AutoComment: Mining Question and Answer Sites
for Automatic Comment Generation

Edmund Wong, Jinqiu Yang, and Lin Tan
University of Waterloo, Waterloo, Ontario, Canada
{e32wong, j223yang, lintan} @uwaterloo.ca

Abstract—Code comments improve software maintainability.
To address the comment scarcity issue, we propose a new
automatic comment generation approach, which mines comments
from a large programming Question and Answer (Q&A) site.
Q&A sites allow programmers to post questions and receive
solutions, which contain code segments together with their
descriptions, referred to as code-description mappings. We develop
AutoComment to extract such mappings, and leverage them to
generate description comments automatically for similar code
segments matched in open-source projects. We apply AutoCom-
ment to analyze Java and Android tagged Q&A posts to extract
132,767 code-description mappings, which help AutoComment to
generate 102 comments automatically for 23 Java and Android
projects. The user study results show that the majority of the
participants consider the generated comments accurate, adequate,
concise, and useful in helping them understand the code.

Index Terms—automated comment generation; documentation;
program comprehension; natural language processing for soft-
ware engineering

I. INTRODUCTION

Code commenting has been an integral part of software
development. It has been a standard practice in the indus-
try. Comments improve software maintainability [1] through
helping developers understand code. Despite the need and
importance of commenting code, many code bases do not
contain adequate comments [2].

Sridhara et al. automatically generate comments for Java
methods [3] and groups of statements [4] from source code.
While these techniques are successful initial steps toward
automatic comment generation, they have two main limitations.
First, the techniques can only generate comments for specific
code structures (e.g., one method body [3], or groups of method
calls [4]). Second, performance depends upon high-quality
identifier names and method signatures. For example, when
grouping method calls, this technique requires that all method
names contain the same verb [4]. If identifiers and methods
are poorly named, the approach may fail to generate accurate
comments or any comments at all.

We propose a new approach to generate comments automati-
cally to address the above limitations. We observe that Question
and Answer (Q&A) sites such as StackOverflow [5] contain
code descriptions written by developers that can be used for
automatic comment generation. Specifically, StackOverflow
is widely used to ask questions about code development,
debugging, etc. Those questions often receive high-quality
answers due to the large user base. For example, one question
asked “how to open the find type dialog programmatically in

978-1-4799-0215-6/13 © 2013 IEEE

562

Eclipse”. In the answer, a user provided a Java code segment
that performs the task. We can use the statement form of
the question “open the find type dialog programmatically in
Eclipse” as an explanatory description of the code segment. We
refer to the code segment and description as a code-description
mapping. If a similar piece of code appears in a software
project, then the corresponding description of the mapping
can be an explanatory comment for the code in the software
project.

StackOverflow [5] contains a wealth of information, which
makes it a feasible source for extracting code-description
mappings for automated comment generation. It contains
5,509,302 posts as of August 2013. In addition, at least 49%
of the Java and Android classes in StackOverflow have at least
one code example in the accepted answer [6]. Android code
segments have a mean size of 16.4 lines of code (LOC) and a
median of 9 LOC [7].

The idea is to generate comments automatically by mining
Q&A sites for code-description mappings. One key benefit of
this approach is that the description is what a developer uses to
describe the code segment, which is likely to be accurate and
useful for developers to understand (compared to descriptions
generated from variable and method names).

This paper makes the following contributions:

o We propose a new approach, AutoComment, to generate
code comments automatically by analyzing Q&A sites.

« We conducted a preliminary evaluation of AutoComment
on 23 projects to generate 102 comments automatically.
The user study results show that the majority of the par-
ticipants find the generated comments accurate, adequate,
concise, and useful.

« We adopt natural language processing (NLP) techniques
and design heuristics to improve the code descriptions for
generating high-quality comments.

o AutoComment builds databases of code-description map-
pings that can be leveraged for purposes other than
automated comment generation such as program synthesis.

II. EXAMPLES AND CHALLENGES

We present two examples illustrating how AutoComment
generates comments automatically. We describe the challenges,
summarize our solutions, and highlight the unique benefits of
AutoComment.

ASE 2013, Palo Alto, USA
New Ideas Track

Accepted for publication by IEEE. © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

A. Example One
Figure 1 shows a code segment from the Java project Jajuk.

1| public String getToolTipText (MouseEvent e) {

2| java.awt.Point p = e.getPoint () ;

3\ int rowIndex = rowAtPoint (p);

4\ int colIndex = columnAtPoint (p);

5 if (rowIndex < 0 || colIndex < 0) {

6 return null;
7 }

8 e

9

Fig. 1. Code from Java project Jajuk

AutoComment generates the following comment to explain the
code segment highlighted in grey:

Find on which row and column the mouse is.

Our user study shows that users consider this comment
accurate and useful in helping them understand the code. The
previous technique by Sridhara et al. [4] would not generate
a comment for this example because the three method names
in Line 24 share no common verb. Figure 2 shows the
StackOverflow post that AutoComment leverages to generate
the comment. It shows the title of the post, the code segment,
and one paragraph before the code segment in the answer.

StackOverflow Question (Title):

Tool tip in JPanel in JTable not working

StackOverflow Answer:

The problem is that you set tooltips on subcomponents of the
component returned by your CellRenderer. To perform what you
want, you should consider override getToolTipText(MouseEvent
e) on the JTable. From the event, you can find on which row

and column the mouse is, using:

1| java.awt.Point p = e.getPoint();

2\ int rowIndex = rowAtPoint (p);

3\ int colIndex = columnAtPoint (p);

Fig. 2. StackOverflow Post #10854831

Challenges in Comment Selection: Figure 2 shows two
textual descriptions that can be leveraged to describe the code
segment in the answer. One is the title of the post, which
describes the question. The other is the paragraph immediately
before the code segment, which consists of three sentences.
Among the four sentences in the title and the answer paragraph,
only the last sentence in the answer paragraph describes the
code segment, and AutoComment needs to select this relevant
sentence for use as a comment.

AutoComment uses two techniques to address this challenge.
First, many sentences ask and answer how to troubleshoot
their code, and they often do not describe the code seg-
ment. For example, “not” indicates that the title describes
a troubleshooting problem rather than the code segment; and
“problem” in the first sentence from the answer suggests
the cause of the problem. Therefore, AutoComment filters
out sentences that imply troubleshooting based on keyword
filtering (Section III-B). Second, AutoComment leverages the

text similarity between each sentence and the code segment to
identify the most relevant sentences (Section III-E). In Figure 2,
the shared words between the text and code are in bold (row
and column).

Challenges in Description Refinement: The sentences from
question titles and answers are often in a question form (e.g.,
“How to ...?”) or contain excessive information (e.g., “You can
...”). Directly using these sentences will lead to low quality
comments.

To address this challenge, we deploy natural language
processing techniques to refine sentences. For example, Au-
toComment removes “From the event, you can” and “using”
from the last sentence in Figure 2. One of the used techniques
extracts a subtree that contains a verb phrase and a noun phrase
from the parse tree of a sentence (Section III-B).

B. Example Two

Figure 3 shows a code segment from the Android project
Barcode Scanner.
1| private static Bitmap toBitmap (LuminanceSource source, int
[] pixels) {
2| int width = source.getWidth();

3] int height = source.getHeight ();

4| Bitmap bitmap = Bitmap.createBitmap (width, height,

| Bitmap.Config.ARGB_8888) ;
bitmap.setPixels (pixels, 0, width, O,
return bitmap;

}

5
6
7

0, width, height);

Fig. 3. Code from Android project Barcode Scanner

AutoComment generates the following comment for the lines
highlighted in grey by leveraging the StackOverflow post
#4665122 (not shown due to space constraints):

Create empty bitmap with dimensions of original image and
ARGB_8888 format.

Benefits of AutoComment: AutoComment generates a com-
ment to provide important information that is not explicitly in
the code, e.g., the code is to create an empty bitmap. In addition,
AutoComment can group the three statements into a semantic
unit for comment generation because the StackOverflow code
segments had already been grouped in the post. Such grouping
does not rely on the quality of the method names or the structure
of the methods, which is different from previous work [4].

III. AUTOCOMMENT DESIGN

Figure 4 shows the overview of AutoComment. AutoCom-
ment takes as input (1) a StackOverflow data dump containing
information of all posts, and (2) source code of the target
software. The output is a list of code segments and the
corresponding generated comments.

AutoComment consists of two major components. The first
component generates databases of code-description mappings
(Section III-A) and leverages natural language processing
techniques to refine the descriptions (Section III-B). The second
component generates comments for the target software. It
applies code clone detection technique to identify matched code
between the databases and the target software (Section III-C),

563

Code-
Description
Mapping
Extraction

Mapping
Databases

StackOverflow
Data Dump

Description
Refinement

Database Generation

Source Code

|

Code Code C .
Clone Clone OHmen Comments
: . Selection
Detection Pruning

Comment Generation

Fig. 4. Overview of AutoComment

TABLE I
LI1ST OF TERMS FOR SENTENCE FILTERING

no, not, error, bug, difficult, difficulty, problem, problems, fix, shouldn’t,
doesn’t, can’t, couldn’t, don’t, isn’t, aren’t, wouldn’t, fail, why, what,
null, bad, wrong, missing, lack, probably, likely, perhaps, think, may,
maybe, unfortunately, unluckily

prunes out bad matches (Section III-D), and selects the best
comment for the matched code (Section III-E).

A. Code-Description Mapping Extraction

To build databases of code-description mappings, we choose
a programming Q&A site called StackOverflow [5] as the data
source. We build the Java database using Java questions (tagged
with java) and the Android database using Android questions
(tagged with android).

StackOverflow contains invalid and low-quality questions
and answers. To ensure the quality of extracted code-description
mappings, AutoComment selects questions and answers based
on the number of votes it received from StackOverflow’s voting
system. Specifically, AutoComment only keeps questions with
a positive number of votes. For each kept question, it selects
the answer(s) with the highest positive number of votes.

The title of a post is not the only description for the code
segment. Since it is common for people to write a code
description immediately before the code segment, we also
extract the paragraph immediately before the code segment as
a comment candidate.

B. Description Refinement

To improve the quality of description sentences extracted
from StackOverflow, AutoComment leverages natural language
processing techniques to perform refinements.

Description Filtering: Sentences that ask and answer how to
troubleshoot code often do not describe the code segment,
e.g., “Android: problem retrieving bitmap from database”.
AutoComment filters out such sentences based on the manually
collected terms in Table I.

Main Sub-Tree Extraction: Sentences that are in a question
form (e.g., “How to...”) or contain personal pronouns (e.g.,
“you”) are not suitable as comments. Therefore, we adapt NLP
techniques to convert sentences from a question form to a
statement form by extracting the main sub-tree of a sentence
in the following three steps.

Step one generates a parse tree from the input sentence using
Stanford CoreNLP [8] (v1.3.4). AutoComment first uses the
part-of-speech (POS) tagger to label each word of a sentence,
then uses the parser to generate the parse tree. CoreNLP does
fall short on interpreting certain technical terms because it was
trained on well written text such as the Wall Street Journal.
However, it is robust at parsing sentences and works well for
our experiments.

Step two extracts the main sub-tree(s) from the parse tree.
The idea is to obtain sub-tree(s) that contains at least one verb
phrase (VP) and one noun phrase (NP), which ensures each
extracted phrase has a verb associated with a subject or an
object. We define two patterns (Equation 1 and Equation 2) in
Stanford’s Tregex [9] format to extract the main sub-tree(s) of
a parse tree.

VP << (NP < /NN?/) < JVB.?/ (1)

@)

The two patterns ensure the VP is not a personal pronoun
(PRP) because such words contribute no value in a code
comment. Penn Treebank tag guideline [10] defines PRP to
include personal pronouns proper (“I”, “you”, “he”, etc.),
reflexive pronouns ending in -self or -selves and nominal
possessive pronouns (“mine”, “yours”, “his”, etc.). The first
pattern extracts a VP followed by an NP, and the second pattern
extracts an NP followed by a VP.

Step three merges the extracted sub-trees (if there are more
than one from step two) into a single sub-tree, and then converts
the merged sub-tree into a sentence by retrieving all the leave
nodes from the tree structure. To merge the extracted sub-trees,
AutoComment invokes the method “join node” on all the sub-
trees: Given two sub-trees, locate node j such that j dominates
both sub-trees, and return a tree with node j as the root of the
tree.

NP!< PRP[<< VP|$VP]

Clause Removal: A sentence may contain more than one
clause connected by a coordinating conjunction (CC). The
following sentence contains two clauses linked by the CC
word “but”:

How do I read in a file with buffer reader but skip comments
with java

The seven coordinating conjunctions are “for”, “and”, “nor”,
“but”, “or”, “yet”, and “so” [11]. The CC words “but” and
“yet” imply a contrasting meaning. Therefore, AutoComment
removes the clause after the CC word “but” and “yet”.

564

Number Removal: AutoComment removes numerical num-
bers from a sentence to make it more general by detecting
cardinal number (CD) POS tags, which represent numeric
words such as “three” and “3”.

C. Code Clone Detection

AutoComment extends a token-based clone detection tool
SIM [12] to detect similar code segments between the code-
description databases and the target software. Parse-tree-based
code clone detection tools are not directly applicable because
code segments from StackOverflow are often not compilable.

SIM tokenizes the input code and uses the longest common
substring algorithm to detect code clones. It requires exact
matching on method names and programming language key-
words. We extended SIM with stricter matching requirements.
Specifically, the value of strings and characters, class names
and static/non-static fields require exact matching. In addition,
we detect code clones that contain line additions by allowing
the additional lines from the target software to be skipped
(lines from the StackOverflow code segment are not skipped).

We use the following thresholds for each match: the
minimum number of tokens that have to match consecutively
is 20, and the maximum number of lines that can be skipped
is 4. In the future, we would like to study the impact of these
thresholds on comment generation.

D. Code Clone Pruning

The output of the code clone detection tool consists of
pairs of code segments that have a similar syntactical structure.
However, it is necessary to ensure the code segments have a
high-level of semantic matching.

Support Set Pruning: The more number of times that a
StackOverflow code segment gets matched, the higher the
probability that it is a generic match. This heuristic is capable
of eliminating generic code. Specifically, if a StackOverflow
code segment is matched five or more times with the source
code within the same software project, AutoComment prunes
out such pairs of code segments. In the future, we would like
to scale the value according to project size.

Line Percentage Matching: For each StackOverflow code
segment, the higher proportion of lines that are matched, the
higher probability that the description sentence is applicable
to the matched code segment in the target software. Therefore,
AutoComment calculates the percentage matching score as a
filtering metric.

Particularly, for each StackOverflow code segment, we
exclude all source code lines that are a Java annotation,
comment, method signature or return statement prior to the
percentage calculation. We call the remaining lines effective
lines. We define a non-generic line as a line that does not
contain a generic method call (i.e., add, remove, put,
post, get, set, read, write, delete, close, exit
and hashCode) because we find that a line of code that
contains a generic method call contributes little to the semantic
matching. AutoComment calculates the percentage matching
score using the following formula with a 70% threshold,

StackOverflow Question:
Fastest way to read a file line by line with 2 sets of Strings on
each line?

StackOverflow Answer:

1| BufferedReader br = new BufferedReader (new FileReader (file
N

2| String line;

3| while((line = br.readLine())

4 // do something with line.

5}

I'= null) {

Fig. 5. Example of a piece of template code. StackOverflow post #5035894.

meaning that at least 70% of the effective lines has to be
matched.

number of matched effective non-generic lines
PercMatched =

number of effective lines in the StackOverflow code segment

Removal of Repetitive Method Calls: If a matched code
segment in the target software only contains repetitive method
calls on the same method (three or more times), it is performing
a similar operation repetitively with different parameters. Since
the value of the parameters impacts the functionality of the code
segment in the target software, and the code clone detection
tool does not perform exact matching on the value of the
parameters (Section III-C), such matches are removed.

Removal of Template Code: Some StackOverflow answers
simply provide a template with placeholders to be filled. The
semantics of the filled template and the empty template can be
quite different. Figure 5 shows a code segment that performs
a generic file read operation, but the comment is too specific
because the content within the curly bracket between line 3
and 5 is missing. We consider StackOverflow code segments
that contain a pair of curly braces with no statements in it as
template code and remove them.

Other Filters: AutoComment requires the matching of at least
one line that contains a method call. In addition, it filters out
matches that contain the term “Exception” because exception
code is inherently different from the main flow code. Lastly,
it prunes out long code matches (over fifteen lines of code)
because StackOverflow is unlikely to contain detailed enough
descriptions.

E. Comment Selection

For each remaining match, one or more description sentences
can remain as a comment candidate. If the code from the target
software matches with multiple StackOverflow code segments,
AutoComment includes all available description sentences of
each StackOverflow code segment as a candidate. It then selects
the comment candidates that best describe the matched code
segment in the target software.

Code Artifact Matching: Code artifact matching detects code
artifacts (e.g., class/method/field/constant names and primitive
data types) that exist in a description sentence, but do not
exist in the method that contains the matched code in the
target software. AutoComment detects such cases using regular

565

expressions (combined with camel cases) and removes such
sentences.

Text Similarity: To select the best description sentences from
the remaining sentences, AutoComment measures the fext
similarity between each remaining description sentence and
the code segment in the target software.

There are three steps to measure text similarity. First, it
converts the code and description sentences to a set of tokens.
A token is a consecutive sequence of at least three characters
(alphabets and numbers) because short tokens such as “is” often
have no semantic meaning. The dot operator bridges multiple
tokens together. For example, it converts obj.method ()
to obj.method instead of two tokens, obj and method.
This is because obj.method () is an atomic operation and
should only contribute to the text similarity once. Second, it
lemmatizes [13] tokens to their base forms, e.g., converting
“takes” to “take”. Then it removes duplicate tokens and stop
words (i.e., “new”, “the”, “and”, “but”, “for”, and “you”). Third,
it calculates the text similarity as the number of overlapping
token pairs between the description sentence and the code using
common substring matching. For example, Buf feredImage
and Image are one overlapping pair. It also discards sentences
that only contain a single text similarly term that is a primitive
data type such as int, because the similarity content is
insufficient.

AutoComment selects the sentences that achieve the highest
text similarity. If multiple sentences have the same highest text
similarity, it combines all of them as the generated comment.

IV. EXPERIMENTAL METHODS

We conducted a user study similar to that of Sridhara et
al. [4] to answer the following two research questions:
¢ RQ1: Are the automatically generated comments accurate,
adequate, and concise in describing the code?
o RQ2: Are the automatically generated comments useful for
developers to understand the code?

RQ2 is a new research question that Sridhara et al. [4] did not
evaluate. It is an important question because a comment can be
accurate, adequate, and concise, but does not help developers
understand the code, e.g., if the comment is a simple paraphrase
of the code.

A. Evaluated Projects and Databases

We apply AutoComment to extract two databases of
code-description mappings. The extracted Java and Android
databases contain 87,785 and 44,982 mappings respectively.
We apply the Java database on 16 Java projects and the Android
database on 7 Android projects. Table II shows the number
of lines of code that each project contains. AutoComment
generated a total number of 102 comments for the 23 projects.

B. User Study

We conducted a user study to evaluate the comments
generated by AutoComment. The evaluator group included
14 graduate students and 1 undergraduate student, all of whom
have industrial experience in Java programming (ranging from

TABLE II
EVALUATED OPEN-SOURCE PROJECTS
Java Project LOC || Android Project LOC
Eclipse SDK 4,678,435 Firefox 180,162
FreeCol 205,471 Chrome 75,652
FreeMind 113,929 Barcode Scanner 55,121
GanttProject 164,059 FBReader 69,927
Hibernate 708,258 KeePassDroid 42,073
HSQLDB 115,829 myTracks 54,001
JabRef 153,285 osmAnd 204,253
Jajuk 126,149
JavaHMO 39,481
JBidWatcher 36,228
JFtp 32,347
JHotDraw 56,388
MegaMek 387,739
Planeta 33,815
Sweet Home 3D 104,831
Vuze 852,622
TABLE III

HUMAN JUDGEMENTS ON THE GENERATED COMMENTS.
AC: ACCURACY; AD: ADEQUACY; CO: CONCISENESS; US: USEFULNESS

Java Android

Responses Ac | Ad | Co | Us Ac | Ad | Co | Us
1-Strongly 9 12 5 10 5 11 5 9
Disagree

2-Disagree 8 17 17 17 5 13 8 6
3-Neutral 27 23 29 29 17 | 14 | 21 | 22
4-Agree 27 35 30 30 14 | 11 17 | 17
5-Strongly 79 63 69 64 34 | 26 | 24 | 21
Agree

[Total [[150 [150 [150 [150 [75 [75 [75 [75 |

2-10 years). We provided each user with a questionnaire of
15 randomly selected comments (10 from Java projects and 5
from Android projects) to evaluate.

The user study evaluation has two steps. First, we show users
a matched code segment with its surrounding code and ask
users to write a comment to describe the matched code segment.
Second, we provide users with the generated comment and ask
them to rate the comment on accuracy, adequacy, conciseness,
and usefulness using the five-point Likert scale.

V. PRELIMINARY RESULTS

Table III shows the human judgement from the participants
for the 102 comments. The responses show that the majority
of the users agree that the generated comments are accurate,
adequate, concise, and useful in helping them understand the
code segments.

In terms of accuracy, the main cause of disagreement is
the failure at identifying comments that contain an incorrect
description of the code segment. The reason is that text
similarity does not guarantee a sentence to be semantically
correct. In terms of adequacy, the main cause of disagreement
is the user expectation. When we present a code segment with
its surrounding code to help users understand the code segment,
they often think that the comment should also explain the
surrounding context. For one user study question, the participant

566

wrote, “Add path of the action event to the clipboard” and our
tool generated “Use the StringSelection with the string and add
it to the Clipboard.”. The participant inferred that the string is
the path of an action event from the surrounding code and rated
the generated comment inadequate. In terms of conciseness, the
main cause of disagreement is that the generated sentences can
be too long, wordy or contain overlapping content. The reason
is that AutoComment extracted the sentences from a Q&A site
and used only basic NLP techniques to refine and select them.
In terms of usefulness, the main cause of disagreement is on
code that is easy-to-understand (so that no comment is needed
to help comprehension), or the comment is too trivial. We
discuss possible solutions to address the above disagreements
in Section VIL

VI. RELATED WORK

Much work automatically generates comments from source
code. Some generates comments automatically for certain code
structures, such as failed test cases [14], exceptions [15], code
changes [16] and method parameters [17]. Other approaches
generate comments automatically for software concerns [18],
MPI methods [19], Java classes [20], Java methods [3] and
high-level actions within methods [4]. In addition, many studies
mine descriptions or documentation for code artifacts from
developers’ communications, such as bug reports, forum posts
and emails [21], [22], [23]. Previous work by Sridhara et al.
automatically generates high-level actions within methods [4],
but their technique focuses on statement sequences that are
conditional blocks, perform similar actions, or follow specific
templates. Our work can generate a high-level comment for
multiple statements that perform different actions.

VII. DISCUSSION AND FUTURE WORK

We proposed a new approach to mine Q&A sites for
automatic comment generation. The generated comments can
contain information that is not explicitly in the code segment,
which is a significant advantage over the previous techniques on
automated comment generation. The code-description databases
can be leveraged for other purposes such as automatically
generating code from natural language descriptions.

Some generated comments are incorrect, contain overlapping
information, or are too trivial at describing the code. We can
apply NLP techniques such as semantic role labeling to analyze
the semantics of the sentences. This will help AutoComment
improve comment refinement and selection.

If a Q&A site does not discuss a code segment, Auto-
Comment cannot generate a comment for it. AutoComment
had generated a low number of comments for the evaluated
projects mainly for the following reasons. First, the current
implementation only accepts posts that have the highest vote
and only considers the description sentences immediately
before the code segment, which limit the size of the databases.
Second, the code clone detection (1) is not tolerant of statement
reordering, and (2) cannot find clones that contain line additions
in the StackOverflow code segment because we allow line
skipping on the target software only. In the future, we can

increase the size of the code-description mapping databases by
including StackOverflow answers that do not have the highest
vote count. Another improvement is to replace the code clone
detection tool with one that can detect addition and reordering
of lines to increase the number of code matches.

ACKNOWLEDGMENTS

We thank Theo Pan and Javier Munster for their help with
the experiments, and Yuancheng Tu for her valuable feedback
regarding natural language processing. This work is supported
by the National Science and Engineering Research Council of
Canada and a Google gift grant.

Availability: The extracted code-description
databases and generated comments are available at
http://asset.uwaterloo.ca/AutoComment/.

REFERENCES

[11 K. Aggarwal, Y. Singh, and J. Chhabra, “An Integrated Measure of
Software Maintainability,” in Proc. Ann. Reliability and Maintainability
Symp., pp. 235-241, 2002.

[2] S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A Study of the
Documentation Essential to Software Maintenance,” SIGDOC, 2005.

[3] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,

“Towards Automatically Generating Summary Comments for Java Meth-

ods,” ASE, 2010.

G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically Detecting

and Describing High Level Actions within Methods,” in /CSE, 2011.

[5] “StackOverflow.” Available at http://stackoverflow.com/, 2013.

[6] C. Parnin, C. Treude, L. Grammel, and M.-A. D. Storey, “Crowd
Documentation: Exploring the Coverage and the Dynamics of API
Discussions on Stack Overflow,” Technical Report GIT-CS-12-05, Georgia

[4

=

Tech, 2012.

[7]1 S. Subramanian and R. Holmes, “Making Sense of Online Code Snippets,”
MSR, 2013.

[8] “Stanford CoreNLP.” Available at

http://nlp.stanford.edu/software/corenlp.shtml, 2013.

[9] “Tregex.” Available at http://nlp.stanford.edu/software/tregex.shtml, 2013.
[10] B. Santorini, “Part-Of-Speech Tagging Guidelines for the Penn Treebank
Project (3rd revision, 2nd printing),” tech. rep., Department of Linguistics,
University of Pennsylvania, 1990.

A. Curzan and M. Adams, How English Works: A Linguistic Introduction.
Pearson Education/Longman, 2012.

D. Grune, “The software and text similarity tester SIM,” 2012.

G. A. Miller, “WordNet: A Lexical Database for English,” 1995.

S. Zhang, C. Zhang, and M. Ernst, “Automated Documentation Inference
to Explain Failed Tests,” ASE, 2011.

R. P. Buse and W. R. Weimer, “Automatic Documentation Inference for
Exceptions,” ISSTA, 2008.

R. P. Buse and W. R. Weimer, “Automatically Documenting Program
Changes,” ASE, 2010.

G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Generating Parameter
Comments and Integrating with Method Summaries,” ICPC, 2011.

S. Rastkar, G. C. Murphy, and A. W. J. Bradley, “Generating Natural
Language Summaries for Crosscutting Source Code Concerns,” ICSM,
2011.

S. G. Manjunath, “Towards Comment Generation for MPI Programs,”
Master Thesis, 2011.

L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic Generation of Natural Language Summaries for
Java Classes,” ICPC, 2013.

S. Panichella, J. Aponte, M. Di Penta, A. Marcus, and G. Canfora,
“Mining Source Code Descriptions from Developer Communications,”
ICPC, 2012.

B. Dagenais and M. Robillard, “Recovering Traceability Links between
an API and Its Learning Resources,” ICSE, 2012.

J. Kim, S. Lee, S.-W. Hwang, and S. Kim, “Enriching Documents with
Examples: A Corpus Mining Approach,” ACM Trans. Inf. Syst., vol. 31,
pp. 1:1-1:27, Jan. 2013.

(1]
[12]
[13]
[14]
[15]
[16]
[17]

[18]

[19]

(20]

[21]

[22]

(23]

567

