (BugSet1). This table shows
data for Figure 5.

Software Category Hang Crash Corrupt Perf Func Others Unknown
Core 0.00 2.32 1.16 0.58 2.90 0.00 0.00
Driver 11.04 12.20 0.58 5.81 21.51 0.00 1.74

Linux Network 4.06 1.16 0.00 0.58 4.06 0.00 0.00
FS 0.58 3.48 1.74 0.00 2.90 0.00 0.00
Arch 2.32 2.32 0.58 1.74 8.13 0.58 0.58
Others 0.00 1.74 0.58 0.58 2.32 0.00 0.00

Table 24 Distributions of causes and impacts of security related bugs in NVD (BugSet2).
This table shows data for Figure 7(a).

Software Category High Medium Low
Mem 20.89 6.44 0.39

Mozilla Con 0.19 0.39 0.19
Sem 20.31 47.26 3.90
Mem 11.11 16.66 0.00

Apache Con 0.00 1.85 0.00
Sem 12.96 48.14 9.25
Mem 17.79 15.16 1.49

Linux Con 0.56 2.80 0.37
Sem 16.66 26.77 18.35

Table 25 Distributions of causes and impacts of security related bugs in NVD (BugSet2).
This table shows data for Figure 7(b).

Software Category Mem Con Sem
Confidentiality 11.08 0.29 22.87

Mozilla Integrity 9.39 0.29 21.67
Availability 14.18 0.19 16.98
Access 0.49 0.00 2.49
Confidentiality 2.81 1.40 21.12

Apache Integrity 0.00 0.00 30.98
Availability 21.12 1.40 19.71
Access 0.00 0.00 1.40
Confidentiality 9.84 0.99 25.00

Linux Integrity 8.40 0.77 11.72
Availability 19.69 2.21 20.35
Access 0.22 0.00 0.77

