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ABSTRACT
Android smartphones are becoming increasingly popular.
The open nature of Android allows users to install mis-
cellaneous applications, including the malicious ones, from
third-party marketplaces without rigorous sanity checks. A
large portion of existing malwares perform stealthy opera-
tions such as sending short messages, making phone calls
and HTTP connections, and installing additional malicious
components. In this paper, we propose a novel technique
to detect such stealthy behavior. We model stealthy be-
havior as the program behavior that mismatches with user
interface, which denotes the user’s expectation of program
behavior. We use static program analysis to attribute a
top level function that is usually a user interaction func-
tion with the behavior it performs. Then we analyze the
text extracted from the user interface component associated
with the top level function. Semantic mismatch of the two
indicates stealthy behavior. To evaluate AsDroid, we down-
load a pool of 182 apps that are potentially problematic by
looking at their permissions. Among the 182 apps, AsDroid
reports stealthy behaviors in 113 apps, with 28 false posi-
tives and 11 false negatives.

Categories and Subject Descriptors
D2.4 [Software Engineering]: Software/Program Verifi-
cation—Validation; D2.5 [Software Engineering]: Test-
ing and Debugging—Code inspection and walk-throughs
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1. INTRODUCTION
Android smartphones are becoming increasingly popular.

Gartner’s analysis shows that 72.4% of smartphones are
based on Android [14]. A prominent characteristic of An-
droid phones is that users can easily install miscellaneous
apps downloaded from third-party marketplaces without jail-
breaking. However, the downside is that Google and other
vendors can hardly control the quality of apps on third-party
marketplaces. Adversaries can submit their malicious apps
and tempt users to install with various lures. Juniper Net-
works Mobile Threat Center reported a dramatic growth in
Android malware population from roughly 400 samples in
June 2011 [24] to 175,000 in the third quarter of 2012 [32].
Most are present on third-party marketplaces.

A very popular category of Android malware features steal-
thy malicious operations such as making phone calls, sending
SMS messages to premium-rate numbers, making undesir-
able HTTP connections and installing other malicious com-
ponents. It was reported by three recent studies [12, 34, 26]
that 52-64% of existing malwares send stealthy premium-
rate SMS messages or make phone calls. Note that these ac-
tions cause unexpected charges to phone bills [7, 19]. It was
observed that stealthy HTTP requests are also very com-
mon undesirable behavior in malwares [12]. Besides leak-
ing user information, they could also cause unexpected data
plan consumption. In China, it was reported in March 2012
that more than 210,000 Chinese mobile devices were affected
by a kind of malwares that could make stealthy HTTP con-
nections inducing charges. They caused around 8 million
dollars loss [3].

Despite the pressing need, detecting such malware is chal-
lenging as the malicious behavior appears to be indistin-



guishable from that of benign apps. For example, an online
shopping app usually provides operation interfaces to help
users conveniently call a service number or send a query SMS
message. Apps providing travel-aid and adult content often
allow users to make phone calls or send messages. Many be-
nign apps allow establishing background HTTP connections
(e.g. weather, stock trading and gaming apps). Many also
allow users to install additional components.

Existing techniques are insufficient in detecting/preventing
stealthy malicious behaviors. A very important protection
mechanism on Android is to allow users to perform access
control by setting application privileges. However, the ac-
cess control is very coarse-grained. For example, the SMS
messaging capability can either be enabled or completely dis-
abled. It is hard to decide if we should disable for a given
app as many benign apps do send SMS messages. Taint anal-
ysis [10, 15, 13] allows detecting information leak in apps.
But the stealthy behavior in malwares may not leak any
private information. Recently, Google provides the capabil-
ity of blacklisting certain premium-rate phone numbers [17],
which provides a potential way of preventing stealthy SMS
messages or phone calls. However, keeping such a black-
list up-to-date is a non-trivial challenge. In some countries
such as China, there is no difference between a premium-rate
number and a regular phone number.

In this paper, we propose a novel technique to detect
stealthy malicious behaviors in Android apps. We model
stealthy behavior as the program behavior mismatches with
user interface. The intuition is that user interface (UI) rep-
resents the user’s expectation of program behavior. Hence,
it can naturally serve as an oracle to detect behind-the-scene
behavior. For example, an SMS message send triggered by a
user interaction that is supposed to set the background color
should be considered malicious. The technique consists of
two components. One is the static program analysis com-
ponent that attributes the behavior of interest (e.g. SMS
send and HTTP connection) to a top level function with as-
sociated UI (e.g. the onClick() function of a button). The
other is the UI analysis component that makes use of text
analysis to analyze the intent described by the corresponding
interface artifacts (e.g. the text associated with the button).
Any mismatch will be reported as potentially malicious. In
the program analysis component, we classify Android APIs
into different groups. Each group is assigned an intent type
such as SMS send and phone calls. Reachability analysis is
performed on control flow graph (CFG) and call graph (CG)
to propagate such intents from the API call sites to top level
functions. Note that in event driven programming, an invo-
cation of a top level function usually denotes an action or
a task that can be considered as a natural unit to reason
about stealthiness. The interface analysis component iden-
tifies the text of the UI artifact associated with a top level
function. Then compatibility check is performed between
the intents from program analysis and those extracted from
the interface text.

Our contributions are summarized as follows.

• We propose a method to detect Android malware that
performs stealthy operations including SMS message
send, phone calls, HTTP connections and component
installations. It is based on the novel idea of detect-
ing mismatches between program behavior and user
interface.

• We found that in many cases even though there is no

direct match between an API intent (e.g. SMS send)
and the UI text, the API may be correlated with other
APIs that explicitly expose the behavior (e.g. an API
call that logs the SMS send to the mail box). In such
cases, the behavior should not be considered stealthy.
We propose an in-depth analysis that considers pro-
gram dependences between APIs to identify their cor-
relations and hence improve precision.

• We formally present our design using datalog rules.
The design handles a number of Android-specific chal-
lenges.

• We implement a prototype called AsDroid (Anti-Stealth
Droid). We collect a pool of 182 apps that have the
permissions to perform the malicious operations of in-
terest. AsDroid reports that 113 of them have stealthy
behaviors, with 28 false positives and 11 false nega-
tives.

2. MOTIVATING EXAMPLE
We use a real application Qiyu to motivate our tech-

nique. It is a location-based social networking service appli-
cation on Android. Some relevant code snippets are shown
in Fig. 1(a) and part of the corresponding call graph is
in Fig. 1(b). The entry function onClick() (at line 1) is
the handler of a button with text “One-Click Register &

Login”. The scenario is as follows. When the user clicks
the button, the app checks the current environmental set-
tings. In most cases, the true branch is taken, in which
an asynchronous task is appended to the task queue and
executed (line 4). This causes an indirect invocation to
a predefined handler doInBackground() at line 9, which
is always implicitly called by the Android runtime to per-
form some background processing when a task starts to
execute. The function transitively calls method A() (in
class Woa.BA) at line 14. The method connects to a website
through HttpClient.execute() at line 15 to perform regis-
tration or login. The chain of function calls is also shown on
the left of Fig. 1(b). When the test at line 2 fails, the else
branch (line 5) is taken. A different chain of function invoca-
tions are made, eventually leading to an SMS message being
sent inside method C() (in class Woa.AK) at line 23 without
the user’s awareness. The chain is shown on the right of
Fig. 1(b). Note that we omit three function calls between
the asynchronous task execution at line 19 and method C()

for brevity.
To detect stealthy behaviors, our program analysis com-

ponent first attributes top level functions with intents by
analyzing the operations of interest directly or transitively
performed by such functions. We classify Android APIs
to a few pre-defined intent types. In this example, Http-

Client.execute() at line 15 denotes the HttpAccess in-
tent and SmsManager.sendTextMessage() at line 23 denotes
the SendSms intent. The intents get propagated upward
along the call edges (see Fig. 1(b)) and eventually aggre-
gated on the top level node onClick(), which is a user in-
teraction function, suggesting the operations performed by
this function should reflect what the UI states. The UI anal-
ysis component identifies the UI artifacts corresponding to
the onClick() function, i.e. the button and its residence di-
alog. It further extracts the text on these interface artifacts
and performs text analysis to identify a set of keywords. In
this example, they are “Register” and “Login”. AsDroid



// In class Qiyu.StartPageActivity
01: public void onClick(View v){
02: if(/*test environment*/){
03: Woa.F f = new Woa.F(v, this);
04: f.execute(new String[0]);//trigger line 9
05: } else ...{
06: Woa.AG.B();//invoke line 17
07: }
08: }
// In class Woa.F
09: public Object doInBackground(Object[] objs){
10: //transitively calls Woa.BA.A() at line 14
11: }
// In class Woa.BA
12: private org.apache.http.client.HttpClient h;
13: private org.apache.http.client.methods.HttpGet d;
14: public void A(){
15: this.h.execute(this.d); //HttpClient.execute(...)
16: }
// In class Woa.AG
17: public static void B(){
18: Woa.U u = new Woa.U();
19: u.execute(...);//transitively calls C() at line 21
20: }
// In class Woa.AK
21: public static boolean C(Context c, String s1, String s2){
22: SmsManager sm = SmsManager.getDefault();
23: sm.sendTextMessage(s1, null, s2, null, null);
24: }

(a) Simplified Code Snippet

Qiyu.StartPageActivity.onClick() @1

doInBackground() @9

A() @14

HttpClient.
execute()

B() @17

C() @21

SmsManager.
sendTextMessage()

indirect call @4

2 calls omitted

direct call @6

3 calls omitted
via line 19
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(b) Call Graph and Intent Propagation

Figure 1: Motivating Example in app Qiyu.

looks-up the compatibility of the keywords and the intents
identified by the program analysis component from a dic-
tionary generated before-hand in a training phase. In this
case, the HttpAccess intent is compatible but SendSms
is not. Our tool hence reports the contradiction.

There are cases that multiple intents of a top level func-
tion are correlated. For example, a dialog may be popped
up after a SMS message send to indicate the success of the
send, even though the button that initiates the send does
not have any textual hint about sending messages. In this
case, the SMS send is not stealthy. The display of a dialog
has the UiOperation intent. Both the UiOperation and
SendSms intents reach the top level function. We hence an-
alyze if the intents are correlated by analyzing their program
dependences. Since UiOperation is not stealthy, the cor-
relation between the UiOperation and SendSms intents
suggests the sanity of the SMS send behavior.

3. DESIGN
In this section, we first define six types of intents that are

of our interest. The corresponding APIs are commonly used
in Android apps.

SendSms. This intent corresponds to SMS send APIs, in-
cluding sendTextMessage(), sendDataMessage() and send-

MultipartTextMessage() declared in class SmsManager. These

API functions are usually executed in the background. An
SMS send through a separated messaging app is not taken
into consideration in this paper because it requires the user
to explicitly interact with the messaging app to finish the
process and hence is not stealthy.

PhoneCall. It corresponds to a direct phone call, namely,
invoking startActivity() with action android.intent.ac-
tion.CALL. Malware can leverage the automated calling mech-
anism to dial a number without the user’s awareness. Phone
calls can also be made through startActivity() with an
action android.intent.action.DIAL. However, we do not
model this API because explicit user approval is needed
when the API is used.

HttpAccess. This intent describes HTTP access APIs.
It includes URL.openConnection(), URL.openStream(), Ab-
stractHttpClient.execute(), and so on. HTTP access is
commonly used in Android apps for a wide range of pur-
poses.

Install. It describes API functions that are for installing
other components or applications. Many Android malwares
have their payload as installing another piece of malicious
code. Benign apps may also need to perform installation,
which is however usually authorized or explicitly guided by
the user. Modeled functions include Runtime.exec() with
"pm install" as the argument, and ProcessBuilder.start()

using "pm" and "install" to build a new process.

SmsNotify. In some cases, the user does not need to (or
cannot) authorize a message send operation. But after the
operation, the app may automatically notify the user that
there was an SMS send. In this case, we should not con-
sider the message send as a stealthy action even though the
user interface that leads to the SMS send operation does
not have any textual implication of the operation. One typ-
ical example is that a copy of the message is saved to the
user’s mail-box to record what just happened. Hence, we
model the following API to the SmsNotify intent: Con-

tentResolver.insert() and the destination table is given
by a URL “content://sms”. It means inserting data into
the preloaded database for short messages.

UiOperation. A top level user interaction function may
display more user interface elements to allow further inter-
actions with the user. In some cases, UI display operations
may be correlated to some of the aforementioned intents.
For example, a dialog may be popped up after an SMS
send to notify the user about the send. In such cases, the
SMS send is not stealthy. To reason about these cases, we
associate the UI display API functions such as AlertDia-

log$Builder.setMessage(), ImageView.setImageBitmap(),
and View.setBackgroundDrawable(), with the UiOpera-
tion intent.

3.1 Intent Propagation
In this section, we describe how intents are propagated

to top level functions such that we can check compatibil-
ity with the corresponding UI text. We also describe how
to detect correlation between intents. Intent propagation is
based on call graph. The calling convention of Android apps
has its unique features, which need to be properly handled.
Intent correlation analysis is mainly based on program de-
pendences. However, correlated intents do not simply mean
there are (transitive) dependences between them.

The analysis is formally described in the datalog language



Atoms

apiIntent(L,T ) : API call at program point L has intent type T .
def (L,X) : variable X is defined at program point L.
use(L,X) : variable X is used at program point L.

actual(L,M ,X) : variable X is the Mth actual argument at call site L.

formal(F ,M ,X) : variable X is the Mth formal argument of function F ().
inFunction(F ,L) : program point L is in function F ().
funEntry(F ,L) : program point L is the entry of function F ().
hasDefFreePath(L1,L2,X) : there is a path from L1 to L2 along which X may not be defined.
componentEntry(X,F ) : F() is the entry of Android component X. e.g. onCreate() of an Activity or a Service component.
immediateCD(L1,L2) : program point L2 is immediately control dependent on L1 in the same function.
directInvoke(F1,F2,L) : F1 invokes F2 at program point L
indirectInvoke(F1,F2) : F2 is the actual destination of F1() in event-driven circumstances, e.g. (1) Thread.start() →

Runnable.run(); (2) Handler.sendMessage() → Handler.handleMessage().
iccInvoke(F1,F2,L) : F1 invokes a function F2 for inter-component communication purpose at L. F2 should be APIs like

startActivity(), startService().

Rules

/*invoke(F1,F2,L): F1 invokes F2 at program point L.*/
invoke(F1,F2,L) :- directInvoke(F1,F2,L)
invoke(F1,F2,L) :- iccInvoke(F1,F3,L) & actual(L,1,X) & “L1: X.setClass(...)” & actual(L1,2,Y ) & componentEn-

try(Y ,F2)
invoke(F1,F2,L) :- invoke(F1,F3,L) & indirectInvoke(F3,F2)
invoke(F1,F2,L) :- invoke(F1,F3,L) & invoke(F3,F2,L)

/*hasIntent(F ,T ,L): F () has intent type T and the corresponding API call is at L.*/
hasIntent(F ,T ,L) :- invoke(F ,A,L) & apiIntent(L,T )
hasIntent(F ,T ,L1) :- hasIntent(F1,T ,L1) & invoke(F ,F1,L2)

/*controlDep(L1,L2): program point L2 is control dependent on L1.*/
controlDep(L1,L2) :- immediateCD(L1,L2)
controlDep(L1,L2) :- inFunction(F1,L1) & inFunction(F2,L2) & invoke(F1,F2,L3) & controlDep(L1,L3)

/*defUse(L1,L2), useUse(L1,L2): data at L1 and L2 are data correlated.*/
defUse(L1,L2) :- def (L1,X) & use(L2,X) & hasDefFreePath(L1,L2,X)
defUse(L1,L2) :- invoke(F1,F2,L1) & actual(L1,M ,X) & formal(F2,M ,Y ) & funEntry(F2,L3) & hasDef-

FreePath(L3,L2,Y ) & use(L2,Y )
useUse(L1,L2) :- defUse(L3,L1) & defUse(L3,L2)
useUse(L2,L1) :- defUse(L3,L1) & defUse(L3,L2)

/*correlated(L1,L2): L1 and L2 are data/control correlated.*/
correlated(L1,L2) :- controlDep(L1,L2)
correlated(L1,L2) :- defUse(L1,L2)
correlated(L1,L2) :- useUse(L1,L2)
correlated(L1,L2) :- correlated(L1,L3) & correlated(L3,L2)

/*correlatedIntent(F ,T1,L1,T2,L2): In function F , intent T1 at L1 is correlated to T2 at L2*/
correlatedIntent(F ,T1,L1,T2,L2) :- hasIntent(F , T1, L1) & hasIntent(F , T2, L2) & correlated(L1,L2)

Figure 2: Datalog Rules for Intent Propagation and Correlations

[5], which is a Prolog-like notation for relation computation.
It provides a representation for data flow analysis in the
form of formulated relations. The inference rules on these
relations are shown in Fig. 2. Relations are in the form p(X1,
X2, ..., Xn) with p being a predicate. X1, X2, ..., Xn are
terms of variables or constants. In our context, variables are
essentially program artifacts such as statements, program
variables and function calls. A predicate is a declarative
statement on the variables. For example, inFunction(F ,L)
denotes if a statement with label L is in function F .

Rules express logic inferences with the following form.
H :- B1 & B2 & ... & Bn

H and B1, B2,...Bn are either relations or negated rela-
tions. We should read the :- symbol as “if”. The meaning of
a rule is if B1, B2,...Bn are true then H is true.

Relations can be either inferred or atoms. We often start
with a set of atoms that are basic facts derived from the
compiler and then infer the other more interesting relations
through our analysis. We use WALA [22] as the underlying
analysis infrastructure. We leverage its single static assign-
ment (SSA) representation, control flow graph, part of call
graph, and the MAY-points-to analysis to provide the atoms.

Atom apiIntent(L,T ) denotes an intent T is associated
with an API call at L, reflecting our API classification.
Atom hasDefFreePath(L1,L2,X) indicates there is a pro-
gram path from program point L1 to L2 and along the path
(not including L1 or L2), variable X may not be defined.
This is to compute the defUse(L1, L2) relation that denotes
if a variable is defined at L1 and used at L2. To generate the
atom relation, we leverage the SSA form and the points-to
analysis. The analysis is conservative. If we are not sure X
must be re-defined along the path, we assume the path is
definition free. The paths we are considering include both
intra- and inter-procedural paths.

Android apps are component based. Generally, there are
four types of basic components: Activity, Service, Broad-
cast Receiver and Content Provider. Activity component
is for a single UI screen. Service component is for long-
running operations in the background (without any UI).
Broadcast receiver responds to system-wide broadcast an-
nouncements. Content provider is used for application data
management [18]. Inter-Component Communication (ICC)
is used to deliver data between components, which is sim-
ilar to traditional function invocations. We have to model



// in method zjReceiver.onReceive() F1

Intent intent = new Intent("android.intent.action.RUN");
L1 intent.setClass(context, zjService.class Y );

L startService(intent); F3(X)

// in class zjService Y

public void onStart(Intent intent, int i) F2 { . . . }

Figure 3: ICC call chain example in GoldDream.

such communication as a function may transitively invoke
API functions with intent of interest through ICC. How-
ever, the calling convention of ICC is so unique that the
underlying WALA infrastructure cannot recognize ICC in-
vocations. Fig. 3 shows an example from a real world app
GoldDream. Inside the zjReceiver.onReceive() function,
there is an ICC call to the onStart() function of the zjSer-

vice component. Observe that the invocation is performed
by creating an Android Intent object1, which can be con-
sidered as a request that gets sent to other components to
perform certain actions. The target component is set by
explicitly calling setClass() of the Android Intent object.
The request is sent by calling startService() with the An-
droid Intent object. The Android runtime properly forwards
the request to the onStart() function of the zjService com-
ponent.

To capture such call relation, we introduce the compo-
nentEntry(X,F ) atom with X a subclass of Service, Ac-

tivity or BroadcastReceiver. The entry point F denotes
onCreate(), onStart(), and onReceive(), which are also
called lifecycle methods by Android developers. We in-
troduce atom iccInvoke(F1,F2,L) with F2 denoting special
ICC functions, such as startActivity(), startService()
and sendBroadcast(). The second inference rule of the in-
voke(F1, F2,L) relation describes how we model ICC as a
kind of function invocation. Let’s use the example in Fig. 3
to illustrate the rule. It allows us capture the call chain
zjReceiver.onReceive()→ startService()→ zjService.

onStart(). Labels L , L1 , F1 , F3 , and Y in Fig. 3 cor-

respond to those in the second invoke() rule.
Atom directInvoke(F1,F2,L) denotes regular function calls

including virtual calls, leveraging WALA. Atom indirectIn-
voke(F1,F2) denotes another special kind of function invo-
cations in Android apps, namely, implicit calls in thread
execution and event handling. A typical indirect call is
a thread-related invocation, e.g., actual call destination of
Thread.start() is the run() method of the corresponding
class. The function call f.execute() → doInBackground()

in Fig. 1 (i.e., line 4 → line 9) is an example for event
handling indirect invocation. We detect these implicit calls
through pre-defined patterns.

Relation hasIntent(F ,T ,L) denotes function F is tagged
with an intent T initiated by the API call at program point
L. For example, in Fig. 1, we can infer the following:

hasIntent ( F = StartPageActivity.onClick(),
T = SendSms,
23 /*sm.sendTextMessage(...)*/ ) = True.

Observe that the first hasIntent() rule tags the enclosing

1Intent is a standard class in Android. We call it Android
Intent in order to distinguish with the intents we associate
with API functions.

function of an API call. The second rule propagates a tag
from a callee to the caller. Note that a function may have
multiple intents. These intents may be of the same type
(but initiated at different API call locations).

The remaining relations and rules are for intent correla-
tions. Relation correlated(L1,L2) determines if two program
points L1 and L2 are correlated. Correlation can be induced
by definition-use, use-use, and control dependence relations,
described by relations defUse(), useUse(), and controlDep(),
respectively. The fourth correlated() rule suggests that the
relation is transitive.

The first rule of defUse(L1,L2) is standard. In our im-
plementation, we leverage SSA form to derive definition-use
relation for local and global variables. We leverage points-
to relation to reason about definition-use relation for object
fields. The second rule is to capture definition-use relation
by parameter passing, including those through Android spe-
cific calling conventions. The basic idea is that we consider
a formal argument Y used inside the callee at L2 is defined
at the call site L1 (in the caller) if it is not re-defined along
the path from the callee entry to the use site.

The relation useUse(L1,L2) denotes that there are uses
at L1 and L2 coming from the same definition point. For
example, L1 and L2 could be the two uses of the same vari-
able in the two branches of a predicate. Considering use-use
relation in the correlated() relation is the key difference from
standard program dependence analysis that considers only
definition-use and control dependence relations.

Computation of controlDep(L1,L2) is standard except that
it also models inter-procedural control dependence. Particu-
larly, all statements in a callee have control dependence with
a predicate in the caller that guards the call site.

Finally, the relation correlatedIntent(F ,T1,L1,T2,L2) de-
notes if two intents T1 and T2 at function F are correlated.

Example. Fig. 4 shows a correlation analysis example in
app Shanghai 1930. ContentResolver.insert() at line 15
stores the sent text message into the mail box and it hence
has intent type SmsNotify. It is determined to be corre-
lated to the SMS sending operation with SendSms intent
at line 7. According to the definition-use graph in Fig. 4(b),
line 15 is correlated with line 10 (both use cv defined at line
9) by the useUse() rules. Line 10 is further correlated with
line 7 because of variables v8, again by the useUse() rules.
Hence, we have correlatedIntent(PaySmsActivity.a(), Send-
Sms, 7, SmsNotify, 15)=True. Intuitively, the two in-
tents are correlated because the same content is being sent
over a short message and written to the mail box. Thus, the
message send is not stealthy.

3.2 UI Compatibility Check
After intents are propagated to top level functions, the

next step is to check their compatibility with the text of the
corresponding user interface artifacts.

Acquiring User Interface Text. Given a top level func-
tion, we need to first extract the corresponding text. User
interface components in an Android app are organized in a
view tree. A view is an object that renders the screen that
the user can interact with. Views can be organized as a
tree to reflect the layout of interface. There are two ways
to construct the layout: (1) statically through an XML re-
source file; (2) dynamically by constructing the view tree at
runtime.

With the static layout construction, upon the creation



// in class PaySmsActivity
01: void a (String v8, String v9, String v10){
02: SmsManager sm = SmsManager.getDefault();
03: ArrayList al = SmsManager.divideMessage(v10);
04: Iterator<String> ite = al.iterator();
05: while (ite.hasNext()){
06: String s = ite.next();
07: sm.sendTextMessage(v8,v9,s,null,null);
08: }
09: ContentValues cv = new ContentValues();
10: cv.put("address",v8);
11: cv.put("body",v10);
12: cv.put("type",2);
13: ContentResolver cr = getContentResolver();
14: Uri uri = Uri.parse("content://sms");
15: cr.insert(uri,cv);
16: }

(a) Code Snippet

L1

L3

L4

L6

L7

L9

L10

L11

L15

v10

al

ite

s

v8

v8

v10

cv

cv

cv

correlated

(b) Part of Definition-Use Relations. Solid arrows
labeled with variable names indicate def-use rela-
tion.

Figure 4: Intent Correlation Example in app Shang-
hai 1930.

of an activity, the corresponding user interface is instanti-
ated by associating the activity with the corresponding XML
file by calling setContentView([XML layout id]). The An-
droid core renders the interface accordingly. A UI object has
a unique ID. The ID is often specified in the XML file. In-
side the app code, the handle to a UI object is acquired by
calling findViewById([object id]). For example, the fol-
lowing text defines a button in the XML file. Note that the
button text is also specified.

<Button android:id="@+id/my_button"...

android:text="@string/my_button_text"/>

Its handle can be acquired as follows. Note that the
lookup id matches with that in the XML file.

Button btn = (Button)findViewById(R.id.my_button);

The event handler for an UI object is registered as a lis-
tener. For example, one can set the listener class for the
previous button by making the following call.

btn.setOnClickListener(new MyListener(...));

In this case, the onClick() method of the MyListener

class becomes the top level user interaction function associ-
ated with the button. Next we describe how we extract text
for different kinds of functions.

For a top level interactive function F (e.g. onClick()),
AsDroid identifies the corresponding UI text as follows. It
first identifies the registration point of the listener class of
F. From the point, AsDroid acquires the UI object han-
dle, whose ID can be acquired by finding the corresponding
findViewById() function. The ID is then used to scan the
layout XML file to extract the corresponding text. AsDroid

Algorithm 1 Generating Keyword Cover Set.

train(S, F )

KWD=φ /*the keyword cover set*/
while F 6= φ do

sort S by keyword (or keyword pair) frequency
k=the top ranked keyword (or pair) in S
X= the functions in which k occurs
KWD=KWD ∪ k
F= F -X
S=S-{all the keywords (pairs) in X}

end while

also extracts the text in the parent layout. For example, the
parent layout of a button may be a dialog. Important infor-
mation may be displayed in the dialog and the button may
have only some simple text such as “OK”. We currently can-
not handle cases in which the text is dynamically generated.
We found such cases are relatively rare.

Some non-interactive top level functions also have asso-
ciated UIs, for instance, the lifecycle methods onCreate()

and onStart() of activity components. These methods are
invoked when the screen of an activity is first displayed.
While no user interactions are allowed when executing these
methods, the displayed screen may have enough information
to indicate the expected behavior of these methods, such as
loading data from a remote server. Hence, for an activity
lifecycle method, AsDroid extracts the text in the XML lay-
out file associated with the activity.

Text Analysis. Once we have the text, we build a dictio-
nary that associates a type of intent to a set of keywords
through training. We use half of the apps from the benign
sources2 as the training subjects, which account for about
28% of all the apps we study. During evaluation, we use
the dictionary generated from the 28% apps to scan over
the entire set of apps. Here, we assume the training apps
are mostly benign. If an intent appears together with some
text in a benign case, then the intent and the text are com-
patible. We use keywords to represent text, and build com-
patible keyword cover set for each intent. In particular, For
each intent type T of interest, we identify all the top level
functions F that have T annotated and collect their corre-
sponding texts. We then use Stanford Parser [25] to parse
the text to keywords. We populate a universal set S to in-
clude all individual keywords and keyword pairs that appear
in these functions. We then use Algorithm 1 to identify the
smallest set of keywords (or pairs) that have the highest
frequency and cover all the top level functions tagged with
T.

The algorithm is similar to the greedy set cover algo-
rithm [8]. It picks the most frequently occurring keyword
k at a time and adds it to the keyword set. Then it removes
all the keywords that appear in the top level functions in
which k occurs, as they can be covered by k. It repeats
until the set of functions are covered.

We consider keyword pairs are semantically more predic-
tive. Hence, we first apply the algorithm to keyword pairs
and keep the pairs that can uniquely cover at least 10% of
functions. Then we apply the algorithm to singleton key-
words on the remaining functions.

Fig. 5 shows the generated keyword cover set for the Send-
Sms intent. Observe some keywords are semantically re-

2We collect apps from both benign and malicious sources as
shown in Section 4.
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lated to the intent but some are not, e.g. “OK” and “Reg-
ister”, which occur rarely but do uniquely cover some func-
tions. Further inspection shows that it is due to the mal-
wares in the training pool. Hence, we also use human seman-
tic analysis to prune the keyword set, e.g. filtering out “OK”
and “Register”. The keyword set of HttpAccess is simi-
larly constructed, containing keywords“Download”, “Login”,
“Load”, “Register”, and so on. The cover set of PhoneCall
is much simpler, containing only one keyword “Call”.

Once we get the keyword cover set, we further populate it
with its synonyms, using Chinese WordNet [28] to have the
final dictionary.

Compatibility Check. The compatibility check is per-
formed as follows.

• Given a top level function F with UI text S and an
intent T, if S is incompatible with T and all the intents
correlated with T, it is considered a mismatch. Note
that we consider empty text is incompatible with any
intent.

• If T is a SendSms intent and has a correlated Sm-
sNotify intent. It is not a mismatch regardless of the
UI text.

• If T is HttpAccess, the technique checks if the cor-
responding UI text is compatible. If not, it further
checks if T is correlated to any UiOperation intent.
If not, the intent is consider stealthy. Intuitively, it
suggests that even an HTTP access is not explicit from
the GUI text, if the data acquired through the HTTP
connection are used in some UI component (e.g. fetch-
ing and then displaying advertisements from a remote
server), the HTTP access is not considered stealthy.

4. EVALUATION
We implement a prototype called AsDroid (Anti-Stealth

Droid). We transform the DEX file of an app to a JAR file
with dex2jar [31] and then use WALA [22] as the analysis
engine. Our implementation is mainly on top of WALA.

We have collected apps from three different sources. We
aim to detect those with the following stealthy behavior:
SMS sends, phone calls, HTTP connections and component
installations. Hence, we only focus on those having the per-
missions for such behaviors. Particularly, since almost all
apps have the HTTP permission, we select those that have
at least one of the other three permissions. Note that de-
spite we introduce six intents in Section 3, SmsNotify and
UiOperation do not describe stealthy behavior but rather
suppress false alarms. The 3 sources are the following.
� Contagio Mini Dump [1]. It collects a large pool of

(potential) malware reported by users and existing security

39.43%

49.80%

9.56% 1.21%

onClick()

activity lifecycle methods

onReceive()

others

Figure 6: Breakdown of the top level functions
with intents. Activity lifecycle methods include
onCreate() and onStart() of an activity. onReceive()

and the other categories do not have associated UI.

tools. These malicious apps may perform stealthy opera-
tions, leak user private information, or compromise the op-
erating system like a rootkit. We acquired 96 apps holding
the needed permissions.
� Google Play [2]. This is the official apps market hold-

ing a lot of Android games. We checked the top 180 free
game apps and only 12 of them satisfy our selection criteria.
�Wandoujia [4]. This is a popular general Android app

market in China. We have checked the 1000 most popular
game apps on the market and downloaded 74 of them with
the needed permissions.

All experiments are performed on an Intel Core i7 3.4GHz
machine with 12GB memory. The OS is Ubuntu 12.04.

The detection results are shown in Table 1. In the table,
#App in the second column denotes the number of tested
apps from a specific source. #Intent is the number of API
invocations with one of the four kinds of potential stealthy
intents. #Rep is the number of intent points reported by As-
Droid as stealthy. #FP is the number of false positives and
#FN is the number of false negatives. The corresponding
#App in parentheses denotes the number of apps in which
these intents appear. Note that one app may have multi-
ple intents. The last three columns show the total numbers.
#App in the last three columns is not the simple sum of the
#App in the corresponding preceding columns. For exam-
ple, the number of total reported apps is 77 for the Contagio
source. It is not the sum of the reported apps in the four
categories as one app may be reported in multiple categories.
We make the following observations.

• AsDroid is able to detect a lot of stealthy behaviors
in these apps. Totally, AsDroid detects that 113 apps
perform stealthy operations, with 85 true positives, i.e.
having at least one true stealthy API call. Note that
there are some apps that do not have the intents (i.e.
API calls) of interest even though they hold the per-
missions. Since there are no existing oracles to deter-
mine stealthy behavior, we identify true positives by
manually inspecting the results in two ways. For those
API calls that can be reached by testing, we deter-
mine their stealthiness by executing the apps. Many
of the API calls are difficult to reach without a com-
plex sequence of user actions. Since we lack automatic
test generation support, we perform code inspection
instead. AsDroid detects a lot of stealthy behavior
in the apps from Contagio, which is supposed to be
a source hosting (highly likely) malwares. Most of
the detected stealthy SMS sends and phone calls may
cause unexpected charges. Most of the stealthy HTTP
accesses are to notify the remote servers the status of
device or the app (e.g. a mobile device becomes on-
line). Some of them also leak critical user information.



Table 1: Experiment Result

#App
HTTP SMS CALL INSTALL

#Intent #Rep #FP/#FN#Intent #Rep #FP/#FN #Intent #Rep #FP/#FN #Intent #Rep #FP/#FN #Intent #Rep #FP/#FN
(#App) (#App) (#App) (#App) (#App) (#App) (#App) (#App) (#App) (#App) (#App) (#App) (#App) (#App) (#App)

Contagio 96 189(69) 136(64) 28/7(14/2) 90(57) 86(55) 0 4(4) 2(2) 0 4(2) 4(2) 0/7(0/6) 287(82) 228(77) 28/14(14/8)

Google Play 12 19(9) 12(7) 3/0(2/0) 6(5) 6(5) 2/0(1/0) 2(1) 0 0 0 0 0 27(10) 18(8) 5/0(3/0)

Wandoujia 74 166(39) 70(23) 23/5(10/1) 46(24) 13(10) 3/2(2/2) 8(5) 0 0 0 0 0 220(47) 83(28) 26/7(11/3)

Total 182 374(117) 218(94) 54/12(26/3) 142(86) 105(70) 5/2(3/2) 14(10) 2(2) 0 4(2) 4(2) 0/7(0/6) 534(139) 329(113) 59/21(28/11)

• AsDroid produces some false positives (28 out of the
113 reported apps). They are induced by the following
reasons: (1) AsDroid cannot analyze dynamically gen-
erated text associated with a UI component; (2) The
dictionary we use is incomplete; (3) Some reported in-
tents are along infeasible paths but AsDroid does not
reason about path feasibility. The detection outcome
for individual apps is denoted by the symbols on top of
the bars and their colors in Fig. 7. Also observe that
most false positives belong to the category of HTTP
accesses. Some of them are due to the incompleteness
of our keyword dictionary. However most of them are
essentially HTTP accesses in advertisement libraries.
These accesses often download advertisement materi-
als and store them to external files that are later read
and displayed. Ideally, they are not stealthy as the
materials are displayed. However AsDroid currently
cannot reason about correlations through external re-
sources, leading to false positives. Note that most ex-
isting static data flow analysis engines on Android have
the same limitation. It should be easy to have an addi-
tional post-processing phase to suppress warnings from
advertisement libraries.

• The number of false negatives is small (11 apps total).
We manually inspect the apps that are not reported by
AsDroid to determine false negatives. In particular,
we use WALA to report all the API calls of interest
and then we inspect them one by one manually. There
are 182−113=69 such apps. We found that AsDroid
missed 11 malicious apps. Most of them are in the
category of stealthy install. As such, the detection
rate of AsDroid is 85/(85+11)=88%. The main reason
for false negatives is that the current implementation
cannot model some of the implicit call edges. There
are also cases that native libraries are used to perform
stealthy behavior, which is not handled by AsDroid.
The false negative HTTP accesses mainly result from
the in-accuracy of the text analysis. While AsDroid
extracted keywords such as “download” and “login”
that make the (stealthy) HTTP accesses compatible
and thus not being reported, these accesses doesn’t
match the textual semantics.

• Stealthy HTTP connections are very common, although
many of them may not be as harmful as the other
stealthy behaviors (please refer to our case study).
SMS sends are another dominant category of stealthy
behaviors, which echoes the recent studies [12, 34].

Comparison with FlowDroid. FlowDroid [13] is a state-
of-the-art open-source static taint analysis for Android apps.
We ran it on the 96 apps from Contagio. We use the default
taint sources (e.g. methods retrieving private information).
For the taint sinks, we only keep the SMS send and HTTP
access methods. FlowDroid ran out of memory for 55 of
the apps hence we compare the results for the remaining

41. FlowDroid reports 4 SMS sends in 3 apps and 1 HTTP
access in 1 app that have information leak. In contrast, in
the 41 apps, AsDroid reports 26 stealthy HTTP connections
in 18 apps, including the one reported by FlowDroid, with
1 false positive in 1 app and 7 false negatives in 2 apps.
It also reports 35 SMS sends in 21 apps, including 2 SMS
sends reported by FlowDroid. For the other 2 SMS sends (by
FlowDroid), the UIs explicitly indicate the behavior. Hence
they are not stealthy although they do leak information.
From the comparison, we clearly see that FlowDroid and
AsDroid focus on problems with different natures.

Fig. 6 shows the breakdown of the top level functions that
are attributed with intents. There are totally 743 such func-
tions. Observe that 39% of such functions are the interactive
onClick() function and almost 50% of them are activity life-
cycle methods that are not interactive but nonetheless have
associated UI. About 10% of them are onReceive() of ex-
ternal events and 1.2% of other functions such as the timer
handler function TimerTask.run(). These functions are of-
ten not associated with any UI.

We present the analysis time for the 182 apps in Fig. 7.
Most apps (about 93%) can be detected in 3 mins and a few
in 13 mins. Three apps require more than 30 mins. Human
inspection disclosed that that they are very complex apps
such that AsDroid consumes exceptionally large amount of
memory, which slows down the analysis significantly. We
plan to further look into this issue.

4.1 Case Studies
Next, we present two more cases.

iCalendar is a calendar app infected by malicious code that
sends a SMS message subscribing to a premium-rate service.
The malicious operation is triggered by user interaction in
a stealthy way. The user clicks the app to change a back-
ground image and the app increases a counter. When the
counter gets to 5, a message is sent. Fig. 8 shows a simplified
code snippet of the process.

Variable main represents the main interface layout. As
soon as the app is launched, it registers a click listener in
onCreate(). When the user clicks the interface, showImg()
is invoked in onClick() to reset the background image.
In the mean time, the app checks the counter to see if
sendSms() should be called to send a premium-rate SMS.

In our analysis, two intents: UiOperation and SendSms,
are associated with L1 and L2 in Fig. 8, respectively. The

intents are propagated to the top level function onClick()

through the call graph. The UI component associated with
the function is the background image without any text, which
does not imply the SendSms indent. The correlation analy-
sis also determines that these two intents are not correlated.
It is hence reported as a mismatch. Note that taint analysis
tools [13, 10] cannot report the problem because the data
involved in the SMS send are hardcoded.

HitPP is a game app downloaded from Google Play. Fig. 9
shows the code snippet in which a stealthy HTTP access is
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Figure 7: Analysis time. The detection results are also annotated on top of each bar with ‘@’ denoting true
positive(red), ‘X’ false positive(black) and ‘N’ false negative( yellow). Since an app may have multiple intents,
it may be annotated with multiple labels. The last 3 apps exceeded the max timeout 30 mins.

// in class iCalendar
public void onCreate(Bundle bundle)
{ main.setOnClickListener(this); }

public void onClick(View view)
{ showImg(); }

private void showImg()
{ if(index == 5) sendSms();

L1 main.setBackgroundDrawable(drawable1); }

public void sendSms()

{ L2 smsmanager.sendTextMessage(

"106xxxx", null, "921X1", p, p); }

Figure 8: iCalendar example.

// in class HitPP extends Activity
01: void onCreate(Bundle bundle) {
02: // initialization ...
03: WiGame.init(this,"f11947a...","Df6mBy...",true,true);
04: }
// in class WiGame
05: static void init(Context ctx, String s1, String s2, ...) {
06: b.a(ctx,s1);
07: }
// in class b
08: static void a(Context ctx, String str) {
09: (new b.1(str,ctx)).start();//→b$1.run() at line 11
10: }
// in class b$1 extends Thread
11: void run() {
12: String str="http://d.wiXXX.com/was/r?u=" +

WiGame.getDeviceId();
13: HttpGet httpGet=new HttpGet(str);//HttpAccess
14: httpClient.execute(httpGet);//without a LHS variable
15: httpClient.getConnectionManager().shutdown();
16: }

Figure 9: HitPP example.

made when the app is initialized. The initialization at line
3 transitively starts a thread at line 9. The thread entry

is at line 11. The thread starts an HTTP connection at
line 14 and then shuts it off right after at line 15. The
app does not receive or display any data from the remote
server. We suspect the HTTP access is to inform the remote
server about the start of the app. Since there is no UI text
associated with the top level onCreate() method and there
are no correlated intents, the HTTP access is reported by
AsDroid. This is a very typical kind of stealthy HTTP access
reported by AsDroid.

5. LIMITATIONS
AsDroid has the following limitations. (1) The current UI

analysis is simply based on textual keywords, which may be
insufficient. It is possible that apps use images or obfuscated
texts (e.g. text containing keyword “send” but having no re-
lation with sending a message). AsDroid will have difficulty
in catching the intention of the UI. We will study applying
more advanced text analysis or image analysis. (2) Cur-
rently, to avoid false positives, AsDroid relies on certain rules
in detecting intent correlation and avoids reporting some in-
tents incompatible with UI if their correlated intents are
compatible. This seems to be working fine given that An-
droid malwares are still in their early stage. In the future, if
an adversary has the prior knowledge of AsDroid, he could
obfuscate a malicious app to induce bogus correlations to
avoid being reported. We envision a more sophisticated pro-
gram analysis component will be needed, which may leverage
testing or symbolic analysis (e.g. use symbolic analysis to
determine if two intents are truely correlated). (3) AsDroid
currently cannot reason about correlations through exter-
nal resources, leading to false positives. Note that most
existing static data flow analysis engines on Android have



the same limitation. It could be mitigated by modeling ex-
ternal accesses. (4) Currently, AsDroid does not support
native code or reflection. (5) AsDroid misses some Inter-
Component Communication correlations. We could leverage
Epicc [29] to get better coverage in our future work.

6. RELATED WORK
TaintDroid applies dynamic taint analysis to Android apps

[10] to prevent information leak. Gilbert et al. extended
the technique to track implicit flows [16]. Hornyack et al.
developed AppFench to impose privacy control on Android
applications [21]. Arzt et al. investigated the limitations
of using runtime monitoring for securing Android apps [6].
They used unintended SMS sending as an example. The
essence of the technique is information flow tracking. Flow-
Droid [13] is a very recent static taint analysis tool. These
techniques cannot detect stealthy behavior as such opera-
tions may not leak information, as evidenced by the com-
parison with FlowDroid in Section 4.

Enck et al. developed a simple static analysis [11] that can
detect SMS sends with hardcoded SMS numbers and phone
calls, such as prefix “tel:” and substring “900”. However,
these patterns are very limited and not all such operations
are malicious.

Elish et al. proposed to detect malicious Android apps
[9] by determining the absence of data dependence path be-
tween user input/action and a sensitive function. However,
dependence is not the key characteristic of stealthy behav-
ior. In our experience, SMS sends triggered by user inputs
can be malicious. Furthermore, many benign HTTP ac-
cesses are not triggered by any user action, e.g. an email
app might connect to the server frequently to check new
emails in background.

DroidRanger developed by Zhou et al. employs both static
and dynamic techniques to detect malware [35], based on
signatures derived from known malware such as premium-
rate numbers and content of SMS messages. Hence, Droid-
Ranger has to maintain a signature database that may change
significantly overtime. And it also has runtime overhead.

Some existing work tries to capture Android GUI errors
[33] or improve privacy control via GUI testing [23]. Gross et
al. developed EXSYST [20] that uses search based testing
to improve GUI testing coverage. Mirzaei et al. applied
symbolic execution to generate test cases for Android apps
[27]. AsDroid could potentially leverage these techniques to
generate test cases for bug report validation.

Recently, Pandita et al. proposed Whyper to analyze an
app’s text description and then determine if the app should
be granted certain permissions [30]. Both Whyper and As-
Droid leverage text analysis. However, they have different
goals and AsDroid works by analyzing both apps and UIs.

7. CONCLUSION
We propose AsDroid, a technique to detect stealthy mali-

cious behavior in Android apps. The key idea is to identify
contradiction between program behavior and user interface
text. We associate intents to a set of API’s of interest.
We then propagate these intents through call graphs and
eventually attribute them to top level functions that usually
have associated UIs. By checking the compatibility between
the intents and the text of the UI artifacts, we can detect
stealthy operations. We test AsDroid on 182 apps that are
potentially problematic by looking at their permissions. As-

Droid reports 113 apps that have stealthy behaviors, with
28 false positives and 11 false negatives.
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