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ABSTRACT

Traditional sensitive data disclosure analysis faces two challenges:

to identify sensitive data that is not generated by specific API calls,

and to report the potential disclosures when the disclosed data is

recognized as sensitive only after the sink operations. We address

these issues by developing BIDTEXT, a novel static technique to

detect sensitive data disclosures. BIDTEXT formulates the prob-

lem as a type system, in which variables are typed with the text

labels that they encounter (e.g., during key-value pair operations).

The type system features a novel bi-directional propagation tech-

nique that propagates the variable label sets through forward and

backward data-flow. A data disclosure is reported if a parameter

at a sink point is typed with a sensitive text label. BIDTEXT is

evaluated on 10,000 Android apps. It reports 4,406 apps that have

sensitive data disclosures, with 4,263 apps having log based disclo-

sures and 1,688 having disclosures due to other sinks such as HTTP

requests. Existing techniques can only report 64.0% of what BID-

TEXT reports. And manual inspection shows that the false positive

rate for BIDTEXT is 10%.

CCS Concepts

•Software and its engineering → Software testing and debug-

ging; •Security and privacy → Software security engineering;

Keywords

Sensitive Data Disclosure, Bi-directional Text Correlation, Android

apps

1. INTRODUCTION
Sensitive data disclosure has been a long-standing challenge for

data security. By accessing the disclosed sensitive information, ad-

versaries can learn about the system and then conduct attack [28,

25]. A prominent example is the OpenSSL Heartbleed vulnera-

bility disclosed in 2014. The OpenSSL versions with such a flaw

allow remote attackers to retrieve sensitive data, for example, user

authentication credentials and secret keys [12, 38]. Attackers can

then compromise the target systems with the disclosed sensitive in-

formation.

The proliferation of mobile devices [13, 33] makes the situa-

tion even worse since mobile devices process a lot of sensitive user

data. Previous studies showed that it is common that mobile apps

undesirably disclose sensitive user information [26, 39, 10]. Many

techniques have been proposed that work at the system level or the

application level, static or dynamic [21, 9, 14, 8]. Haris et al. pro-

vide a comprehensive list of the approaches to detecting sensitive

information disclosures in mobile computing [16]. All these ap-

proaches require definition of the sensitive data sources, usually

certain APIs whose return value is sensitive. With the definition, if

forward data flow is observed between taint sources and sinks, dis-

closure defects are reported. Later, researchers realized that some

generic APIs may return sensitive values, depending on the con-

text, although they may return insensitive values in many cases.

SUPOR [17] and UIPicker [27] aimed to identify which user in-

puts on the user interfaces can be sensitive. Then the sensitive in-

puts are associated with the variables in the code such that static

or dynamic forward data flow analysis can be applied to detect the

potential sensitive user inputs disclosures. Sensitive user inputs are

identified in the context of the user interfaces which contain text or

graphical information to instruct what the users should enter.

However, the above solutions still have limitations. Sensitive

data may come from generic API methods not related to UI (e.g.,

loading data from some file or receiving data from network). In

these cases, most existing approaches would not work properly. We

cannot simply treat the generic APIs as the taint sources as that will

lead to a large number of false warnings. In addition, forward data

flow analysis is insufficient. In many cases, a piece of data may be

first emitted through a sink and then later typed as sensitive. There

may not be any forward data flow from the type revelation point to

the sink point.

In this paper, we develop BIDTEXT, a technique to detect data

disclosures by examining the text labels correlated with variables.

The text labels, either from the code (e.g., the textual keys in key-

value pairs) or the UI, provide rich information about the data con-

tained in the variables. BIDTEXT extracts these labels, and lever-

ages a novel type system to propagate these labels through both

backward and forward data flow. Data disclosures are reported

when a parameter at a sink point is typed with a sensitive textual

label. The bi-directional propagation scheme is unique and differ-

ent from the traditional unification based type inference systems.

It features the capability of avoiding undesirable unification of text

labels, enabling a low false positive rate. Backward propagation

allows BIDTEXT to capture cases in which data sensitiveness is

revealed after the data is sent through some sink.

Our work makes the following contributions:



1 class CampaignActivity_20 implements Handler.Callback{

2 CampaignActivity act;

3 CampaignActivity_20(CampaignActivity a){

4 this.act = a;

5 }

6 public boolean handleMessage(Message msg){

7 Bundle b = msg.getData();

8 String dt = b.getString("data");

9 Log.d("CampaignActivity", "Got data back: " +

dt);//sink

10 Runnable r = new CampaignActivity_20_1(dt);

11 act.runOnUiThread(r);

12 return false;

13 }

14 }

15 class CampaignActivity_20_1 implements Runnable{

16 String jsonString;

17 CampaignActivity_20_1(String data){

18 jsonString = data;

19 }

20 public void run(){

21 JSONArray jsonArray = new JSONArray(jsonString);

22 int len = jsonArray.length();

23 for (int i=0; i<len; i++) {

24 JSONObject json = jsonArray.getJSONObject(i);

25 String url = json.getString("avatar_url");

26 ImageView iv = ... // omitted

27 displayImage(url, iv); // omitted

28 String un = "<b>" + json.getString("username") +

"</b>" + json.getString("created_at");

29 TextView tv = ... // omitted

30 tv.setText(Html.formHtml(un));

31 String c = json.getString("content");

32 TextView ctv = ... // omitted

33 ctv.setText(Html.fromHtml(c));

34 // ...

35 }

36 }

37 }

Figure 1: Motivating example from app com.buycott.android.

• We propose BIDTEXT, a novel method to detect sensitive

data disclosures. BIDTEXT leverages constant text labels and

features a novel type system that performs bi-directional text

label propagation.

• We implement a prototype of BIDTEXT for Android apps,

and evaluate it on 10,000 apps. BIDTEXT reports 4,406 apps

that have sensitive data disclosures, with 4,263 apps having

log based disclosures and 1,688 having disclosures due to

other sinks such as HTTP requests. Existing techniques [7,

17] can only report 64.0% of what BIDTEXT reports. And

manual inspection shows that the false positive rate for BID-

TEXT is 10%.

• BIDTEXT is available at https://bitbucket.org/hjjandy/toydroid.

bidtext.

2. MOTIVATING EXAMPLE
We use a real-world Android app com.buycott.android to mo-

tivate our technique. It is an app that allows users to check the

company/vendor of a product by scanning the product’s barcode.

It even allows users to view the family tree of the company/ven-

dor. Users can then make decision on whether this is a company

that rips off its customers so that they do not want to have business

with. Users can also start/join campaigns against specific compa-

nies [1].

Fig. 1 shows a piece of simplified code snippet from the app. The

app sends a request to the Web server and obtains a list of post mes-

sages. The HTTP response is converted to a string in the app and

then sent to a handler via a Message object. The following opera-

tions are present in the code snippet. At line 7, a key-value mapping

dt @8

sink @9 data @17

jsonString @18

jsonArray @21

json @24

json.getString("username")@28

call@9 call@10

assignment@18

new instance@21

call@24

call@28

username

Figure 2: Data flow (solid arrows) and type propagation

(dashed arrows) for Fig. 1.

is retrieved from the Message object. Then the data string of the

message is obtained from the mapping at line 8. Right after that,

the data string is written to the log file at line 9. Note that writing

to a log file is usually considered as a sink for data disclosures [7,

17, 22] because log files can be accessed by malware1. After the

logging operation, the app instantiates a Runnable object with

the data string at line 10, which runs in the UI thread (line 11) to

allow interactions with UI elements.

The data string is transmitted to the Runnable instance via the

instantiation at line 10. Inside the constructor at line 17, the data

is stored in a field variable jsonString at line 18. When the UI

thread is running, the run() method at line 20 is invoked. The

data string is converted to a JSONArray object at line 21 which

is then iterated. Every element in the array is a JSONObject

(line 24). The app then obtains the URL for the avatar image, the

corresponding user Id, the time of creation and the content of the

post message by looking for the values via corresponding keys in

the JSON object (lines 25, 28, and 31). All such information is

shown on some UI elements (e.g., line 33).

Now let’s consider the potential sensitive data disclosure in this

running example. Based on the above description, the data falling

into the sink at line 9 comes from the Web server. We later know

that the data contains some sensitive user account information. In

other words, the app retrieves the sensitive user account informa-

tion from the server and writes it to the local log file without any

encryption. This is a typical kind of undesirable information dis-

closure [24, 40] that emits sensitive information from server such

as user account, balance in bank account, and employee salary to

local files.

Traditional sensitive data disclosure analysis inspects the data

flow between some sensitive source point, for example, an API call

whose return value can be easily recognized as sensitive (e.g.,Tele-

phonyManager.getDeviceId() in Android), and a sink point

(e.g., a file write or a socket send). If forward data flow can be dis-

covered from the source point to the sink point, a disclosure prob-

lem is reported. In this example, while we do have data flow from

the Web server response to the logging operation but we cannot de-

termine whether the response contains sensitive data from the oper-

ations along the data flow. If we treat all data from server sensitive,

a lot of false alarms will be produced; but if we simply ignore them,

we miss true disclosures as in this example.

Different from the traditional disclosure analysis, our technique

1The recent version of Android has substantially mitigated this
problem by limiting access to log files. But there are still a large
number of devices running old versions of Android. Note that BID-
TEXT is general to support various configurations of sink points.

https://bitbucket.org/hjjandy/toydroid.bidtext
https://bitbucket.org/hjjandy/toydroid.bidtext


relies on the observation that the sensitiveness of data used in ap-

plications can be recognized through examining the textual infor-

mation involved in the operations. Such texts are constant strings in

either the code or the user interfaces. We randomly sampled 2,000

Android apps and found that on average each app contains 76.7

constant strings in layout files (i.e., XML files used to statically

define UIs) and 151 constant strings in app code. These constant

strings often provide rich information about what is being held by

the corresponding variables. For example, in Fig. 1, method call

json.getString("username") at line 28 uses a constant

string “username”. We can infer that the JSON object contains

some sensitive user Id. Since the JSON object is part of the Web

server response, according to the work flow, we can conclude that

the response contains sensitive information. Thus the logging op-

eration at line 9 should be reported as a sensitive data disclosure.

Note that even if we recognized that the JSON object at line 28

contains sensitive information, we could not detect the disclosure

problem using traditional analysis techniques that try to find for-

ward data flow from source points to sink points. We show the data

flow via solid arrows in Fig. 2, starting from retrieving the data

from the key-value mapping (line 8). If we treat line 28 as a source

point, we cannot get a forward data flow path from the source point

to the sink point. Thus the disclosure defect is still missed after we

augment traditional techniques with our new sensitive data recog-

nition method.

BIDTEXT solves the problem by introducing bi-directional prop-

agation. Instead of propagating tags like tainted and untainted in

traditional techniques, our approach uses the constant strings as the

tags and propagates both backward and forward. As the dashed ar-

rows in Fig. 2 show, constant text “username” is propagated back-

ward from the method call at line 28 to the variable json cre-

ated at line 24, and so on. Consequently, variables jsonArray,

jsonString, data and finally dt are tagged with the text “user-

name”. Intuitively, it means all these variables contain sensitive

user Id information. Next we forwardly propagate the tag from line

8 to the sink point at line 9. Therefore, the logging statement oper-

ates on variables that are associated with text “username”. By ap-

plying this approach to the whole code snippet, we obtain the set of

correlated text as {“CampaignActivity”, “Got data back:”, “data”,

“avatar_url”, “username”, “created_at”, “content”}. The first two

textual tags are associated to the variable directly at the sink point.

Tag “data” is propagated to the variable (at the logging statement)

in a forward manner. The remaining texts are propagated to the

sink point via a bi-directional manner discussed above.

BIDTEXT also associates UI texts to variables. UI often con-

tains texts that also indicate the sensitiveness of data shown on the

UI (see [17, 27]). We examine the corresponding layout file to get

the texts, add them to the tag set of the related variables and prop-

agate them like the texts found in the code. In the example, we can

find several code locations that interact with the UI (e.g., line 33),

through which we identify the corresponding layout files to collect

UI texts. However, the content of the UI is dynamically created and

none of the UI elements holds constant texts. Therefore, no GUI

texts are propagated to the sink point in this example.

Next we apply a natural language processing (NLP) technique to

the tag set of the sink point to find out if the texts can tell the sensi-

tiveness of the variable dt. Among the collected texts, “username”

matches a predefined sensitive keyword. Thus our technique re-

ports a sensitive data disclosure problem for the logging operation

at line 9.

3. DESIGN
We propose BIDTEXT, a static bi-directional text correlation anal-

Program p ::= s*
Statement s ::= v := t /*constant string in code*/

| v := i /*UI-related Id*/
| v := c /*values of other types*/
| v := ⊖v1 /*unary assignment*/
| v := v1 ⊕ v2 /*binary assignment*/
| call(m,va →vf ) /*va/vf actual/formal arg*/
| v := return(m,vr ) /*m returns vr to v*/
| v := apicall(m,va ) /*API call to method m*/
| IF(v) {st} ELSE {sf}
| LOOP {s} /*loop structure*/
| v := φ(vt , vf ) /*value merging in SSA*/

Variable v
Method m
String t
ID i
Value c /*Non-str, non-Id Values*/

Figure 3: Language.

ysis approach, to detect sensitive data disclosures. BIDTEXT com-

bines both the bi-directional propagation and the new approach that

uses internal constant texts to identify sensitive variables as illus-

trated in Section 2.

3.1 Language Abstraction
To simplify our discussion, we introduce an abstract language.

The language is presented in Fig. 3. We only model the language

features that are related to explaining the text correlation analysis

and the bi-directional propagation. Others are abstracted away or

simplified. As we discussed in Section 2, we leverage the constant

texts in the code as well as in the UI to tag variables and determine

whether sensitive data is disclosed at sink points. Therefore, con-

stant strings in the code and constant Ids that are associated with

UI are of special interest and explicitly modeled in the language.

For simplicity, we do not allow constant strings/Ids to appear in

complex operations, e.g., binary operations and method calls. For

such scenarios, the constant is first assigned to a variable, which is

further used in the complex operation. This is similar to how An-

droid apps handle constant values in DEX bytecode. For example,

the method call json.getString("username") at line 28

in Fig. 1 is converted to two statements: tmp = "username";

json.getString(tmp);.

An invocation to method m(vf) is modeled by two separate

statements: call(m,va →vf) passing the actual argument va

to the formal argument vf and v=return(m,vr) returning the

value in vr in m() to v in the caller. The separation allows us

clearly model the data flow at the entry and the exit of a method

call. v := apicall(m, va) abstracts invocation to an API func-

tion m() whose implementation is usually excluded or not avail-

able during analysis, e.g., the runtime C library and the framework

methods for Android apps.

The language also supports conditional branches and loops. There

are different loop structures such as for loops and while loops.

We ignore these differences and use a LOOP statement to model

them. Loop conditions are not relevant to our analysis and hence

not modeled. Any side effects (in the loop conditions) are explicitly

modeled as assignments in the loop body.

Our language is a kind of SSA language so that φ function is

used to merge values from different branches (of a predicate). As

we will show later in Section 3.2.2, φ functions require delicate

consideration during bi-directional propagation.

3.2 Type System and Bi-directional Propaga-
tion

As discussed earlier, we use the constant texts in either the code



Const-Binding
Γ, v := t |= Γ ⇒ [v : {t}]Γ

UI-Binding
resource_id(i)

Γ, v := i |= Γ ⇒ [v : extract_text(i)]Γ

Unary-Assignment
Γ ⊢ v : T Γ ⊢ v1 : T ′

Γ, v := ⊖v1 |= Γ ⇒ [v : T ∪ T ′, v1 : T ′ ∪ T ]Γ

Binary-Assignment
Γ ⊢ v : T Γ ⊢ v1 : T1 Γ ⊢ v2 : T2

Γ, v := v1 ⊕ v2 |= Γ ⇒ [v : T ∪ T1 ∪ T2, v1 : T1 ∪ (T − T2), v2 : T2 ∪ (T − T1)]Γ

Phi-Assignment
Γ ⊢ v : T Γ ⊢ v1 : T1 Γ ⊢ v2 : T2

Γ, v := φ(v1, v2) |= Γ ⇒ [v : T ∪ T1 ∪ T2, v1 : T1 ∪ (T − T2), v2 : T2 ∪ (T − T1)]Γ

Method-Call-Param
Γ ⊢ va : T Γ ⊢ vf : T ′

Γ, call(m, va → vf ) |= Γ ⇒ [vf : T ′ ∪ T, va : T ∪ T ′]Γ

Method-Call-Return
Γ ⊢ v : T Γ ⊢ vr : T ′

Γ, v := return(m, vr) |= Γ ⇒ [v : T ∪ T ′, vr : T ′ ∪ T ]Γ

API-Call
Γ ⊢ va : T ′ Γ ⊢ v : T

Γ, v := apicall(m, va) |= Γ ⇒ [v : T ∪model_fwd(m, va), va : T ′ ∪model_bwd(m, v)]Γ

Figure 4: Bi-directional propagation rule.

or the UI to tag the correlated variables and propagate the tags bi-

directionally. We formalize this approach in a type system, i.e.,the

set of tags associated with a variable is treated as the type of the

variable. Since the type is a set, we also call it a type set in this

paper. The mappings from variables to their type sets form the

context Γ of the type system, which is iteratively updated during

analysis until a fixed point is reached. For example, at the begin-

ning, Γ is empty. Upon a statement tmp = "username", Γ is

updated to {tmp : {username}}. At this point, we have Γ ⊢ tmp :

{username}, which means under context Γ, variable tmp is typed

with set {username}. In other words, Γ(tmp) = {username}, where

Γ(tmp) evaluates variable tmp in the context to obtain the corre-

sponding type set.

When a statement is evaluated, the context may be updated. We

use Γ, S |= Γ ⇒ Γ′ to indicate that under context Γ, evaluating

statement S updates the context from Γ to Γ′.

We use [var : T ]Γ to represent an update to the context. Specif-

ically, if no mapping is found for variable var in context Γ, the

mapping is added into the context. But if there exists some map-

ping for var, the rule substitutes the existing type set for var with

the given type set T . Multiple mappings can be updated simul-

taneously, e.g., [var : T , var’ : T ′]Γ updates the context for two

variables var and var’.

Given two type sets T and T ′, T ∪ T ′ unions the two sets while

T−T ′ returns a new type set which contains all elements belonging

to T but not T ′.

With the language in Fig. 3 and the above definitions, we define

the bi-directional type set propagation rules in Fig. 4. The propa-

gation is iterative. That means once the analysis starts, it does not

terminate until the context Γ reaches a fixed point.

3.2.1 Binding Constant Value

As mentioned earlier, we focus on constant texts in the code and

the constant Ids that are associated to UI. An assignment of a con-

stant string to a variable adds a new mapping from the variable to a

set holding the string to the context. For a constant Id, we need to

make sure the Id is indeed a resource Id (e.g., layout Id in Android

apps or an Id for a specific UI element). This check is modeled by

predicate resource_id(). If the prerequisite satisfies, updating

the context is similar to the constant string assignment, except that

the type set is the extracted texts from the corresponding UI through

function extract_text(). For instance, if the constant Id is as-

sociated with a typical login screen, the extracted text set may often

be {Username, Password, Login}.

3.2.2 Propagation for Assignment

Rule Unary-Assignment updates the context for both the LHS

and RHS variables with the union of the two separate type sets.

Note that it allows the tags from LHS to propagate to RHS and

vice versa through the union operation (i.e., bi-directional propa-

gation). Use the statement jsonString = data at line 18 in

Fig. 1 as an example. Assume before evaluating this statement,

Γ(jsonString) = {avatar_url, username, created_at, content} and

Γ(data) = {data} via previous evaluation steps. After evaluating

this statement, the type sets for both variables jsonString and

data are updated to {avatar_url, username, created_at, content,

data}. This shares some similarity with type unification in clas-

sic type inference. However, as we will see next, unification does

not properly model the intended propagation behavior for binary

operations and φ functions.

For a binary assignment, we cannot simply union all the type

sets of the LHS and RHS variables and associate the resultant type

set to all the variables, which is what classic type inference would

do. We observe that this is undesirable as it allows the type set of

a RHS variable to be propagated to another RHS variable while the

operation does not induce any data flow between the two variables.

Intuitively, assuming the two RHS variables are v1 and v2, v1 being

associated with a sensitive tag does not entail v2 having the same

sensitive tag (by the operation). Thus, as specified by Rule Binary-

Assignment, the propagation is conducted as follows. The type sets

of the RHS variables are unioned and inserted to the type set of the

LHS variable. Only the part of the LHS type set that is not in the

type set of v1 is propagated to v2 and only the part of the LHS type

set that is not in the type set of v2 is propagated to v1. There is

a corner case in which the two RHS variables are the same one,

e.g.,a = b ⊕ b. The updated type set for b is Γ(b) ∪ (Γ(a) −
Γ(b)), which is equal to Γ(a) ∪ Γ(b). In other words, this special

case behaves the same as a unary assignment. The propagation for

φ statements has the same nature (Rule Phi-Assignment).

We use a real example from an Android app com.mojo.animewall-

paper to show how our propagation rule for φ statements eliminates

false alarms. The simplified code snippet is shown in Fig. 5a. If a

certain condition satisfies, the device Id is assigned to variable x at

line 2. The detail of acquiring the device Id is omitted but even-



1 if (...) {

2 x = getDeviceId(); // x is tagged with "android_id"

3 } else {

4 x = some_random_uuid(); // gen random value for x

5 Log.d("Random: ", x); // sink

6 }

7 use(x);

(a) Simplified code snippet.

x@2

x@7 = φ(x@2, x@4)

x@4

sink@5android_id

(b) Data flow and type propagation.

Figure 5: Code example and bi-directional propagation for φ

from app com.mojo.animewallpaper.

tually a constant string “android_id” is added to the type set of x.

If the condition doesn’t satisfy, a random value is generated as the

requested Id at line 4 and stored to variable x, which is immedi-

ately used at a sink point at line 5. After the branch, variable x,

whose value is either the real device Id or a random value, is used

elsewhere.

From the perspective of φ representation, we know that right be-

fore the x is used at line 7, we have a φ statement as x@7 = φ(x@2,

x@4). The data flow for the several occurrences of x is described

by the solid arrows in Fig. 5b and the propagation relations are

shown by dashed arrows.

Consider a naive bi-directional propagation that simply unions

all the type sets. During the first iteration, “android_id” is prop-

agated to x@7 via forward propagation. Nothing is backwardly

propagated to x@2 or x@4 from x@7. Therefore, at the end of

the first iteration, Γ(x@2) = Γ(x@7) = {android_id} and Γ(x@4)
= ∅. Then during the second iteration, if we directly propagate the

type set of x@7 to both x@2 and x@4, we would get Γ(x@4) =

{android_id}, which is later propagated to the sink point at line 5.

Thus a sensitive data disclosure is reported which is a false alarm.

In contrast, our propagation rule supports the mutual exclusion of

the type sets in the two respective branches. Specifically, we only

backwardly propagate Γ(x@7) − Γ(x@2), i.e., an empty set, to

x@4. At last, the type set of x@4 stays unchanged and the sink

point does not observe any sensitive type for the variable. Thus no

sensitive data disclosure is reported.

3.2.3 Propagation for Method Calls

Propagation through a method call occurs at passing argument

from the caller and returning value from the callee. Therefore, we

define two separate rules for these two events. Note that these two

rules handle method calls whose implementations are included in

the analysis. We also propose a special rule for propagation over

API functions, the implementations of which are typically invisible

during analysis.

Rules Method-Call-Param and Method-Call-Return union the type

sets. A concrete example for rule Method-Call-Param is the instan-

tiation call at line 10 in Fig. 1. The constructor at line 17 is invoked

and the value held by variable dt is passed to variable data. Then

constant value “data” associated with dt is propagated to data

and “username” associated with data is backwardly propagated

to dt.

Rule API-Call does not directly propagate the type sets between

parameters and the return value. BIDTEXT relies on the model for

the API function for proper propagation. Prior static taint analy-

sis [7, 14] have shown that it is effective to simply propagate from

all parameters to the return value and the receiver object (i.e.,this

reference in instance method calls). However, this naive approach

CheckAlert ::= IF(vc) {alert(vm)}

(a) Specialized statement.

Check-Alert
Γ ⊢ vc : T Γ ⊢ vm : T ′

Γ, IF (vc){alert(vm)} |= Γ ⇒ [vc : T ∪ T ′]Γ

(b) Propagation rule.

Figure 6: Abstraction and propagation rule for Check-and-

Alert cases.

does not work well in bi-directional propagation. We need to in-

vestigate the type correlations for the variables involved in an API

call, including all the parameters and the return value.

Some API functions may not support fully bi-directional prop-

agation among the variables. For example, variable name can be

used to type value in statement value=HashMap.get(name)

but not the reverse according to the semantics. Specifically, if

name holds some sensitive constant strings, we can infer that value

may hold sensitive information, but not the other way around. If we

ignore this reference, after evaluating the statement under con-

text Γ, we have Γ′(name) = Γ(name) and Γ′(value) = Γ(value)
∪ Γ(name). Many API functions, on the other hand, can be ap-

plied with the naive propagation policy, unioning the type sets of

all variables. For example, we have Γ′(ret) = Γ′(str) = Γ(ret) ∪
Γ(str) after evaluating statement ret = str.toUpperCase()

under context Γ. In the rule, the behavior depends on functions

model_fwd() and model_bwd() which define the propaga-

tion policies from va to v and from v to va, respectively.

We formalized our approach to identifying and bi-directionally

propagating constant texts in a type system and developed a set of

propagation rules based on our abstract language in Fig. 3. While

the rules are general for our language, in practice we need to per-

form a number of enhancements to the rules to handle real-world

language/program features. These enhancements are discussed in

next section.

3.3 Practical Enhancements
There are two main practical enhancements to our formal model

that are critical to the effectiveness of BIDTEXT.

3.3.1 Check and Alert

It is common in real programs to prompt some alerts to the user

or write to the log file if a condition check fails. In this case, we

can use the alert/log message to infer what the corresponding vari-

ables involved in the condition check may hold. For example, an

Android app can alert the user about some previous errors, e.g.,

some required inputs are missing, by showing a short message on

the screen. A typical implementation looks like the following.

1 if (str == null || str.isEmpty())

2 Toast.makeText(this, "Please Enter Password", 1);

We can type variable str with the constant text “Please Enter

Password” and propagate it through the aforementioned rules.

The abstraction and the corresponding propagation rule are shown

in Fig. 6. This applies to a set of API functions, called the alert

functions.

3.3.2 String Concatenation

String concatenation is common in real-world apps. A concate-

nation operation may involve both constant values and multiple

variables. If we simply union the type sets of all the involved vari-

ables and update the variables with resultant type set, we may in-

troduce false positives. Furthermore, the associations between the

constant strings (involved in the concatenation) and the variables

(involved in the concatenation) also need to be properly identified.
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Figure 7: Propagation graph for a simple string concatenation.

Str-API

api_w_str(m) Σ ⊢ va : E
Γ′ = string_partition(m,E)

Γ, v := apicall(m, va) |= Γ ⇒ Γ ∪ Γ′

Figure 8: Propagation rule for string concatenation.

A simple strategy that associates all constant strings to all variables

also produces a lot of false positives. For example, building a URL

often involves multiple variables, each holding a value as part of

the HTTP request. The variables can be either sensitive (e.g., pass-

word) or insensitive (e.g., user comment). We need to distinguish

the exact types correlated to the variables. Consider the following

example, in which a typical URL is constructed.

1 url = "http://.../login?username=" + un + "&pwd=" + p;

At the bytecode level, the above statement is converted to:

1 builder0 = new

StrinBuilder("http://.../login?username=");

2 builder1 = builder0.append(un);

3 builder2 = builder1.append("&pwd=");

4 builder3 = builder2.append(p);

5 url = builder3.toString();

Assume the model for API StringBuilder.append() en-

tails fully bi-directional propagation, i.e., we propagate the type

sets of all involved variables to each other. The constant string

“http://.../login?username=” is propagated to builder0,build-

er1, un, builder2 and p. A later text analysis would indicate

that both un and p are associated with the sensitive text “user-

name”, which is incorrect for variable p. Similarly, “&pwd=” will

be propagated to un, which causes a false alarm.

However, if we do not allow the propagation from the String-

Builder instance (e.g., builder0) to the appended variable

(e.g.,un), that is, the red and blue edges are removed from Fig.7,

then neither “username” nor “pwd” could be propagated to un or

p. As a result, we cannot infer that these two variables may hold

sensitive information.

The expected propagation, according to the semantics of the URL

string, is that “username” is propagated to un, and “pwd” to p, ex-

clusively. We observe that it is impossible to enforce such propa-

gation through API models (e.g., the model for append()) as an

API call may only represent a local operation that does not have

the global view of the concatenated string. To address the problem,

we need to analyze the entire concatenated string produced at the

end. In our example, we ought to examine the final result associ-

ated with url in order to associate the appropriate text to variables

un and p. Therefore, we need to enhance our type system with the

following string analysis.

Rule Str-API in Fig. 8 determines if an API call has a string argu-

ment va with a well-defined format through function api_w_str().

For example, new URL(str) is such a function as it implies

the variable str is a string of the url format. If so, the string

is of interest. BIDTEXT computes an abstract string E for va,

which is stored in a string context Σ that maps a variable to an ab-

stract string. An abstract string is a regular expression including

both constant strings and variables. The abstract string is parti-

tioned by the function string_partition() so that the vari-

ables in the regular expression are associated with the appropriate

Strcat
Σ ⊢ v1 : E1 Σ ⊢ v2 : E2

Σ, v := strcat(v1, v2) |= Σ ⇒ [v : E1 · E2]Σ

Strcat-Nil
Σ ⊢ v1 : nil Σ ⊢ v2 : E2

Σ, v := strcat(v1, v2) |= Σ ⇒ [v : v1 · E2]Σ

Str-Const-Assign
Σ, v := t |= Σ ⇒ [v : t]Σ

Str-If

Σ, st |= Σ ⇒ Σt Σ, sf |= Σ ⇒ Σf

Σt ⊢ v : Et Σf ⊢ v : Ef

Σ, IF (∗){st}ELSE{sf} |= Σ ⇒ [v : Et | Ef ]Σ

Str-LOOP-Closure
⊥, s |=⊥⇒ Σ′ Σ′ ⊢ v : v ·E Σ ⊢ v : E0

Σ, LOOP{s} |= Σ ⇒ [v : E0 · (E)*]Σ

Str-LOOP-Simple
⊥, s |=⊥⇒ Σ′ Σ′ ⊢ v : E v 6∈ E

Σ, LOOP{s} |= Σ ⇒ [v : E]Σ

Figure 9: Computing abstract strings.

texts. For the above example, the rule produces Γ′ = {un : {user-

name}, p : {pwd}}. We then combine Γ′ into the current con-

text Γ and further propagate the generated texts. Next, we will

first explain how the abstract strings are computed and then the

string_partition() function.

The rules for computing abstract strings are shown in Fig. 9. The

interpretation of the rules is similar to that for our type system.

One difference is that we use the string context Σ instead of the

type context Γ. Rule Strcat simply concatenates the two abstract

strings of the operands. Rule Strcat-Nil handles the case in which

the first operand does not have any mapping, meaning that it is

a string variable encountered for the first time. In this case, the

variable itself is concatenated to the resulting string. It is similarly

handled when the second operand does not have mapping and the

rule is elided. Rule Str-Const-Assign handles the constant string

assignment.

Rule Str-If specifies that for a conditional statement, BIDTEXT

computes the string contexts for the true and false branches sepa-

rately. For any variable that is present in the string context(s), the

resulting abstract string is an alternation of the abstract strings in

the branches. Consider the following code snippet.

1 if(c) str := strcat("&UserId=", uId);

2 else str := strcat("&sessionId=", sId);

The abstract string for variable str is (“&UserId=”·uId) | (“&ses-

sionId=”·sId).

Rule Str-LOOP-Closure specifies that for a loop, BIDTEXT first

computes the string context for the loop body with an empty string

context and then aggregates the resulting abstract strings to the

original string context. In particular, if the abstract string for a vari-

able v also contains v, it indicates the resulting string has recursive

structure (caused by the loop), BIDTEXT hence associates v to a

kleene closure in the context outside the loop. Tail recursion is

similarly handled. Currently, BIDTEXT only handles regular lan-

guages, which is sufficient for most cases we encountered. Rule

Str-LOOP-Simple specifies that if there is no recursive structure,

the abstract strings are simply copied from the context of the loop

body to the context outside the loop. For the following example,

BIDTEXT produces the abstract string “Output:”·(“A”)* for vari-

able str.

1 str := "Output:";

2 for (...)

3 str := strcat(str, "A");

As shown by Rule Str-API, the abstract string at an API that

specifies the format of the string is partitioned to acquire the texts

for the variables within the abstract string. This is done by calling



string_partition(). This function has a number of built-in

parsers that can parse the different string formats based on the API

name. For example, if the API is URL(), it uses the parser for url.

Particularly, the parser searches for symbol “?”, the part after the

symbol is parsed by “([^=]*)=([^&]*)” with the first part being the

key and the second part the value. If the key is a constant t and the

value is a variable v, Γ is updated with the mapping from v to t.

BIDTEXT also has parsers for other formats such as SQL queries.

For example, two mappings {v1 : {password}, v2 : {userid}} can

be extracted from an abstract string denoting a SQL update “update

TABLE set password=”· v1· “ where userid=”· v2.

For the prior URL example, append() is essentially a str-

cat(). According to the rules, the final abstract string for url is

“http://.../login?username=”· un· “&pwd=”· p. It is partitioned so

that un is mapped to {username} and p is mapped to {pwd}.

3.4 Disclosure Analysis
After the type set computation converges, BIDTEXT checks whe-

ther arguments at the sinks points hold any sensitive data via textual

analysis. If the type set information indicates the sensitiveness of

an argument, we report a potential disclosure.

Algorithm 1 Sensitiveness determination.

determine_sensitiveness(T , S, KWD)

1: for all t ∈ T do
2: t′ = preprocess(t)
3: if t′ matches in KWD then

4: if t′ is a word or t′ doesn’t match any negation template then

5: S = S ∪ t
6: end if

7: end if

8: end for

The process to determine the sensitiveness of a variable with a

set of associated constant texts is presented in Algorithm 1, which

assumes the text set T and a set of sensitive keywords KWD. For

each collected string (i.e., word, phrase or sentence), BIDTEXT

first conducts some preprocessing. For example, “EmailAddress”

is converted to “email address”. If a string contains more than one

sentence, it is split using the standard sentence division method

implemented in Stanford Parser [34]. If the string matches any

keyword, we check whether it is a single word. If so, we put the

string into S which holds all sensitive strings. S can be used to

decide what sensitive information is disclosed after the algorithm

finishes. If the string is a phrase or a sentence, we need to check

if it is the negation of a sensitive keyword. For example, “do not

enter password here” tells the user that the input field should not

contain any password. Even though the string matches a sensitive

keyword “password”, we do not consider it sensitive. So if the cor-

responding variable does not have any other associated sensitive

texts, it is treated insensitive and the sink does not have a sensitive

data disclosure problem.

We use Stanford Parser [34] to parse a phrase or a sentence into

a syntax tree, which is then converted to a dependency relation

(please refer to [5]). Based on the dependency relation, BIDTEXT

searches the negation word “not” and then checks the auxiliary

word right before the negation word. It also examines if there exists

a subject noun word before the auxiliary word. By combining the

auxiliary word and the possible subject word, BIDTEXT can iden-

tify whether the phrase/sentence is imperative or declarative. For

example, “do not” and “you should not” are imperative negations

but “you did not” is declarative negation. BIDTEXT only consid-

ers the imperative negation as a negation (of sensitive keyword). In

such cases, the text is not sensitive.

4. IMPLEMENTATION
We implemented BIDTEXT to detect sensitive data disclosures in

Android apps. BIDTEXT is built on top of WALA [6], which parses

the Android DEX bytecode to intermediate representations. We

implemented the algorithm in [23] to collect possible entry points

(e.g.,onCreate for an activity) in the target Android app. For

each entry point, BIDTEXT builds the call graph and the depen-

dency graph. The constant strings are propagated on the graphs.

We do not distinguish the correlated text for each UI element as in

[17]. Instead, all elements in one layout file are associated with all

the texts found in that layout file.

BIDTEXT relies on a keyword set to determine the sensitiveness

of computed texts. To acquire the keyword set, we ran BIDTEXT

on 2,000 randomly selected apps and extracted all texts discovered

for each sink. We then manually inspected these texts to construct

the keyword set. In order to detect traditional data closures that

are due to data-flow between source APIs and sink APIs instead

of texts, we assign some sensitive textual keywords to the source

APIs that must expose sensitive information so that BIDTEXT can

propagate the keywords. For example, we assign “imei” to API

TelephonyManager.getDeviceId().

We leverage Stanford Parser [34] as the engine for analyzing

phrases and sentences. BIDTEXT currently only supports English.

For better efficiency, BIDTEXT also performs on the fly type

set reduction. Specifically, when a text set reaches a certain size,

garbage collection is conducted by filtering out the texts in the type

set that do not indicate sensitiveness and those that are redundant.

5. EVALUATION
All experiments are performed on an Intel Core i7 3.4GHz ma-

chine with Ubuntu 12.04. The task of analyzing each app is given

the maximum memory of 10GB and the maximum analysis time of

20 minutes. The subjects are a collection of 10,000 Android apps

downloaded from Google Play in March 2015. The sink points

used in the evaluation contain all the logging operations in Android

and the Apache HTTP access APIs that are commonly used in An-

droid apps. This is also the standard setup for many existing static

taint analysis [17, 18]. The other types of sink points can be easily

added to BIDTEXT.

5.1 Pilot Study
As discussed earlier, BIDTEXT heavily relies on accurate propa-

gation models for API method calls. However, Android framework

contains thousands of API functions, making it almost infeasible to

manually build the models for all API functions. Our approach is to

randomly select 2,000 apps and run BIDTEXT on these apps. Then

we inspect the results to discover popular API functions and create

models only for those functions. These models are later used in the

larger scale study.

During the pilot study, we also observe a kind of false positive

that appears frequently. It is caused by a Facebook library used

by many apps. The library logs an error message when it fails to

obtain the device Id. The code snippet is abstracted as follows.

1 try { /* acquire device id */ }

2 catch (Exception e) { Utility.logd("android_id", e); }

The message e is typed with “android_id”, which is a sensitive

keyword. But the meaning of this message is indeed that the action

of acquiring the device Id fails. Solving this issue requires in-depth

semantic analysis of e which is not supported by BIDTEXT. Since

the pattern is fixed, we post-process all the reports to filter out this

pattern for both the pilot study and the later large scale study.
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5.2 Unification vs. Bi-directional Propagation
In classic type inference, given an assignment statement such as

z=x+y and z=φ(x,y), the updated type sets of x, y, and z are

the union of all three original type sets. In Section 3.2.2 (Rules

Binary-Assignment and Phi-Assignment in Fig. 4), we mentioned

that such a unification based approach may produce a lot of false

positives and hence BIDTEXT makes use of a bi-directional prop-

agation strategy that avoids propagating type sets between right-

hand-side operands (i.e.,x and y in the example). In this experi-

ment, we want to compare these two propagation strategies.

Due to the lack of ground truth, such a study requires manually

inspecting the reported disclosure defects and determining if they

are false positives. Among the 2000 apps tested in the pilot study,

we selected the first 60 apps whose data disclosure path (i.e., the

data flow subgraph that includes the path from the source to the sink

and the path that the sensitive text is propagated from its origin to

the sink) involves φ statements and/or binary operations with the

unification based propagation policy. We re-run BIDTEXT on the

60 apps with the bi-directional propagation policy and compare the

two sets of results.

Among these 60 apps, 42 of them are reported by both the uni-

fication policy and the bi-directional policy; 25 of them contains

flows only reported by the unification policy. Note that the two do

not add up to 60 because some apps have multiple reported disclo-

sures, some being reported by both policies and the others being

only reported by the unification policy. We manually studied the

25 cases reported by the unification policy and found that they are

all false positives. We have shown one sample false positive in

Section 3.2.2.

5.3 Large Scale Evaluation
In this experiment, we use 10,000 apps not covered by the pilot

study. The apps have a minimum size of 6.46KB for the APK files

and a maximum size of 49.94MB. The average size of the APK

files is 9.17MB. Among these apps, there are two that do not con-

tain any DEX bytecode in the APK files. For the remaining apps,

the minimum size of the bytecode files (classes.dex) is 452

bytes and the maximum size is 10.32MB. The average size of the

bytecode files is 2.53MB.

5.3.1 Results

The total analysis time for the 10,000 apps is 587.6 hours. Fig. 10

presents the distribution of the cumulative analysis time for all the

10,000 apps. We divide the total analysis time into three parts ac-

cording to how the analysis on an app terminates. As mentioned

above, we set the analysis timeout to 20 minutes for each app. In

our evaluation, 856 apps (8.56%) time out and the total analysis

time account for 49% of the total time consumed for the 10,000

TEXT-Only, 36.0%

API-Only, 0.3%

TEXT+API, 9.8%
TEXT+GUI, 27.4%

API+GUI, 0.2%

TEXT+API+GUI, 

7.2%

GUI-Only, 19.1%

(a) By sources.

Logging-Only, 

61.7%

Non-Logging-Only, 

3.2%

Both, 35.1%

(b) By sinks.

Figure 12: Breakdown of the reported apps.
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Figure 13: Comparing BIDTEXT with static tainting (tracking

specific APIs) and SUPOR [17].

apps. We have 293 other apps of which the analysis ran out of

memory. The total time for these apps accounts for 9%. For the

remaining 8,852 apps that finished normally take only 42% of the

total analysis time. Observe in Fig. 10 that the first 7,500 apps take

less than 15% of the total time. Among the 8,852 apps, the mini-

mum analysis time is 0.2 seconds and the maximum time is 1197.4

seconds. The median is 24.9 seconds while the average time is 99.9

seconds. The largest app that terminates normally has the APK size

of 49.94MB, and the bytecode size of 10.32MB.

Overall, BIDTEXT reports 4,406 apps with sensitive data disclo-

sure problems. We show the analysis time distribution of these apps

in Fig. 11. The blue bars show the number of apps that finished

within a time period. For instance, 472 apps took more than 5 min-

utes but less than 10 minutes. We also see that 27 apps timed out in

the experiments, although partial results were collected before the

analysis terminated. The red line presents the cumulative analysis

time: 93.0% of the apps were analyzed within 10 minutes. We can

conclude that BIDTEXT is efficient to be applied to market-scaled

apps.

We also show the breakdown of the 4,406 apps by the sources of

data disclosures in Fig. 12a.

There are three types of sources: (1) TEXT – constant texts in

the code that denote sensitive data; (2) API – sensitive API (recall

that BIDTEXT also detects data disclosures originating from sen-

sitive APIs by associated artificial texts to the source APIs such

as Location.getLatitude()); and (3) UI – constant texts

retrieved from user interfaces that denote sensitive data. Observe

that the majority of disclosures are/can be detected by the sensi-

tive text labels. Some data disclosure defects can be recognized

through multiple sources (e.g., TEXT+API), meaning that there

are some (bi-directional) data flow paths from a sensitive API to

a sink and from some constant text to the same sink. Consider

the following example. The data flow path 2→6→7 denotes a dis-

closure originating from TEXT (i.e., “android_id”) and the path

4→6→7 denotes a disclosure originating from API (i.e., “getDe-

viceId()”).

1 if (fails_to_obtain_imei()) {

2 id = Settings.Secure.getString(resolver,

"android_id");

3 } else {

4 id = telephonyManager.getDeviceId();

5 }

6 json.putString("id", id);

7 http_sink(json.toString()); // sink

The breakdown of the apps by the sink types is shown in Fig. 12b.

Note that 64.9% of the reported apps contain disclosures due to

logging. Although data disclosure through logging is substantially
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Table 1: Manually inspected evaluation results for 100 apps.

TEXT API UI

Total 84 22 39

Only 44 2 14

FP 3 0 7

mitigated by access control in the latest version of Android, it is

still a security concern for legacy Android systems such that most

existing works [7, 22, 17] report these disclosures. About 38.3% of

the reported apps (16.9% of all the apps evaluated) contain sensi-

tive data disclosures due to to non-logging sinks. They are serious

threats even in the latest Android systems.

Fig. 13 shows how BIDTEXT compares with an implementation

of the traditional taint tracking technique (tracking disclosures from

source APIs through forward data-flow similar to [14]) and SU-

POR [17], which is a technique that tracks disclosures from sen-

sitive UI elements (e.g., input boxes) through forward data-flow.

BIDTEXT always reports a super-set of those reported by the clas-

sic tainting and SUPOR. In the figure, the numbers of apps reported

by tainting and SUPOR are normalized to those reported by BID-

TEXT. Observe that they only report 17.5% and 53.9% of those

reported by BIDTEXT, respectively. Even combining the two can

only detect 64.0%. If only taking non-logging disclosures into ac-

count, they report 15.3% and 60.4% of those reported by BIDTEXT.

This attributes to both the new text label correlation analysis and the

bi-directional type set propagation strategy.

We present the length distribution of the emitted data disclosure

paths for the 4,406 apps in Fig. 14. Though some paths tend to

be very long (more than 80 elements), most of them are relatively

short. More than 75% of the paths require less than 30 steps from

the origination of the sensitive texts to the sink points.

False Positives and False Negatives. It is critical to understand the

quality of the reported defects. Due to the lack of ground truth, we

had to perform manual inspection. Studying the full set of results

is infeasible. Hence, we randomly chose 100 reported apps with

a uniform size distribution for manual inspection. The results are

presented in Table 1.

The columns indicate the sources of the disclosures. Row Total

shows the total number of reported apps for each sources. Row

Only shows the number of apps that only have reported disclosures

falling into one category. The last row shows the number of false

positives.

Observe that the 10 false positives are exclusive. Therefore, the

false positive rate is 10%. The causes for false positives will be

discussed in Section 5.3.3. We do not count the false negatives

because we don’t have the ground truth.

Among the 84 apps where disclosures are reported by code text

analysis, 62 apps contain paths that can be only detected by our ap-

proach via text correlation analysis, i.e., the data used at sink points

neither come from any UI inputs nor from traditional source APIs.

In other words, 62 of them cannot be detected by classic tainting or

SUPOR. This ratio is consistent with that in Fig. 13 for the larger

experiment. The other reported disclosures have the sensitive data

coming from these two categories of sources. They are reported by

both BIDTEXT and the existing technique(s). Another interesting

finding is that BIDTEXT often produces a shorter disclosure path.

A typical scenario is that there is a long data flow path from a UI

input element to a sink. However, mid way through the path, the

(sensitive) data is put/get to/from some container with a sensitive

textual key, which allows BIDTEXT to report a shorter path from

the put/get operation to the sink. The benefits of shorter paths are

two-folded: less human efforts needed for inspection and detecting

more disclosures (because the full path from the source points to the

sink points might be complicated, involving inter-component com-

munications, such that the tool may fail to traverse the full path).

5.3.2 Case Studies

We observe many cases in which sensitive textual keys appear to-

gether with data in key-value operations, e.g., constructing a name

value pair (e.g.,com.gunsound.eddy.fafapro), inserting data into a

hash map (e.g.,me.tango.fishepic), retrieving/adding data to persis-

tent storage through an instance of SharedPreferences (e.g.,

com.ifreeindia.sms_mazaa) or putting data into a JSON object (e.g.,

com.mobilegustro.war.battle.air.force). BIDTEXT recognizes the

sensitiveness of corresponding data via text correlation analysis.

In the following, we show a code snippet adopted from app com.-

pro.find.differences that discloses sensitive device information to

Web servers.

1 void obtainDeviceInfo() {

2 TCore.aid = Settings.Secure.getString(resolver,

"android_id");

3 }

4 void connectWebServer() {

5 Map map = new HashMap();

6 safePut(map, "android_id", TCore.aid);

7 String params = convertURLParams(map); // omitted

8 http_sink(params); // sink

9 }

10 void safePut(Map map, String k, String v) {

11 map.put(k, v);

12 }

The method call at line 2 returns system information based on

the given key value. For example, a unique Id for the device is

obtained if “android_id” is given as the key. If the key is “en-

abled_input_methods”, the return value contains a list of input meth-

ods that are currently enabled. Therefore, the sensitiveness of the

return value depends on the key. BIDTEXT works by correlating

the textual key with the return variable to decide whether a later

sink operation involves sensitive data or not.

In the above example, the variable TCore.aid is typed with

the constant text “android_id” at line 2, which is later propagated

to parameter v of method safePut() at line 10. v is inserted

into the hash map at line 11. Note that “android_id” at line 6 is

propagated to k@10 which is further propagated to the hash map

and variable v according to the corresponding API model for prop-

agation. Along the data flow, the constant text is propagated to

params@7 that is eventually used at the sink point at line 8. BID-

TEXT reports the data disclosure.

5.3.3 False Positives

One of the 10 false positives is caused by unmodeled API func-

tions. The corresponding code snippet is from app at.zuggabecka.-

radiofm4.

1 uidx = cursor.getColumnIndex("username");

2 iidx = cursor.getColumnIndex("_id");

3 id = cursor.getLong(iidx);

4 sink(id);

At line 1, a sensitive keyword “username” is correlated with the

receiver object cursor that is related to a database query. Then all

uses of cursor propagate the text label to other variables, e.g., the

return value of a relevant method call. Thus, id at line 3 is typed



with “username”. Later when it is used at a sink point, BIDTEXT

reports a sensitive data disclosure after analyzing the corresponding

type set. To remove this false alarm, we can build a model for API

Cursor.getColumnIndex(key) to only propagate type set

from key to the return value, avoiding propagating to the receiver

object. Then in the above code snippet, only variable uidx@1

is typed with “username”. Variable id that appears at the sink

point is only typed with “_id” which is not considered as a sensitive

keyword. Therefore there is no disclosure problem with the model.

All the other nine false positives are caused by incorrect recog-

nition of text, two for code text and seven for UI text.

App com.netcosports.andalpineski contains a text label as “Apps-

_lang[apps_lng_iso2]” which indicates the language of the app.

However, it contains a predefined sensitive keyword “lng” which

is mostly used as an abbreviation of “longitude”. Failing to un-

derstand the meaning of the text, BIDTEXT incorrectly reports a

sensitive data disclosure.

App com.wactiveportsmouthcollege has a UI text of “Pin to desk-

top” where sensitive keyword “Pin” is used as a verb. Failing to

understand it leads to a false positive. All other false positives

have similar causes – sensitive keywords in a phrase or sentence

do not indicate any sensitive information. Possible solutions for

this type of false positives include integrating more advanced NLP

techniques with program analysis to understand the meanings of

the text.

5.4 Discussion
One limitation of BIDTEXT lies in that the text in code may not

be in a generalized format. For example, some developers use “lng”

for “longitude” whereas others use “long” for it, which is a more

general word in English. If we treat “long” as a sensitive keyword,

we can expect many false positives. In addition, developers tend to

combine several words (or abbreviations) into a single word, which

makes it more difficult to determine whether the correlated data are

sensitive or not.

In the future, we plan to improve our approach in the following

aspects. The first one is to discover text labels in the names of

method calls, if they are not obfuscated, and variable/field names.

The second improvement is to consider code comments if source

code is available. The third one is to improve the NLP aspect by

putting the keywords in their program context. Doing so, we may

be able to recognize “long” indeed means longitude.

6. RELATED WORK
A lot of prior research has focused on detecting sensitive data

disclosures, either statically or dynamically, for mobile apps [14, 7,

8, 9, 15]. Most of them consider specific APIs as sensitive source

points while BIDTEXT analyzes text labels to determine if a vari-

able can hold sensitive data. SUSI [32] gives a comprehensive list

of the data sources in Android, but it does not assume the data

obtained from the sources must be sensitive. In addition, even if

the state-of-the-art static detectors, e.g., FlowDroid [7] and Droid-

Safe [15], had been enhanced with various ways of determining

data sensitiveness, they would likely not be able to detect some

sensitive data disclosures reported by BIDTEXT such as our moti-

vating example, where the sensitiveness of the data is determined

after the sink point and there is no forward data-flow from the sen-

sitiveness revelation point and the sink point. BIDTEXT, however,

leverages bi-directional propagation to address this problem.

Huang et al. developed type-based taint analysis to detect infor-

mation leaks in Java-based Web applications and Android apps via

type inference [19, 20]. They abstract the information flow anal-

ysis into a type system and check if any type error occurs. Their

technique scales well without using advanced points-to analysis [7,

15]. Their technique still follows the traditional definition of data

disclosure, which is a forward data flow path from the source to the

sink. In other words, it does not propagate data sensitiveness in a

backward fashion. As such, it may not be able to report many dis-

closures reported by BIDTEXT, including the motivating example.

Furthermore, their type system does not leverage text information.

Ernst et al. also developed a type-based taint analysis system [11].

Their technique associates a few (security) types such as LOCA-

TION, INTERNET, and SMS to sources and sinks and have a set

of predefined policies such as LOCATION can only be compati-

ble, or type-checked, with INTERNET. So if LOCATION reaches

a program point with the SMS type, a leak is reported. Their flow

analysis is forward whereas BIDTEXT is bi-directional. And BID-

TEXT leverages text labels.

SUPOR [17] and UIPicker [27] discover sensitive information

on user interfaces through static analysis. However, they essen-

tially belong to the traditional forward data-flow based techniques.

AsDroid [18] collects the set of API calls in an event handler and

compares the meaning of these API calls with the UI text of the

event to detect unwanted/unexpected app behavior. In contrast,

BIDTEXT types individual variables in the program with text la-

bels and leverages a type system that allows bi-directional propa-

gation. Researchers also combine code and comment analysis to

detect bugs or inconsistencies [35, 36, 37]. We envision comment

analysis can leverage our bi-directional type system so that the in-

formation in comments can be leveraged to analyze fine-grained

and in-depth app behavior. In addition, WHYPER [29] and Au-

toCog [31] apply NLP techniques to app’s descriptions to obtain a

comprehensive view of the app and check if the required permis-

sions are appropriately specified in the descriptions. Besides, [30]

and [41] apply NLP techniques on API descriptions or documents

to infer method specifications. We can leverage these techniques to

automate the generation of API models used in BIDTEXT.

7. CONCLUSION
We propose BIDTEXT, a novel static technique to detect sensi-

tive data disclosures. BIDTEXT identifies text labels appearing in

both code and UI, treats them as types, associates them to the cor-

responding variables, bi-directionally propagates the types through

data flow and eventually attributes them to sink points that poten-

tially disclose sensitive information. At the end, the parameters at

the sink points have type sets of correlated texts. Textual analysis is

applied to the type sets to determine if the variables may hold sensi-

tive data. We implement BIDTEXT and evaluate it on 10,000 apps

downloaded from Google Play store. BIDTEXT reports 4,406 apps

that have sensitive data disclosure problems including 4,263 apps

disclosing sensitive information through logging and 1,688 through

non-logging channels. Existing techniques can only report 64.0%

of cases reported by BIDTEXT. Manual inspection shows the false

positive rate is 10%. The overhead of BIDTEXT is reasonable.
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9. ARTIFACT DESCRIPTION
This artifact provides an executable environment of BIDTEXT.

The goal is to reproduce the results shown in the paper, as well as

to let the users be able to apply BIDTEXT on Android apps of their

interest.

9.1 Where is the artifact?
The source code is publicly available at https://bitbucket.org/

hjjandy/toydroid.bidtext. Gradle [3] build is supported. And JDK

7 or newer versions is required to compile the source code.

A virtual machine (VM) image with Ubuntu 14.04 can be found

at: https://github.com/hjjandy/FSE16-BidText-Artifacts-VM. It is

created by Oracle VM VirtualBox [4]. The VM contains the source

code, executables and a small set of test apps. It has been tested on

Windows 10 and Ubuntu 14.04, but not on MacOs.

The users can also download the executables and the test apps at

https://github.com/hjjandy/FSE16-BidText-Artifacts. It provides sup-

port to execute the tool on both Windows and Linux if Java 7

or newer versions with AMD64 architecture has been installed.

Git LFS [2] is required to clone the repository. If the users en-

counter an IOExceptionwhen BIDTEXT tries to load the parser

from englishPCFG.ser.gz, please check if the models of Stanford

Parser (“stanford-parser-3.4.1-models.jar”) have been downloaded

correctly via Git LFS.

9.2 What are contained?
In the HOME directory of the VM, one file and three folders are

related to the artifacts.

File “FSE16-Artifacts-Eval-README” is a detailed description

of the artifacts, including how to run the tool and how to understand

the results. It also contains some issues that need special attention

to run the tool well.

Folder “BidText-Source” contains a full copy of the source code.

The users can update it via “git pull”. “BidText-TestApps” contains

a portion of Android apps used in the paper. Inside it, there are four

special cases, corresponding to the four examples presented in the

paper. They are the motivation example (Fig. 1 in Section 2), the

example for bi-directional propagation on PHI statement (Fig. 5

in Section 3.2.2), the example of two different types of sources

flowing to the same sink (Section 5.3.1) and the case study in Sec-

tion 5.3.2. Besides, sub-folder “Others” contains the 100 apps used

to measure the accuracy of BIDTEXT, whose results are presented

in Table 1. “BidText-Bin” contains the necessary libraries, config-

urations and scripts to execute BIDTEXT. Note that it is infeasible

to host all the apps used in the paper due to the sheer volume of the

apps.

9.3 How to run the tool?
In order to apply the tool on an Android app, the user can run it

on a terminal under the folder “BidText-Bin”: ./RUN Path_to_APK.

The user can also use the four start scripts to perform analysis on

the four corresponding cases. For example, ./Motivation is

equal to ./RUN $HOME/BidText-TestApps/Motivation/

com.buycott.android-22.apk. If the users want to test the

100 apps, just execute ./Eval-100.

Since BIDTEXT requires a lot of memory to perform analysis,

the user is required to allocate enough memory for the VM when

creating a VM in VirtualBox. It should be at least 5GB because

the default setting of JVM heap size for running BIDTEXT in the

VM is 4GB, which is not enough to evaluate all the 100 apps. We

suggest 12GB to evaluate the 100 apps. The users can modify “bid-

text.prop” to set a larger JVM heap size for BIDTEXT.

The non-VM artifacts also contain start scripts (batch files) to

allow easy execution of BIDTEXT on Windows. The commands

and the settings are the same as in the VM.

9.4 How to understand the results?
After analyzing an APK file, BIDTEXT generates the results (if

reported any) in folder “APK_name.bidtext” which is aside the APK

file. Each reported sink point has an individual result file named

“idx.Sink_Type.txt”, e.g., 384.LOG.txt. The result file contains the

sink API and the enclosing method of the sink. For each identified

sensitive textual label, surrounded by “********”, the propagation

path is listed. Each path element is the String representation of

a WALA [6] Statement, an IR used during the analysis. In the

following, we show part of the results for the motivation example.

Note that we did some simplification for readability.

1 ********username********
2 NORMAL_RET_CALLER:Node: <CampaignActivity$20$1,

run()V> 66 = invokevirtual <JSONObject,

getString(String)String> 18,64

3 NORMAL_RET_CALLER:Node: <CampaignActivity$20$1,

run()V> 18 = invokevirtual <JSONArray,

getJSONObject(int)JSONObject> 5,172

NORMAL_RET_CALLER is the type of the Statement and

“Node” indicates the location of the statement. The numbers are

the variables values, distinct for any SSA variables. For example,

“66” can be treated as a variable v66, which can only be defined

once in the enclosing method. For more details about the repre-

sentation, please refer to WALA document. The sensitive textual

label “username” propagates from line 1, which is a method invo-

cation. Through inspecting the app’s code, we know that the label

is a constant string stored in v64 while the JSON object is asso-

ciated with v18. In the second statement, we see that v18 is the

return value of a method call. That means, the two statements con-

stitute a backward propagation. Please refer to Fig. 1 to get a better

understanding of the motivation example.
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