
1

Measuring the Impact of Code Dependencies on
Software Architecture Recovery Techniques

Thibaud Lutellier∗, Devin Chollak∗, Joshua Garcia‡,
Lin Tan∗, Derek Rayside∗, Nenad Medvidović†, and Robert Kroeger§
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Abstract—Many techniques have been proposed to automatically recover software architectures from software implementations. A
thorough comparison among the recovery techniques is needed to understand their effectiveness and applicability. This study improves
on previous studies in two ways. First, we study the impact of leveraging accurate symbol dependencies on the accuracy of
architecture recovery techniques. In addition, we evaluate other factors of the input dependencies such as the level of granularity and
the dynamic-bindings graph construction. Second, we recovered the architecture of a large system, Chromium, that was not available
previously. Obtaining the ground-truth architecture of Chromium involved two years of collaboration with its developers. As part of this
work, we developed a new submodule-based technique to recover preliminary versions of ground-truth architectures. The results of our
evaluation of nine architecture recovery techniques and their variants suggest that (1) using accurate symbol dependencies has a
major influence on recovery quality, and (2) more accurate recovery techniques are needed. Our results show that some of the studied
architecture recovery techniques scale to very large systems, whereas others do not.
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1 INTRODUCTION

Software architecture is crucial for program comprehension,
programmer communication, and software maintenance.
Unfortunately, documented software architectures are ei-
ther nonexistent or outdated for many software projects.
While it is important for developers to document software
architecture and keep it up-to-date, it is costly and difficult.
Even medium-sized projects, of 70K to 280K source lines of
code (SLOC), require an experienced recoverer to expend an
average of 100 hours of work to create an accurate “ground-
truth” architecture [1]. In addition, as software grows in size,
it is often infeasible for developers to have complete knowl-
edge of the entire system to build an accurate architecture.

Many techniques have been proposed to automatically
or semi-automatically recover software architectures from
software code bases [2]–[7]. Such techniques typically lever-
age code dependencies to determine what implementation-
level units (e.g., symbols, files, and modules) form a se-
mantic unit in a software system’s architecture. To under-
stand their effectiveness, thorough comparisons of existing
architecture recovery techniques are needed. Among the
studies conducted to evaluate different architecture recov-
ery techniques [2], [8], [9], the latest study [10], conducted
by a subset of this paper’s authors, compared nine variants
of six existing architecture recovery techniques. This study
found that, while the accuracy of the recovered architectures
varies and some techniques outperform others, their overall
accuracy is low.

This previous study used include dependencies as inputs to
the recovery techniques. These are file-level dependencies
established when one file declares that it includes another
file. In general, the include dependencies are inaccurate. For

example, file foo.c may declare that it includes bar.h, but
may not use any functions or variables declared or defined
in bar.h. Using include dependencies, one would conclude
that foo.c depends on bar.h, while foo.c has no actual
code dependency on bar.h.

In contrast, symbol dependencies are more accurate. A
symbol can be a function or a variable name. For example,
consider two files Alpha.c and Beta.c: file Alpha.c
contains method A; and file Beta.c contains method B. If
method A invokes method B, then method A depends on
method B. Based on this information, we can conclude that
file Alpha.c depends on file Beta.c.

A natural question to ask is, to what extent would the use
of symbol dependencies affect the accuracy of architecture
recovery techniques? We aim to answer this question empir-
ically, by analyzing a set of real-world systems implemented
in Java, C, and C++.

Dependencies can be grouped to different levels of gran-
ularity, which can affect the manner in which recovery
techniques operate. Generally, dependencies are extracted
at the file level. For large projects, dependencies can be
grouped to the module level, where a module is a semantic
unit defined by system build files. Module dependencies can
be used to recover architectures even when finer-grained
dependencies do not scale. In this paper, we study the
extent to which the granularity of dependencies affects the
accuracy of architecture recovery techniques.

Another key factor affecting the accuracy of a recovery
technique is whether dependencies utilized as input to
a technique are direct or transitive. Transitive dependen-
cies can be obtained from direct dependencies by using
a transitive-closure algorithm, and may add relationships
between strongly related components, making it easier for
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recovery techniques to extract such components from the
architecture. However, as the number of dependencies in-
creases, the use of transitive dependencies with some recov-
ery techniques may not scale to large projects.

Different symbols can be used (functions, global vari-
ables, etc.) to create a symbol dependency graph, but it
is unclear which symbols have the most impact on the
accuracy of architecture recovery techniques. In this paper,
we study the impact of function calls and global variable
usage on the quality of architecture recovery techniques. In
addition, both C++ and Java offer the possibility of using
dynamic-bindings mechanisms. Several techniques exist to
build dynamic-bindings graphs [11]–[13] and, despite the
existence of two early studies [14], [15] about the impact
of call-graph construction algorithms, and the origins of
software dependencies on basic architecture recovery, no
work has been done to study the effect of dynamic-bindings
resolution on recent architecture recovery techniques.

The last question we study pertains to the scalability of
existing automatic architecture recovery techniques. While
large systems have been studied and their architectures
analysed in previous work [16]–[18], the largest software
system used in the published evaluations of automatic
architecture recovery techniques is Mozilla 1.3, comprising
4MSLOC, and it revealed the scalability limits of several
recovery techniques [10]—an old version of Linux was
also studied, but its size reported in previous evaluations
was only 750KSLOC. The size of software is increasing,
and many software projects are significantly larger than
4MSLOC. For example, the Chromium open-source browser
contains nearly 10MSLOC. In this paper, we test whether ex-
isting automatic architecture recovery techniques can scale
to software of such size.

To this end, this paper compares the same nine variants
of six architecture recovery techniques from the previous
study [10], as well as two additional baseline algorithms,
using eight different types of dependencies on five software
projects to answer the following research questions (RQ):

RQ1: Can more accurate dependencies improve the ac-
curacy of existing architecture recovery techniques?

RQ2: What is the impact of different input factors, such
as the granularity level, the use of transitive dependencies,
the use of different symbol dependencies and dynamic-
bindings graph construction algorithms, on existing archi-
tecture recovery techniques?

RQ3: Can existing automatic architecture recovery tech-
niques scale to large projects comprising 10MSLOC or more?

This paper makes the following contributions:

• We compared nine variants of six architecture recov-
ery techniques using eight types of dependencies at
different levels of granularity to assess their effects
on accuracy. More specifically, we studied the impact
of dynamic-bindings resolution algorithms, function
calls, and global variable usage on the accuracy of
recovery algorithms. We also expand the previous
work by studying whether using a higher level of
granularity or transitive dependencies improve the
accuracy of recovery techniques. This is the first
substantial study to the impact of different types of
dependencies for architecture recovery.

• We found that the types of dependencies and the
recovery algorithms have a significant effect on re-
covery accuracy. In general, symbol dependencies
produce software architectures with higher accuracy
than include dependencies (RQ1). Our results sug-
gest that, apart from the selection of the “right” archi-
tecture recovery techniques, other factors to consider
for improved recovery accuracy are the dynamic-
bindings graph resolution algorithm, the granularity
of dependencies, and whether such dependencies are
direct or transitive (RQ2).

• Our results show that the accuracy is low for all
studied techniques, with only one technique (ACDC)
consistently producing better results than k-means, a
basic machine learning algorithm. This corroborates
past results [10] but does so on a different set of
subject systems, including one significantly larger
system, and for a different set of dependency rela-
tionships.

• We recovered the ground-truth architecture of
Chromium (svn revision 171054). This ground-truth
architecture was not available previously and we
obtained it through two years of regular discussions
and meetings with Chromium developers. We also
updated the architectures of Bash and ArchStudio
that were reported in [1]. All ground-truth architec-
tures have been certified by the developers of the
different projects.

• We propose a new submodule-based architecture
recovery technique that combines directory layout
and build configurations. The proposed technique
was effective in assisting in the recovery of ground-
truth architectures. Compared to FOCUS [19], which
is used in previous work [1], to recover ground-
truth architectures, the submodule-based technique
is conceptually simple. Since the technique is used
for generating a starting point, its simplicity can be
beneficial; any issues potentially introduced by the
technique itself can later be mitigated by the manual
verification step.

• We found some recovery techniques do, and some
do not, scale to the size of Chromium. Working with
coarser-grained dependencies and using direct de-
pendencies are two possible solutions to make those
techniques scale (RQ2 and RQ3).

2 RELATED WORK

2.1 Comparison of Software Architecture Recovery
Techniques
This paper builds on work that was previously reported
in [20]. Novelty with respect to this previous work in-
cludes a study of the impact of dynamic-bindings resolution
algorithms, function calls, and global variable usage on
the accuracy of recovery algorithms. We also expand the
previous work by studying whether using a higher level
of granularity and transitive dependencies improves the
accuracy of recovery techniques.

Many architecture recovery techniques have been pro-
posed [2]–[7], [21]. The most recent study [10] collected the
ground-truth architectures of eight systems and used them

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSE.2017.2671865

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



3

to compare the accuracy of nine variants of six architecture
recovery techniques. Two of those recovery techniques—
Architecture Recovery using Concerns (ARC) [4] and Algo-
rithm for Comprehension-Driven Clustering (ACDC) [7]—
routinely outperformed the others. However, even the ac-
curacy of these techniques showed significant room for
improvement.

Architecture recovery techniques have been evaluated
against one another in many other studies [2], [5], [8]–[10],
[22].

The results of the different studies are not always con-
sistent. scaLable InforMation BOttleneck (LIMBO) [23], a
recovery technique leveraging an information loss measure,
and ACDC performed similarly in one study [2]; how-
ever, in a different study, Weighted Combined Algorithm
(WCA) [24], a recovery technique based on hierarchical
clustering, outperformed Complete Linkage (CL) [24]. In
yet another study, CL is shown to be generally better than
ACDC [9]. In the most recent study, ARC and ACDC surpass
LIMBO and WCA [10]. Wu et al. [9] compared several
recovery techniques utilizing three criteria: stability, author-
itativeness, and non-extremity. For this study, no recovery
technique was consistently superior to others on multiple
measures. A possible explanation for the inconsistent re-
sults of these studies is their use of different assessment
measures.

The types of dependencies which serve as input to
recovery techniques vary among studies: some recovery
techniques leverage control and data dependencies [25]–
[27]; other techniques use static and dynamic dependency
graphs [2].

Previous work [14] examined the effect of different poly-
morphic call-graph construction algorithms on automatic
clustering. Another work [15] studied the impact of source-
code versus object-code-based dependencies on software ar-
chitecture recovery. They found that dependencies obtained
directly from source code are more useful than dependen-
cies obtained from object code. While also studying the im-
pact of dependencies on automatic architecture recovery, we
focus on the accuracy and the type of the dependencies (e.g.,
include and symbol dependencies) independently from the
way dependencies were extracted, i.e., from object code or
source code.

None of the papers mentioned above assess the influ-
ence of symbol dependencies on recovery techniques when
compared to include dependencies. This paper is the first
to study (1) the impact of symbol dependencies on the
accuracy of recovery techniques and (2) the scalability of re-
covery techniques to a large project with nearly 10MSLOC.

2.2 Recovery of Ground-Truth Architectures
Ground-truth architectures enable the understanding of im-
plemented architectures and the improvement of automated
recovery techniques. Several prior studies invested signifi-
cant time and effort to recover ground-truth architectures
for several systems.

2.2.1 Manual Recovery
Garcia et al. [1] described a method to recover the ground-
truth architectures of four open-source systems. The method

involves extensive manual work, and the mean cost of
recovering the ground-truth architecture of seven systems
ranged from 70KSLOC to 280KSLOC was 107 hours. Ca-
cOphoNy [16] is another approach that uses metamodels to
aid in manual recovery of software architectures and had
been used to reverse engineer a large software system [28].

In his work [29], Laine manually recovered the architec-
ture of the X-Window System to illustrate the importance of
software architecture for object-oriented development.

Grosskurth et al. [30] studied the architecture and evo-
lution of web browsers and provide guidance for obtain-
ing a reference architecture for web browsers. Their work
does not address the challenges of recovering an accurate
ground-truth architecture in general. In addition, it is not
clear if their approach is accurate for modern web browsers
such as Chromium, which use new design principles such
as a modern threading model for tabbed browsing.

Bowman et al. [31] and Xiao et al. [32] recovered the
ground-truth architectures of the Linux kernel 2.0 and
Mozilla 1.3 respectively. The Linux kernel and Mozilla are
large systems, but the evaluated versions are more than a
decade old. The version of the Linux kernel recovered was
from 1996 and at that time, it contained only 750KSLOC.
Mozilla 1.3 is from 2003 with 4MSLOC.

2.2.2 Tool-Assisted Architecture Recovery
Several tools have been created to help developers analyze,
visualize, and reconstruct software architectures. [33] Those
tools can be used in different stages of manual architecture
recovery.

Rigi [34] is a tool that can be used to analyse and
visualize software dependencies. While it is possible to
generate an architectural view of a project with the help
of Rigi [35], this requires the intervention of a developer
with deep knowledge of the project to manually group
similar elements (classes, files, etc.) together. Indeed, for
large projects, initial views proposed by Rigi are unreadable
due to the large number of nodes and dependencies [36]
and manual effort is necessary to recover the architecture
of the system. The Portable Bookshelf [37], SHriMP [38],
AOVIS [39], LSEdit [40] are other software visualization and
analysis tools that can help manual architecture recovery.

Several other tools such as Understand [41], Lattix [42]
and Structure101 [43] have been used to ensure the quality
of a given architecture and monitor its evolution. However,
none of these tools intend to automatically recover an archi-
tecture.

3 APPROACH

Our approach is illustrated in Figure 1. First, we extract
different types of dependencies for each projects. Then,
we provide those dependencies as input to six different
architecture recovery techniques. We also evaluate three
additional techniques that take the project’s source code as
input. Finally, we used K-means results and architectures ex-
tracted from the directory structure of the project as a base-
line. To evaluate the quality of the architecture recovered
from different sets of dependencies, we obtain a ground-
truth architecture of each project that was certified by each
project’s developers or main architect. Then, we measure
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Fig. 1: Overview of our approach

the quality of the architectures recovered automatically by
comparing them to the ground-truth architecture using four
different metrics.

In the rest of this section, we describe the manner in
which we extract the dependencies we study, and elaborate
on our approach for obtaining ground-truth architectures.

3.1 Obtaining Dependencies
Both symbol dependencies and include dependencies rep-
resent relationships between files, but the means by which
these dependencies are determined vary.

3.1.1 C/C++ Projects
To extract symbol dependencies for C/C++, we use the
technique built by our team that scales to software systems
comprising millions of lines of code [44]. The technique
compiles a project’s source files into LLVM bitcode, analyzes
the bitcode to extract the symbol dependencies for all sym-
bols inside the project, and groups dependencies based on
the files containing the symbols. At this stage, our extraction
process has not considered symbol declarations. As a result,
header-file dependencies are often missed because many
header files only contain symbol declarations. To ensure we
do not miss such dependencies, we augment symbol de-
pendencies by analyzing #include statements in the source
code.

These symbol dependencies are direct dependencies,
which may be used at the file level or grouped at the
module level. For large projects such as Chromium 1 and
ITK 2, many developer teams work independently on dif-
ferent parts of the project. To facilitate this work, developers
divided these projects into separated sections (modules) that
can be updated independently. To group code-level entities
at the module level, we extract module information from
the build files of the project provided by the developers
(e.g. makefile or equivalent). Transitive dependencies are
obtained for all projects using the Floyd-Warshall [45] algo-
rithm on symbol dependencies. Because the Floyd-Warshall

1. https://www.chromium.org/developers/how-tos/chromium-
modularization

2. https://itk.org/Wiki/ITK/Release 4/Modularization

algorithm did not scale for Chromium, we also tried to
use Crocopat [46] to obtain transitive dependencies for
Chromium and encountered similar scalability issues.

To extract include dependencies we use the compiler flag
-MM. Include dependencies are similar to the dependencies
used in prior work [10].

3.1.2 Java Projects
To extract symbol dependencies for Java, we leverage a tool
that operates at the Java bytecode level and extracts high-
level information from the bytecode in a structured and
human readable format [47]. This allows for method calls
and member access (i.e., relationships between symbols) to
be recorded without having to analyze the source code itself.
Using this information provides a complete picture of all
used and unused parts of classes to be identified. We can
identify which file any symbol belongs to, since the Java
compiler follows a specific naming convention for inner
classes and anonymous classes. With information about
usage among symbols and resolving the file location for
each symbol, we can build a complete graph of the symbol
dependencies for the Java projects. This method accounts
only for symbols used in the bytecode and does not account
for runtime usage which can vary due to reflective access.

We approximate include dependencies for Java by ex-
tracting import statements in Java source code by utilizing
a script to determine imports and their associated files. To
ensure we capture potential build artifacts, the Java projects
are compiled before extracting import statements. The script
used to extract the dependencies detects all the files in
a package. Then for every file, it evaluates each import
statement and adds the files mentioned in the import as
a dependency. When a wildcard import is evaluated, all
classes in the referred package are added as dependencies.

The Java projects studied do not contain well-defined
modules. In addition, our ground-truth architecture is finer-
grained than the package level. For example, Hadoop
ground-truth architecture contains 67 clusters when the part
of the project we study contains only 52 packages. Therefore,
we cannot use Java packages as an equivalent of C++
modules for our module-level evaluation for those specific
projects. When studying larger Java projects (e.g. Eclipse),
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using Java packages could be a good alternative to modules
defined in the configuration files used for C++ projects.
Maven or Ant build files could also be use as modules for
Java projects.

3.1.3 Relative Accuracy of Include and Symbol Dependen-
cies
C/C++ include dependencies tend to miss or over-
approximate relationships between files, rendering such
dependencies inaccurate. Specifically, include dependencies
over-approximate relationships in cases where a header file
is included but none of the functions or variables defined in
the header file are used (recall Section 1).

In addition, include dependencies ignore relationships
between non-header files (e.g., .cpp to .cpp files), resulting in
a significant number of missed dependencies. For example,
consider the case where A.c depends on a symbol defined
in B.c because A.c invokes a method defined in B.c.
Include dependencies will not contain a dependency from
A.c to B.c because A.c includes B.h but not B.c. For
example, in Bash, we only identified 4 include dependen-
cies between two non-header files, although there are 1035
actual dependencies between non-header files based on our
symbol results. Include dependencies miss many important
dependencies since non-header files are the main semantic
components of a project.

A recovery technique can treat non-header and header
files whose names before their extensions match (e.g., B.c
and B.h) as a single unit to alleviate this problem. However,
this remedy does not handle cases where such naming
conventions are not followed or when the declarations for
types are not in a header file.

Include dependencies use transitive dependencies for
header files. Consider an example of three files A.c, A.h,
and B.h, where A.c includes A.h and A.h includes B.h;
A.c has an include dependency with B.h because including
A.h implicitly includes everything that A.h includes.

For Java projects, include dependencies miss relation-
ships between files because they do not account for intra-
package dependencies or fully-qualified name usage. At the
same time, include dependencies can represent spurious
relationships because some imports are unused and wild-
card imports are overly inclusive. Include dependencies are
therefore significantly less accurate than symbol dependen-
cies.

3.1.4 Overall Accuracy of Symbol Dependencies
To ensure the symbol dependencies we extracted are accu-
rate, we randomly sampled 0.05% of the symbol depen-
dencies and investigated whether these dependencies are
correct. This small sample represents 343 dependencies we
manually verified. The sampling was done uniformly across
projects and dynamic bindings resolutions (interface-only
or class hierarchy analysis). We did not find any incorrectly
extracted dependencies in this sample, the margin of error
being 5.3% with 95% confidence.

We did not quantitatively check whether all the existing
dependencies were extracted, as it would be extremely time-
consuming to do. However, when building the tool used
for extracting dependencies [48], qualitative sanity checks

Fig. 2: Example Project Layout

Fig. 3: Example Project Submodules

were done to make sure the tool did not miss obvious
dependencies.

3.2 Obtaining Ground-Truth Architectures
To measure the accuracy of existing software architecture
recovery techniques, we need to know the “ground-truth”
architecture of a target project. Since it is prohibitively ex-
pensive to build architectures manually for large and com-
plex software, such as Chromium, we use a semi-automated
approach for ground-truth architecture recovery.

We initially showed the architecture recovered using
ACDC to a Chromium developer. He explained that most
of the ACDC clusters did not make sense and suggested
that we start by considering module organization in order
to recover the ground truth.

In response, we have introduced a simple submodule-based
approach to extract automatically a preliminary ground-truth
architecture by combining directory layout and build con-
figurations. Starting from this architecture, we worked with
developers of the target project to identify and fix mistakes
in order to create a ground-truth architecture.

The submodule-based approach groups closely related
modules, and considers which modules are contained
within another module. It consists of three steps. First, we
determine the module that each file belongs to by analyzing
the configuration files of the project.

Second, we determine the submodule relationship be-
tween modules. We define a submodule as a module that has
all of its files contained within the subdirectory of another
module. We first determine a module’s location, which is de-
fined as the common parent directories that contain at least
one file belonging to the module. Then we can determine if
a particular module has a relation to another module.

For example, assume a project has four modules named
A, B, C, and D. The file structure of the project is shown
in Figure 2, while the module structure that we generate is
shown in Figure 3.

• Module A: contains fileA1.cpp and fileA2.cpp.
Location is project/folder2.

• Module B: contains fileB1.cpp and fileB2.cpp.
Location is project/folder2/folder2_2.
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• Module C: contains fileC1.cpp. Location is
project/folder2/folder2_3.

• Module D: contains fileD1.cpp and fileD2.cpp.
Location is both project/folder1 and project/
folder2/folder2_3.

Based on the modules’ locations, we determine that
module B is a submodule of module A because module B’s
location project/folder2/folder2_2 is within module
A’s location project/folder2. Similarly, module C is a
submodule of module A. The reason module D has two
folder locations is because there is no common parent be-
tween the two directories. If module D had a file in the
project folder, then its location would simply be project.
Module D is not a submodule of module A because it has a
file located in project/folder1.

This preliminary version of the ground-truth architecture
does not accurately reflect the “real” architecture of the
project and additional manual corrections are necessary.
For example, Chromium has two modules webkit_gpu,
located in the folder webkit/gpu, and content_gpu,
located in the folder content/gpu. The two modules are
in completely separate folders and are grouped in different
clusters by the submodule approach. However, both are in-
volved with displaying GPU-accelerated content and should
be grouped together to indicate their close relationship to
the gpu modules. This is an example where the submodule
approach based on folder structure may not accurately
reflect the semantic structure of modules and needs to be
manually corrected.

Hundreds of hours of manual work are then required to
investigate the source code of the system to verify and fix
the relationships obtained. When we are satisfied with our
ground-truth version, we send to the developers the list of
clusters containing files and modules in the Rigi Standard
Format and a visual representation of how the clusters
interact with one another for certification. Multiples rounds
of verifications, based on developers’ feedback, are neces-
sary to obtain an accurate ground-truth architecture. For
the recovery of Chromium, we also had several in-person
meetings with a Chromium developer where he explained
to us his view of the project’s architecture and updated the
parts of our preliminary architectures that were inaccurate.
During these meetings, the Chromium developer investi-
gated those clusters to see if they make sense (for example,
whether the cluster names match with his understanding
of Chromium modules and clusters). Then we showed him
which files belongs to each cluster using different visual-
izations (e.g. the ”spring” model from Graphviz [49] and a
circular view using d3 Javascript library [50]), and he also
verified if they were correctly grouped. When he did not
agree, we checked if there was some mistakes on our side
(i.e. inaccuracy in the submodule technique) or if it was a
bug in the Chromium module definition.

It took two years of meetings and email exchanges with
Chromium developers to obtain the ground truth.

The final ground truth we obtain is a nested architec-
ture. Because most of the architecture recovery techniques
produce a flat architecture, we flatten our ground-truth
architecture by grouping modules that are submodules of
one another into a cluster. In the example above, we cluster

modules A, B and C into a single cluster and leave module
D on its own.

Previous work [1], [19] mentioned there might exist
different ground-truth architectures for the same project.
Despite the fact that our submodule-based approach only
recover one ground truth, it is possible to use our approach
as a starting point for recovering several ground truths,
by having different recoverers and receiving feedback from
different developers.

Prior work [1], conducted by a subset of this paper’s
authors, used a different approach, FOCUS [19], to recover
preliminary versions of ground-truth architectures. Com-
pared to FOCUS, the proposed submodule-based technique
is conceptually simpler. However, the submodule-based
technique uses the same general strategy as FOCUS and can,
in fact, be used as one of FOCUS’s pluggable elements. This
fact, along with the extensive manual verification step, sug-
gests that the strategy used as the starting point for ground-
truth recovery does not impact the resulting architecture (as
already observed in [1]).

4 SELECTED RECOVERY TECHNIQUES

We select the same nine variants of six architecture recovery
techniques as in previous work [10] for our evaluation. We
also used 2 baseline clustering algorithms, the K-means
algorithm and a directory-based recovery technique. Four
of the selected techniques (ACDC, LIMBO, WCA, and
Bunch [6]) use dependencies to determine clusters, while the
remaining two techniques (ARC and ZBR [3]) use textual
information from source code. We include techniques that
do not use dependencies to (1) assess the accuracy of finer-
grained, accurate dependencies against these information
retrieval-based techniques and to (2) determine their scal-
ability.

The view that the techniques we evaluate recover are
structural views representing components and their con-
figurations. Such views are fundamental and should be
as correct as possible before making other architectural
decisions. For example, behavioral or deployment views are
still highly dependent on accurate component identification
and the configurations among components.

Algorithm for Comprehension-Driven Clustering
(ACDC) [7] is a clustering technique for architecture recov-
ery. We included ACDC because it performed well in several
previous studies [2], [8]–[10]. ACDC aims to achieve three
goals. First, to help understand the recovered architecture,
the clusters produced should have meaningful names. Sec-
ond, clusters should not contain an excessive number of
entities. Third, the grouping is based on identified patterns
that are used when a developer describes the components
of a software system. The main pattern used by ACDC is
called the “subgraph dominator pattern”. To identify this
pattern, ACDC detects a dominator node n0 and a set of
nodes N = {ni | i ∈ N} that n0 dominates. A dominator
node n0 dominates another node ni if any path leading to ni
passes through n0. Together, n0, N , and their corresponding
dependencies form a subgraph. ACDC groups the nodes of
such a subgraph together into a cluster.

Bunch [6], [51] is a technique that transforms the archi-
tecture recovery problem into an optimization problem. An
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optimization function called Modularization Quality (MQ)
represents the quality of a recovered architecture. Bunch
uses hill-climbing and genetic algorithms to find a parti-
tion (i.e., a grouping of software entities into clusters) that
maximizes MQ. As in previous work [10], we evaluate two
versions of the Bunch hill-climbing algorithms—Nearest
and Steepest Ascent Hill Climbing (NAHC and SAHC).

Weighted Combined Algorithm (WCA) [24] is a hier-
archical clustering algorithm that measures the inter-cluster
distance between software entities and merges them into
clusters based on this distance. The algorithm starts with
each entity in its own cluster associated with a feature
vector. The inter-cluster distance between all clusters is then
calculated, and the two most similar clusters are merged.
Finally, the feature vector of the new cluster is recalculated.
These steps are repeated until WCA reaches the specific
number of clusters defined by the user. Two measures are
proposed to measure the inter-cluster distance: Unbiased
Ellenberg (UE) and Unbiased Ellenberg-NM (UENM). The
main difference between these measures is that UENM
integrates more information into the measure and thus
might obtain better results. In our recent study [10], UE
and UENM performed differently depending on the systems
tested, therefore, we evaluate both.

LIMBO [23] is a hierarchical clustering algorithm that
aims to make the Information Bottleneck algorithm scalable
for large data sets. The algorithm works in three phases.
Clusters of artefacts are summarized in a Distributational
Cluster Feature (DCF) tree. Then, the DCF tree leaves are
merged using the Information Bottleneck algorithm to pro-
duce a specified number of clusters. Finally, the original
artefacts are associated with a cluster. The accuracy of this
algorithm was evaluated in several studies. It performed
well in most of the experiments [2], [8], except in one recent
study [10] where LIMBO achieved surprisingly poor results.

Architecture Recovery using Concerns (ARC) [4] is a
hierarchical clustering algorithm that relies on information
retrieval and machine learning to perform a recovery. This
technique does not use dependencies and is therefore not
used to evaluate the influence of different levels of de-
pendencies. ARC considers a program as a set of textual
documents and utilizes a statistical language model, Latent
Dirichlet Allocation (LDA) [52], to extract concerns from
identifiers and comments of the source code. A concern
is as a role, concept or purpose of the system studied.
The extracted concerns are used to automatically identify
clusters and dependencies. ARC is one of the two best-
scoring techniques in our previous evaluation [10] and
thus is important to compare against when evaluating for
accuracy.

Similar to ARC, Zone Based Recovery (ZBR) [3] is a
recovery technique based on natural language semantics of
identifiers and comments found in the source code. Each
file is represented as a textual document and divided into
zones. For each word in a zone, ZBR evaluates the term
frequency-inverse document frequency (tf-idf) score. Each
zone is weighted using the Expectation-Maximization al-
gorithm. ZBR has multiple methods for weighting zones.
The initial weights for each zone can be uniform (ZBR-uni),
or set to the ratio of the number of tokens in the zone to
the number of tokens in the entire system (ZBR-tok). We

chose these two weighting variations to ensure consistency
with the previous study [10]. The last step of ZBR consists
of clustering this representation of files by using group-
average agglomerative clustering. ZBR demonstrated accu-
racy in recovering Java package structure [3] but struggled
with memory issues when dealing with larger systems [10].

Previous techniques are clustering algorithms specifi-
cally designed for architecture recovery. To obtain an esti-
mate of the quality of the architectures generated by these
algorithms, we used two baselines. For the first baseline, we
cluster the files using the K-means algorithm. Each entity
(i.e., a file or module) is represented by a feature vector
{f1,f2,...,fn}, where n is the number of features. Each of
the n features represents a dependency with one of the n
entities in the project.

For the second baseline, we used the directory structure
of the project as an approximation of the architecture of
the software. If automatic architecture recovery techniques
cannot generate a recovered architecture that is superior to
the directory structure of the project, then the recovery tech-
nique is not helpful for the specific project. To generate this
approximated architecture, we use the same implementation
as previous work [53].

5 EXPERIMENTAL SETUP

In this section, we describe our experimental environment,
how we obtained the ground-truth architectures for each
project, the parameters used in our experiments, and the
different metrics used to assess the quality of the recovered
architectures.

5.1 Projects and Experimental Environment
We conduct our comparative study on five open source
projects: Bash, ITK, Chromium, ArchStudio, and Hadoop.
Detailed information about these projects can be found
in Table 1. We choose those specific version of Bash and
Chromium because they were the most recent versions
available when we started our ground-truth recovery. For
ArchStudio, Hadoop and ITK, we picked those versions
because their respective ground-truth architectures were
already available.

To run our experiments, we leveraged two machines and
parallel processing, due to the large size of some projects.
We ran ZBR with the two weight variations described in
Section 4 on a 3.2GHz i7-3930K desktop with 12 logical
cores, 6 physical cores, and 48GB of memory. We ran all
the other recovery techniques on a 3.3GHz E5-1660 server
with 12 logical cores, 6 physical cores, and 32GB memory.

For Bash, Hadoop, and ArchStudio, all techniques take a
few seconds to a few minutes to run. For large projects, such
as ITK and Chromium, each technique takes several hours to
days to run. Running all experiments for Chromium would
take more than 20 days of CPU time on a single machine.
Consequently, we parallelized our experiments.

5.2 Extracted Dependencies
For the C/C++ projects, the number of include dependen-
cies is much larger than the number of symbol depen-
dencies, e.g., 297,530 symbol dependencies versus 1,183,799
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TABLE 1: Evaluated projects and architectures. †Cluster denotes the number of clusters in the ground-truth architectures.
N/A means the value is not available.

Project Version Description SLOC File Cluster† Inc Dep. Sym Dep. Trans Dep. Mod Dep.
Chromium svn-171054 Web Browser 10M 18,698 67 1,183,799 297,530 N/A 4,455
ITK 4.5.2 Image Segmentation Toolkit 1M 7,310 11 169,017 30,784 19,281,510 2,700
Bash 4.2 Unix Shell 115K 373 14 2,512 2,481 26,225 N/A
Hadoop 0.19.0 Data Processing 87K 591 67 1,656 3,101 79,631 N/A
ArchStudio 4 Architecture Development 55K 604 57 866 1,697 10,095 N/A

include dependencies for Chromium. This is the result of
both transitive and over-approximation of dependencies,
detailed in Section 3.1.3.

The number of transitive dependencies shown in Table 1
for ITK is strikingly high. We leverage Class Hierarchy Anal-
ysis (CHA) [13] to build the dynamic-bindings dependency
graph of symbol dependencies which, in turn, is used for
extracting dependencies. When using CHA, we consider
that each time a method from a specific class is called,
all its subclasses are also called. Depending on how the
developers use dynamic bindings, this can generate a large
number of dependencies. For example, for ITK, more than
75% of the dependencies extracted are virtual function calls,
as opposed to just 11% for Chromium. This high proportion
of dynamic bindings also results in an extremely large
number of transitive dependencies.

For Chromium, the algorithm to obtain transitive de-
pendencies ran out of memory on our 32GB server. None
of the recovery technique scaled for ITK with transitive
dependencies. Given that Chromium is around ten times
larger than ITK, it is safe to assume that, even if we were able
to obtain the transitive dependencies for Chromium, none
of the technique would scale to Chromium with transitive
dependencies.

5.3 Ground-truth architectures
To assess the effect of different types of dependencies on re-
covery techniques, we obtained ground-truth architectures
for each selected project. Compared to previous work [10],
we do not use Linux 2.0.27 and Mozilla 1.3 because our tool
that extracts symbol-level dependencies for C++ projects
works with LLVM. Making those two projects compatible
with LLVM would require heavy manual work. In place
of those medium-sized projects, we included ITK. We also
included a very large project, Chromium, for which we
recovered the ground truth. Due to issues resolving library
dependencies with an older version of OODT, for which a
ground-truth architecture is available [1], we were unable to
use it for our study.

For Chromium, the ground-truth architecture was ob-
tained by manually improving the preliminary architec-
ture extracted using the submodule approach outlined in
Section 3.2. After several updates and meetings with a
Chromium developer, the ground-truth architecture was
certified by one of Chromium’s main developers. ITK was
refactored in 2013 and its ground-truth architecture, ex-
tracted by ITK’s developers, is available. We contacted one
of ITK’s lead developers involved in the refactoring who
confirmed that this architecture was still correct for ITK
4.5.2.

The version of Bash used in a recent architecture-
recovery study [10] was from 1995. Bash has been changed

significantly since then (e.g., from 70KSLOC to 115KSLOC).
Therefore, we recovered the ground-truth architecture of the
latest version of Bash and used it in our study. Our certifier
for Bash is one of Bash’s primary developers and its sole
maintainer, who also recently authored a chapter on Bash’s
idealized architecture [54].

The ground-truth architecture for ArchStudio was up-
dated, from prior work [1], to be defined at the file level
instead of at the class level. Additionally, ArchStudio’s
original ground-truth architecture had a number of inconsis-
tencies and missing files, which were verified and corrected
by ArchStudio’s primary architect.

Hadoop, an open-source Java project used in a recent
architecture-recovery study [10], was the other Java project
we evaluated. Its original ground-truth architecture was
based on version 0.19.0 and had to be converted from the
class level to the file level for our analysis. For our analysis,
we focused on the HDFS, Map-Reduce, and core parts of
Hadoop.

5.4 Architecture Recovery Software and Parameters
To answer the research questions, we compare the clustering
results obtained from nine variants of the six architecture
recovery techniques, using include and symbol dependen-
cies different types of dependencies. All input dependencies
and output recovered architectures are generated in the Rigi
Standard Format [34]. We obtained ACDC and Bunch from
their authors’ websites. The K-means-based architecture re-
covery technique was implemented using the scikit-learn
python library [55]. For the other techniques, we used our
implementation from our previous study [10], [53]. Each of
those implementations was shared with the original authors
of the recovery techniques and confirmed as correct [10].
Due to the non-determinism of the clustering algorithms
used by ACDC and Bunch, we ran each algorithm five times
and reported the average results. WCA, LIMBO, ARC and
K-means can take varying numbers of clusters as input. We
experimented with 20 clusters bellow and above the number
of clusters in the ground truth, with an increment of 5 for all
cases. For example, for ArchStudio, we ran these algorithms
for 40 to 80 clusters. ARC also takes a varying number of
concerns as input. We experimented with 10 to 150 concerns
in increments of 10. We report the average results for each
technique.

5.5 Accuracy Measures
There might be multiple ground-truth architectures for a
system [1], [31]; that is, experts might disagree. Therefore, a
recovered architecture may be different from a ground-truth
architecture used in this paper, but close to another ground-
truth architecture of the same project. To mitigate this threat,
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we selected four different metrics commonly used in other
automatic architecture recovery evaluations to measure the
impact of the different inputs on the quality of the recovered
architectures.

One of the metrics—normalized TurboMQ—is indepen-
dent of any ground-truth architecture, which calculates
the quality of the recovered architectures. When we use
normalized TurboMQ to compare different recovery tech-
niques, the threat of multiple ground-truth architectures
should not apply. The remaining three metrics—MoJoFM,
a2a and c2ccvg—calculate the similarity between a recov-
ered architecture and a ground-truth architecture. If one
recovery technique consistently performs well according to
all metrics, it is less likely due to the bias of one metric
or the particular ground-truth architecture. Although using
four metrics cannot eliminate the threat of multiple ground-
truth architectures entirely, it should give our results more
credibility than using MoJoFM alone.

We used MoJoFM, a2a and c2ccvg’s implementations
provided by the developers of each technique. For Tur-
boMQ, we used our own implementation based on the
technique described by the original authors [56].

MoJoFM [57] is defined by the following formula,

MoJoFM(M) = (1−
mno(A,B)

max(mno(∀A,B))
)× 100% (1)

where mno(A,B) is the minimum number of Move or Join
operations needed to transform the recovered architecture
A into the ground truth B. This measure allows us to
compare the architecture recovered by the different tech-
niques according to their similarity with the ground-truth
architecture. A score of 100% indicates that the architecture
recovered is the same as the ground-truth architecture. A
lower score results in greater disparity between A and B.
MoJoFM has been shown to be more accurate than other
measures and was used in the latest empirical study of
architecture recovery techniques [5], [10].

Architecture-to-architecture [58] (a2a) is designed to
address some of MoJoFM drawbacks. MoJoFM’s Join op-
eration is excessively cheap for clusters containing a high
number of elements. This is particularly visible for large
projects. This results in high MoJoFM values for architec-
tures with many small clusters. In addition, we discovered
that MoJoFM does not properly handle discrepancy of files
between the recovered architecture and the ground truth.
This observation corroborates results obtained in recent
work [58]. We tried to reduce this problem by adding the
missing files to the recovered architecture into a separate
cluster before measuring MoJoFM, but this does not entirely
solve the issue. In complement of MoJoFM, we use a new
metric, a2a, based on architecture adaptation operations
identified in previous work [59], [60]. a2a is a distance
measure between two architectures:

a2a(Ai, Aj) = (1− mto(Ai, Aj)

aco(Ai) + aco(Aj)
)× 100%

mto(Ai, Aj) = remC(Ai, Aj) + addC(Ai, Aj) +

remE(Ai, Aj) + addE(Ai, Aj) +movE(Ai, Aj)

aco(Ai) = addC(A∅, Ai) + addE(A∅, Ai) +movE(A∅, Ai)

where mto(Ai, Aj) is the minimum number of oper-
ations needed to transform architecture Ai into Aj ; and

aco(Ai) is the number of operations needed to construct
architecture Ai from a “null” architecture A∅.

mto and aco are used to calculate the total numbers of
the five operations used to transform one architecture into
another: additions (addE ), removals (remE ), and moves
(movE ) of implementation-level entities from one cluster
(i.e., component) to another; as well as additions (addC )
and removals (remC ) of clusters themselves. mto(Ai, Aj) is
calculated optimally by using the Hungarian algorithm [61]
to maximise the weights of a bipartite graph built with the
clusters from Ai and Aj .

Cluster-to-cluster coverage (c2ccvg) is a metric used in
our previous work [62] to assess component-level accuracy.
This metric measures the degree of overlap between the
implementation-level entities contained in two clusters:

c2c(ci, cj) =
|entities(ci) ∩ entities(cj )|

max(|entities(ci)| , |entities(cj )|)
× 100%

where ci is a technique’s cluster; cj is a ground-truth clus-
ter; and entities(c) is the set of entities in cluster c. The
denominator is used to normalize the entity overlap in
the numerator by the number of entities in the larger of
the two clusters. This ensures that c2c provides the most
conservative value of similarity between two clusters.

To summarize the extent to which clusters of techniques
match ground-truth clusters, we leverage architecture cover-
age (c2ccvg). c2ccvg is a change metric from our previous
work [62] that indicates the extent to which one architec-
ture’s clusters overlap the clusters of another architecture:

c2ccvg(A1 ,A2 ) =
|simC (A1 ,A2 )|
|A2 .C |

× 100%

simC (A1 ,A2 ) = {ci | (ci ∈ A1,∃cj ∈ A2) ∧
(c2c(ci, cj) > thcvg)}

A1 is the recovered architecture; A2 is a ground-truth archi-
tecture; and A2.C are the clusters of A2. thcvg is a threshold
indicating how high the c2c value must be for a technique’s
cluster and a ground-truth cluster in order to count the latter
as covered.

Normalized Turbo Modularization Quality (normal-
ized TurboMQ) is the final metric we are using in this paper.
Modularization metrics measure the quality of the organi-
zation and cohesion of clusters based on the dependencies.
They are widely accepted metrics which have been used
in several studies [63]–[65]. We implemented the TurboMQ
version because it has better performance than BasicMQ [56].

To compute TurboMQ two elements are required: intra-
connectivity, and extra-connectivity. The assumption be-
hind this metric is that architectures with high intra-
connectivity are preferable to architectures with a lower
intra-connectivity. For each cluster, we calculate a Cluster
Factor as followed:

CFi =
µi

µi + 0.5×
∑

j εij + εji

µi is the number of intra-relationships;εij + εji is the
number of inter-relationships between cluster i and cluster
j. TurboMQ is defined as the sum of all the Cluster Factors:

TurboMQ =
k∑

i=1

CFi
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We note that TurboMQ by itself is biased toward archi-
tectures with a large number of clusters because the sum of
CFi will be very high if the recovered architecture contains
numerous clusters. Indeed, we found that for Chromium,
the architecture recovered by ACDC contains thousands
of clusters. The TurboMQ value for this architecture was
400 times higher than the TurboMQ values of architectures
obtained with other recovery techniques. To address this
issue, we normalized TurboMQ by the number of clusters
in the recovered architecture.

6 RESULTS

This section presents the results of our study that answer
the three research questions, followed by a comparison of
our results and those of prior work. Tables 2-21 show the
results for all four metrics when applied to a combination
of a recovery technique and system; and, if applicable for
such a combination, the results for a type of dependency:
Include, Symbol, Function alone, function and global vari-
ables (F-GV), Transitive, and Module-level dependencies.
Symbol dependencies may be resolved by ignoring dynamic
bindings (No Vir) or using a class hierarchy analysis of
dynamic bindings (S-CHA) or with interface-only resolution
of dynamic bindings (S-Int). Bash does not contain dynamic
bindings because it is implemented in C, and our tool cannot
extract function pointers.

For certain combinations of recovery techniques and sys-
tems, a result may not be attainable due to inapplicable com-
binations (NA), techniques running out of memory (MEM),
or timing out (TO). For example, information retrieval-
based techniques such as ARC and ZBR do not rely on
dependencies. Therefore, normalized TurboMQ results are
not meaningful when studying the impact of the different
factors of the dependencies. For this reason, we only report
normalized TurboMQ for include and symbol dependencies
and mark the other combinations as inapplicable.

We do not report results obtained utilizing transitive
dependencies for Chromium and ITK because, as discussed
above, the use of such dependencies with those projects
caused scalability problems. Module-level dependencies are
only reported for ITK and Chromium, since they are the
only projects that define modules in their documentation or
configuration files.

6.1 RQ1: Can accurate dependencies improve the ac-
curacy of recovery techniques?
As explained in section 3.1.3, include dependencies present
some issues (e.g. missing relationships between non-header
files, etc.) which can be solved by using more accurate
dependencies based on symbol interactions. Therefore, to
answer this research question, we focus on results obtained
using include (Inc) and symbol dependencies (Sym, S-Int,
and S-CHA), which are presented in Tables 2-21. In these
Tables, we reported the average results for each technique
and each type of dependency.

Three recovery techniques—ARC, ZBR-tok, and ZBR-
uni—do not rely on dependencies; however, we include
them to assess the accuracy of symbol dependencies against
these information retrieval-based techniques. The best score

obtained for each recovery technique across all type of
dependencies is highlighted in dark gray; the best score be-
tween include and symbol dependencies for each technique,
when applied to a particular technique, is highlighted in
light gray.

Our results indicate that symbol dependencies generally
improve the accuracy of recovery techniques over include
dependencies. According to a2a scores (Tables 7-11) relying
on both types of symbol dependencies outperforms rely-
ing on include dependencies for all of the combinations
of techniques and systems which use dependencies. The
only exception is in the case of ITK, where relying on
include dependencies outperforms interface-only resolution
for dynamic bindings. As ITK contains a large number
of dynamic-bindings dependencies (more than 75%), using
interface-only resolution likely results in a significant loss of
information, making those dependencies inaccurate. When
doing a complete analysis of the dynamic-bindings depen-
dencies of ITK (S-CHA), using symbol dependencies with
a class hierarchy analysis of dynamic bindings outperforms
using include dependencies for all techniques. On average,
using symbol dependencies respectively improves the ac-
curacy by 9 percentage points (percentage point, pp, is the
unit for the arithmetic difference between two percentages)
according to a2a. For a2a, the technique obtaining the great-
est improvement from the use of symbol dependencies, as
compared to include dependencies, is K-means, followed
by Bunch-SAHC, with an average improvement of, respec-
tively, 12 pp and a 10 pp for a2a.

MoJoFM results (Tables 2 to 16) followed a similar
trend, with symbol dependencies generally improving the
accuracy of the recovered architecture over include depen-
dencies for five of the projects. However, for Bash, include
dependencies produce better results than symbol dependen-
cies for all techniques but ACDC.

Tables 17-21 show c2ccvg for three different values of
thcvg , i.e., 50%, 33%, and 10%, (from left to right) for each
combination of technique and dependency type. The first
value depicts c2ccvg for thcvg = 50% which we refer to
as a majority match. We select this threshold to determine
the extent to which clusters produced by techniques mostly
resemble clusters in the ground truth. The other two c2ccvg
scores show the portion of moderate matches (33%) and weak
matches (10%).

Dark gray cells show the highest c2ccvg for each recovery
technique across all type of dependencies. Light gray cells
show the highest c2ccvg between include and symbol de-
pendencies for each technique, when applied to a particular
technique for a specific threshold thcvg . Several rows do not
have any highlighted cells; such rows indicate that c2ccvg
is identical for include and symbol dependencies. We ob-
serve significant improvement when using symbol depen-
dencies over include dependencies, even for thcvg = 50%.
For example, in Table 20, for ACDC on ArchStudio, the
c2ccvg for thcvg = 50% for include dependencies is 9%,
while using symbol dependencies increased it to 56% with
symbol dependencies and interface-only resolution. Overall,
Tables 17 to 21 indicate that (1) the use of symbol depen-
dencies generally produces more accurate clusters (majority
matches); and that (2) c2ccvg is low regardless of the types
of dependencies used.
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Bash
Algo. Inc. Sym. Trans. Funct. F-GV
ACDC 52 57 38 49 50
Bunch-NAHC 53 43 34 49 46
Bunch-SAHC 57 52 34 43 49
WCA-UE 34 24 24 29 30
WCA-UENM 34 24 24 31 30
LIMBO 34 27 27 22 22
K-means 59 55 49 47 46
ARC 43
ZBR-tok 41
ZBR-uni 29
Dir. Struc. 57

TABLE 2: MoJoFM results for Bash.

Chromium
Algo. Inc. S-CHA S-Int No DyB Mod. Funct. F-GV
ACDC 64 70 73 71 62 71 71
Bunch-NAHC 28 31 24 29 52 29 35
Bunch-SAHC 12† 71† 43† 42 57 39 29
WCA-UE 23 23 23 27 76 29 29
WCA-UENM 23 23 23 27 73 29 29
LIMBO TO 23 3 26 79 27 27
K-means 40 42 43 43 78 45 45
ARC 54
ZBR-tok MEM
ZBR-uni MEM
Dir. Struc. 69

TABLE 3: MoJoFM results for Chromium. † Scores denote
results for intermediate architectures obtained after the

technique timed out.

ITK
Algo. Inc. S-CHA S-Int No DyB Mod. Funct. F-GV
ACDC 52 55 52 48 35 60 60
B.-NAHC 37 36 35 35 46 45 47
B.-SAHC 32 46 43 41 51 54 53
WCA-UE 30 31 44 45 64 36 36
WCA-UENM 30 31 44 45 61 36 36
LIMBO 30 31 44 38 60 36 35
K-means 38 42 39 43 68 60 61
ARC 24
ZBR-tok MEM
ZBR-uni MEM
Dir. Struc. 59

TABLE 4: MoJoFM results for ITK.

ArchStudio
Algo. Inc. S-CHA S-Int No DyB Trans. Funct. F-GV
ACDC 60 60 77 78 71 75 74
Bunch-NAHC 48 40 49 47 40 53 46
Bunch-SAHC 54 39 53 40 38 53 54
WCA-UE 30 30 32 45 32 31 31
WCA-UENM 30 30 32 45 33 31 31
LIMBO 23 23 24 25 24 24 23
K-means 44 37 39 41 43 39 38
ARC 56
ZBR-tok 48
ZBR-uni 48
Dir. Struc. 88

TABLE 5: MoJoFM results for ArchStudio.

Hadoop
Algo. Inc. S-CHA S-Int No DyB Trans. Funct. F-GV
ACDC 24 29 41 41 28 41 41
Bunch-NAHC 23 21 24 24 17 26 26
Bunch-SAHC 24 26 28 26 20 29 28
WCA-UE 13 12 15 28 17 17 17
WCA-UENM 13 12 15 28 17 17 17
LIMBO 15 13 14 14 13 13 14
K-means 30 25 29 28 29 29 29
ARC 35
ZBR-tok 29
ZBR-uni 38
Dir. Struc. 63

TABLE 6: MoJoFM results for Hadoop.

Bash
Algo. Inc. Sym. Trans. Funct. F-GV
ACDC 65 80 80 41 41
Bunch-NAHC 68 84 83 41 41
Bunch-SAHC 69 84 83 40 41
WCA-UE 65 81 81 40 40
WCA-UENM 65 81 81 39 40
LIMBO 63 79 79 38 37
K-means 67 84 84 41 40
ARC 67
ZBR-tok 71
ZBR-uni 70
Dir. Struc. 64

TABLE 7: a2a results for Bash.

ITK
Algo. Inc. S-CHA S-Int No DyB Mod. Funct. F-GV
ACDC 67 74 63 58 84 48 48
Bunch-NAHC 71 78 68 58 85 47 47
Bunch-SAHC 69 78 66 57 85 48 47
WCA-UE 74 82 47 39 89 48 48
WCA-UENM 74 82 47 39 88 48 48
LIMBO 70 78 44 36 87 46 46
K-means 74 82 71 61 89 51 51
ARC 54
ZBR-tok MEM
ZBR-uni MEM
Dir. Struc. 61

TABLE 8: a2a results for ITK.

Chromium
Algo. Inc. S-CHA S-Int No DyB Mod. Funct. F-GV
ACDC 71 73 74 64 82 62 62
Bunch-NAHC 69 73 76 66 81 63 63
Bunch-SAHC 60† 71† 66† 66 83 64 62
WCA-UE 70 75 78 68 84 66 66
WCA-UENM 70 75 78 68 82 66 66
LIMBO TO 70 73 64 83 61 61
K-means 71 74 77 67 86 65 65
ARC 54
ZBR-tok MEM
ZBR-uni MEM
Dir. Struc. 60

TABLE 9: a2a results for Chromium. † Scores denote results
for intermediate architectures obtained after the technique

timed out.

ArchStudio
Algo. Inc. S-CHA S-Int No DyB Trans. Funct. F-GV
ACDC 71 86 88 83 92 87 88
Bunch-NAHC 69 80 81 75 80 81 81
Bunch-SAHC 70 80 82 74 80 81 82
WCA-UE 70 83 84 81 83 82 83
WCA-UENM 70 83 84 81 84 82 83
LIMBO 67 79 79 74 78 77 78
K-means 70 81 82 77 83 81 82
ARC 84
ZBR-tok 85
ZBR-uni 86
Dir. Struc. 87

TABLE 10: a2a results for ArchStudio.

Hadoop
Algo. Inc. S-CHA S-Int No DyB Trans. Funct. F-GV
ACDC 68 81 84 79 80 84 84
Bunch-NAHC 67 79 80 76 78 80 80
Bunch-SAHC 67 80 81 76 79 81 81
WCA-UE 68 80 80 78 81 81 81
WCA-UENM 68 80 80 78 81 81 81
LIMBO 67 79 79 75 79 78 79
K-means 70 81 81 77 82 82 82
ARC 82
ZBR-tok 81
ZBR-uni 83
Dir. Struc. 88

TABLE 11: a2a results for Hadoop.
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Bash
Algo. Inc. Sym. Trans. Funct. F-GV
ACDC 9 22 6 29 29
Bunch-NAHC 25 31 20 33 28
Bunch-SAHC 30 30 20 28 28
WCA-UE 0 7 7 10 10
WCA-UENM 0 7 7 5 10
LIMBO 6 13 8 7 7
K-means 0 17 6 14 16
ARC 5 11 NA
ZBR-tok 2 8 NA
ZBR-uni 2 5 NA
Dir. Struc. 1 4 NA

TABLE 12: Normalized TurboMQ results for Bash.

Chromium
Algo. Inc. S-CHA S-Int No DyB Mod. Funct. F-GV
ACDC 15 19 18 20 46 24 24
Bunch-NAHC 4 24 9 26 51 16 19
Bunch-SAHC 2† 30† 11† 23 45 29 11
WCA-UE 0 2 2 2 36 2 2
WCA-UENM 0 2 2 2 37 2 3
LIMBO TO 2 2 2 34 2 2
K-means 0 17 13 19 35 22 22
ARC 2 5 NA
ZBR-tok MEM
ZBR-uni MEM
Dir. Struc. 2 5 NA

TABLE 13: Normalized TurboMQ results for Chromium. †

Scores denote results for intermediate architectures
obtained after the technique timed out.

ITK
Algo. Inc. S-CHA S-Int No DyB Mod. Funct. F-GV
ACDC 33 24 18 32 47 40 40
Bunch-NAHC 15 23 23 22 50 34 37
Bunch-SAHC 10 29 23 21 50 44 37
WCA-UE 3 9 3 2 51 11 9
WCA-UENM 3 9 3 2 47 10 9
LIMBO 7 11 5 1 35 9 9
K-Means 13 24 15 13 37 31 25
ARC 9 33 NA
ZBR-tok MEM
ZBR-uni MEM
Dir. Struc. 9 9 NA

TABLE 14: Normalized TurboMQ results for ITK.

ArchStudio
Algo. Inc. S-CHA S-Int No DyB Trans. Funct. F-GV
ACDC 66 41 76 84 71 72 74
Bunch-NAHC 72 42 74 85 35 74 75
Bunch-SAHC 71 41 76 85 50 72 74
WCA-UE 1 11 22 65 15 10 19
WCA-UENM 1 11 22 65 15 10 19
LIMBO 2 12 31 38 7 24 27
K-means 13 21 38 51 29 35 39
ARC 18 25 NA
ZBR-tok 6 17 NA
ZBR-uni 5 15 NA
Dir. Struc. 1 26 NA

TABLE 15: Normalized TurboMQ results for ArchStudio.

Hadoop
Algo. Inc. S-CHA S-Int No DyB Trans. Funct. F-GV
ACDC 48 28 59 65 29 57 58
Bunch-NAHC 40 26 53 61 17 52 48
Bunch-SAHC 40 31 53 61 18 54 56
WCA-UE 1 5 8 34 7 6 8
WCA-UENM 1 5 8 33 7 6 8
LIMBO 2 7 19 25 2 17 17
K-means 11 13 29 34 9 26 27
ARC 6 13 NA
ZBR-tok 5 10 NA
ZBR-uni 7 13 NA
Dir. Struc. 1 20 NA

TABLE 16: Normalized TurboMQ results for Hadoop.

Tables 12 to 16 presents the normalized TurboMQ results,
which measure the organization and cohesion of clusters
independent of ground-truth architectures. Both types of
symbol dependencies generally obtain higher normalized
TurboMQ scores than include dependencies, ACDC and
Bunch with CHA resolution being exceptions for Arch-
Studio and Hadoop. In other words, symbol dependencies
help recovery techniques produce architectures with better
organization and internal component cohesion than include
dependencies. TurboMQ results of the summation of indi-
vidual scores for each cluster in the architecture make it
biased toward architectures with an extremely high number
of clusters. For example, ACDC for Chromium, with more
than 2000 clusters, obtains TurboMQ scores with one to two
orders of magnitude larger than the other metrics.

6.1.1 Statistical Significance Test
We conduct statistical significance tests to verify whether us-
ing accurate dependencies improves the quality of recovery
techniques. We do not use paired t-tests because our data

does not follow a normal distribution. Instead, we use the
Wilcoxon signed-rank test, which is a non-parametric test.

We also measure the Cliff’s δ, a non-parametric effect
size metric, to quantify the difference among the different
types of dependencies. Cliff’s δ ranges from -1 to 1. The
sign of the δ indicates whether the first or second sample
contains higher values. For example, when looking at results
using include versus results obtained using symbol depen-
dencies with CHA resolution for MoJoFM in Table 23, the
δ is positive, indicating that results obtained with symbol
dependencies and CHA resolution are generally better than
the ones obtained using include dependencies results. In
contrast, the δ for direct versus transitive dependencies is
negative, indicating that using direct dependencies gener-
ally produces higher results. To interpret the effect size,
we use the following magnitude: negligible (|δ| < 0.147),
small (|δ| < 0.33), medium (|δ| < 0.474), and large (0.474
≤ |δ|) [66]. To compute these tests, we use average measure-
ments obtained for each type of dependencies and metrics
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Bash
Algo. Inc. Sym. Trans. Funct. F-GV
ACDC 20 47 71 27 77 93 13 40 94 0 7 50 0 7 21
Bunch-NAHC 6 20 53 6 20 71 1 10 46 1 10 36 1 9 37
Bunch-SAHC 7 23 43 16 37 81 3 13 46 0 6 41 0 11 37
WCA-UE 0 6 63 0 4 61 0 1 58 0 0 26 0 1 23
WCA-UENM 0 6 63 0 4 61 0 1 58 0 2 24 0 6 45
LIMBO 0 0 57 0 0 60 0 0 63 0 0 32 0 0 32
K-means 10 19 49 9 28 69 9 26 57 0 5 41 0 2 46
ARC 4 20 54
ZBR-tok 7 7 71
ZBR-uni 0 0 50
Dir. Struct. 14 36 64

TABLE 17: c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches for Bash.

ITK
Algo. Inc. S-CHA S-Int No DyB Mod. Funct. F-GV
ACDC 0 0 57 0 0 48 0 0 31 0 0 31 8 8 54 0 8 38 0 8 38
B.-NAHC 0 0 31 0 0 38 0 0 34 0 0 34 5 23 60 0 0 32 0 0 31
B.-SAHC 0 0 0 0 2 54 0 0 29 0 0 23 6 29 57 0 0 34 0 0 32
WCA-UE 0 0 23 0 0 24 0 8 23 0 0 8 18 40 78 0 0 38 0 0 38
WCA-UENM 0 0 23 0 0 23 0 8 23 0 0 8 18 32 80 0 0 38 0 0 38
LIMBO 0 0 8 0 0 12 0 0 5 0 0 0 26 40 86 0 0 9 0 0 9
K-means 0 0 44 0 8 51 0 3 53 0 9 54 29 46 87 0 6 45 0 8 53
ARC 0 0 23
ZBR-tok MEM
ZBR-uni MEM
Dir. Struct. 0 0 8

TABLE 18: c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches for ITK.

Chromium
Algo. Inc. S-CHA S-Int No DyB Mod. Funct. F-GV
ACDC 16 30 80 17 45 92 17 37 87 10 23 83 13 17 28 9 17 80 10 17 80
B.-NAHC 0 0 7 0 0 26 0 0 3 0 0 9 7 14 33 0 0 4 0 3 25
B.-SAHC 0 6 19 14 33 80 7 12 36 4 10 54 8 16 39 0 1 38 0 0 4
WCA-UE 0 0 3 0 0 3 0 0 3 0 0 3 17 37 79 0 0 3 0 0 4
WCA-NM 0 0 3 0 0 3 0 0 3 0 0 3 12 35 76 0 0 3 0 0 4
LIMBO TO 0 0 0 0 0 0 0 0 0 25 45 69 0 0 0 0 0 0
K-means 3 7 31 1 6 25 2 8 24 1 5 20 24 43 78 1 5 21 1 4 20
ARC 1 3 25
ZBR-tok MEM
ZBR-uni MEM
Dir. Struct. 4 7 23

TABLE 19: c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches for Chromium. † Scores denote
results for intermediate architectures obtained after the technique timed out.

ArchStudio
Algo. Inc. S-CHA S-Int No DyB Trans. Funct. F-GV
ACDC 9 21 47 21 54 77 56 77 93 52 75 89 52 72 85 42 64 77 42 62 77
B.-NAHC 2 5 21 2 6 28 3 11 41 3 10 34 2 5 26 5 13 44 3 9 41
B.-SAHC 3 10 35 2 7 33 5 13 46 5 8 20 4 7 27 3 11 48 5 19 46
WCA-UE 0 5 37 0 5 29 2 14 38 19 35 53 2 13 39 0 7 37 0 8 47
WCA-NM 0 5 37 0 5 29 2 14 38 19 35 53 2 13 39 0 7 37 0 8 47
LIMBO 0 0 69 0 0 65 0 0 68 0 0 74 0 0 63 0 0 66 0 0 68
K-means 6 25 58 1 18 57 5 24 53 8 23 53 8 33 69 4 22 53 5 24 57
ARC 9 29 59
ZBR-tok 4 16 65
ZBR-uni 4 23 47
Dir. Struct. 74 91 100

TABLE 20: c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches for ArchStudio.

Hadoop
Algo. Inc. S-CHA S-Int No DyB Trans. Funct. F-GV
ACDC 0 3 43 4 13 39 7 18 49 7 18 45 4 10 36 7 16 52 9 16 52
B.-NAHC 1 3 35 1 1 28 1 4 36 1 4 33 1 3 24 2 5 35 2 5 38
B.-SAHC 1 3 32 1 7 40 2 6 35 2 6 34 1 3 20 2 8 38 1 5 36
WCA-UE 0 7 37 0 12 29 1 12 33 2 9 42 1 12 33 2 15 38 1 12 35
WCA-NM 0 7 37 0 12 29 1 12 33 2 9 41 1 12 33 2 15 38 1 12 35
LIMBO 0 0 64 0 0 54 0 0 55 0 0 64 0 0 58 0 0 57 0 0 55
K-means 2 22 71 1 15 60 3 19 64 2 16 60 1 14 53 3 18 65 3 19 64
ARC 6 24 63
ZBR-tok 4 16 65
ZBR-uni 4 23 47
Dir. Struct. 28 45 75

TABLE 21: c2ccvg results for majority(50%), moderate(33%) and weak(10%) matches for Hadoop.
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across all projects. This represents 35 paired samples per
metric. We report these results in Tables 22 and 23.

When comparing include dependencies and symbol de-
pendencies with interface-only dynamic-bindings resolu-
tion, for 4 out of 6 metrics—a2a, TurboMQ, and two c2ccvg
metrics (majority and moderate matches)— we found that
the p-values are inferior to 0.001, suggesting our results are
statistically significant. For these four metrics, we observed
an effect size varying from small (c2ccvg metrics) to large
(a2a).

When comparing include dependencies and symbol de-
pendencies with CHA, we found that the p-values are
inferior to 0.02, for 3 out of 6 metrics. The effect size for
these 3 metrics vary from negligible (c2ccvg metrics) to large
(a2a).

c2ccvg with weak coverage not being significant indi-
cates that the type of dependency does not matter for
producing a “weak” approximation of the ground-truth
architecture. However, when attempting to obtain a better
architecture (i.e. with a moderate coverage), working with
symbol dependencies with interface-only dynamic-bindings
resolution is preferable.

6.1.2 Summary of RQ1
The overall conclusion from applying these four metrics
is that symbol dependencies allow recovery techniques to
increase their accuracy for all systems in almost every case,
independently of the metric chosen. Especially, using a2a
metrics, we observed a statistically significant improvement
coupled with a large effect size in favor of symbol depen-
dencies with interface-only dynamic-bindings.

Despite the accuracy improvement of using symbol de-
pendencies over include dependencies, c2ccvg results for
majority match are low. This indicates that these techniques’
clusters are significantly different from clusters in the cor-
responding ground truth. It suggests that improvement is
needed for all the evaluated recovery techniques.

6.2 RQ2: What is the impact of different input factors,
such as the granularity level, the use of transitive de-
pendencies, the use of different symbol dependencies
and dynamic-bindings graph construction algorithms,
on existing architecture recovery techniques?
There are several types of dependencies that can be used
as input to recovery techniques. First, we can break symbol
dependencies based on the type of symbol (functions, global
variables, etc.). Another important factor to take into con-
sideration concerns the way we resolve dynamic bindings.
Finally, we also look at the transitivity and the granular-
ity level of the dependencies. Those different factors are
considered as important for other software analyzes and
have a significant impact on the quality of the recovered
architectures.

6.2.1 Impact of Function Calls and Global Variables
Function calls are the most common type of dependencies
in a system. The question we study pertains to whether
the most common dependencies have the most significant
impact on the quality of the recovery techniques.

Global variables typically represent a small, but impor-
tant part of a program. Global variables are a convenient
way to share information between different functions of
the same program. If two functions use the same global
variables, they might be similar and the files they belong to
could be clustered together. Two functions may, in fact, be
dependent on each other if they both utilize the same global
variable. Therefore, adding a global-variable-usage graph to
the function-call graph could help connect similar elements,
that do not directly interact with one another via function
calls.

We do not use global variable dependencies alone, be-
cause for most of the systems, only a minority of elements
accesses global variables. Therefore, by considering global
variable dependencies alone, we would miss a large number
of elements of the system, making several metrics inaccu-
rate. Instead, we measure the improvement on the quality
of the recovered architectures obtained by adding global
variable dependencies to functions calls compared to using
function calls alone. Static analysis using LLVM can detect
global variables for C and C++ projects. For Java projects,
we consider variables containing the static keyword as an
approximation of C/C++ global variables.

Overall, MoJoFM and normalized TurboMQ values for
function calls alone and symbol dependencies are highly
similar. However, for c2ccvg and a2a, results from all sym-
bol dependencies are significantly better than results from
function calls alone. For example, a2a results are, on average
16.8 pp better when using all symbol dependencies available
(S-CHA) than when using function calls alone. Despite
the fact that function calls have a major impact on the
accuracy of architecture recovery techniques, using function
calls alone is not sufficient for obtaining accurate recovered
architectures.

The impact of global variable usage is minor. For exam-
ple, on average, adding global variable usage to function
call dependencies improves the results by 0.1 pp according
to a2a. The impact of global variables is reduced because of
the small number of global variable accesses in the projects
used in our study. For example, Chromium’s C and C++
Style Guide 3 discourages the use of global variables. We
acknowledge that our results would likely be different for
a system relying heavily on global variables, such as the
Toyota ETCS system, which contains about 11,000 global
variables [67], [68].

We performed statistical tests and confirmed that symbol
dependencies are better than functions alone for architecture
recovery for 3 out of 6 metrics (p-value <0.05), with an
effect size varying from small to medium in favor of symbol
dependencies with interface-only resolution. In addition, we
did not observe a statistical difference among architectures
recovered from dependencies involving functions alone,
and dependencies involving both functions and global vari-
ables. It confirms that global variable usage is not a key de-
pendency for accurate architecture recovery for the projects
we studied.

3. https://www.chromium.org/developers/coding-style
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TABLE 22: Wilcoxon Signed Rank when comparing different types of dependencies.

Metrics p-values
Inc. vs S-CHA Inc. vs S-Int S-Int vs Trans. S-Int vs Funct. Funct. vs F-GV

MoJoFM .87 .06 .004 .60 .59
a2a <.001 <.001 .61 <.001 .32
TurboMQ .03 <.001 <.001 .28 .28
c2ccvg weak .20 .10 .02 .007 .77
c2ccvg mod .02 <.001 .02 .006 .82
c2ccvg maj .22 .003 .01 .24 .64

TABLE 23: Cliff’s δ Effect Size Tests. A negative value indicates that the effect size favor of the first dependency type
listed. The interpretation of the effect size is indicated in parenthesis. neg. stands for negligible and med. for medium.

Metrics Effect Size
Inc. vs S-CHA Inc. vs S-Int S-Int vs Trans. S-Int vs Funct. Funct. vs F-GV

MoJoFM .03 (neg.) .11 (neg.) -.19 (small) .05 (neg.) -.01 (neg.)
a2a .96 (large) .64 (large) -.10 (neg.) -.37 (med.) .02 (neg.)
TurboMQ .36 (med.) .39 (med.) -.48 (large) .08 (neg.) .01 (neg.)
c2ccvg weak .12 (neg.) .10 (neg.) -.14 (neg.) -.20 (small) -.01 (neg.)
c2ccvg mod .09 (neg.) .17 (small) -.14 (neg.) -.17 (small) .03 (neg.)
c2ccvg maj .05 (neg.) .17 (small) -.23 (small) -.11 (neg.) -.006 (neg.)

6.2.2 Impact of Dynamic-bindings Resolution
Dynamic-bindings resolution is a known problem in soft-
ware engineering, and several possible strategies for ad-
dressing it have been proposed [11]–[13]. Due to the high
number of dynamic bindings in C++ and Java projects, the
type of resolution chosen when extracting symbol depen-
dencies can significantly impact the accuracy of recovery
techniques. However, it is unclear which type of dynamic-
bindings resolution has the greatest impact on the archi-
tecture of a system. To determine which dynamic-bindings
resolution to utilize for recovery techniques, we evaluate
three different resolution strategies: (1) ignoring dynamic
bindings, (2) interface-only resolution, and (3) CHA-based
resolution.

Ignoring dynamic bindings is the easiest solution to fol-
low. More importantly, including it as a possible resolution
strategy allows us to determine whether doing any dynamic
bindings analysis improves recovery results.

For interface-only resolution, we only consider the inter-
face of the virtual functions as being invoked and discard
potential calls to derived functions. This is the simplest res-
olution that can be performed that does not ignore dynamic
bindings.

For the third resolution strategy, we use Class Hierarchy
Analysis (CHA) [13], which is a well-known analysis that is
computationally costly to perform. For this type of resolu-
tion, we consider all the derived functions as potential calls.
This resolution also creates a larger dependency graph than
interface-only resolution.

The results obtained when ignoring dynamic bindings
are shown in column No DyB. The results for symbol depen-
dencies obtained with CHA and Interface-only dynamic-
bindings resolution are respectively presented in column S-
CHA and S-Int. Bash, written in C, is the only project which
does not contain any dynamic bindings.

The results obtained when discarding dynamic bindings
(column No DyB) are generally not as good as with other
symbol dependencies. According to a2a, using only non-
dynamic-bindings dependencies reduces the accuracy of the
recovery techniques for all projects and all techniques when

compared to using dynamic bindings and the average a2a
results without dynamic bindings are 11 pp lower than the
results with CHA and 6 pp lower than the results with
interface-only resolution.

There are a few exceptions for Chromium, Hadoop,
and ArchStudio with the metrics MoJoFM and normalized
TurboMQ. The reason for unexpectedly high results with
MoJoFM and normalized TurboMQ is that using partial
symbol dependencies is not well handled by those two met-
rics. Using partial symbol dependencies —in our case, we
discard symbol dependencies that are dynamic bindings—
results in (1) a significant mismatch of files between the
ground-truth architecture and the recovered architectures,
and (2) a disconnected dependency graph. The file mis-
matches create artificially high MoJoFM results, and the
disconnected dependency graphs can lead to extremely high
or even perfect normalized TurboMQ scores, as it is the
case for ArchStudio when using Bunch without dynamic-
bindings dependencies. c2ccvg results are not conclusive
either way.

When looking at interface-only and CHA resolutions, we
observe a difference in behavior of the two Java projects
and the two C/C++ projects. For Java-based Hadoop and
ArchStudio, using an interface-only resolution seems to
greatly improve the results over using CHA. Those results
are obtained for both projects and for all metrics, with only
two exceptions for c2ccvg in Hadoop (Table 20) where using
CHA provides slightly better results. On average, according
to normalized TurboMQ, using interface-only resolution
improves the results by 20 pp for ArchStudio and Hadoop.
However, for C++-based ITK and Chromium, the normal-
ized TurboMQ results are improved by 6 pp when using
CHA for dynamic-bindings resolution.

There could be several reasons for this difference. First,
the two C++ projects are between 10 and 200 times larger
than the two Java projects we studied. It is possible that
a complete analysis of dynamic bindings only becomes
necessary for large projects with many complex virtual
objects. Second, in Java, methods are virtual by default,
while in C++, methods have to be declared as virtual by
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using the keyword virtual. C and C++ developers also
have the possibility to use function pointers instead of dy-
namic bindings, which are currently not handled properly
by our symbol dependency extractor. Those two elements
could also be a reason why we observed different affects of
dynamic-bindings resolutions for C++ and Java projects.

Our overall results indicate that, to obtain a more ac-
curate recovered architecture, the choice of the dynamic-
bindings resolution algorithm depends on the project stud-
ied. Specifically, if the project contains a high number of
dynamic bindings, CHA is likely to produce better recovery
results. Otherwise, interface-only resolution is preferable.
Ignoring dynamic bindings is ill-advised in most cases.

6.2.3 Transitive vs. Direct Dependencies
A transitive dependency can be built from direct dependen-
cies. For example, if A depends on B, and B depends on C,
then A transitively depends on C. Recovery techniques can
use as input (1) direct dependencies only or (2) transitive
dependencies. To compare direct dependencies against tran-
sitive dependencies, we run a transitive closure algorithm
on the symbol dependencies and study the effect of adding
transitive dependencies on the accuracy of architecture re-
covery. We did not use include dependencies for this study
because, as explained in Section 3.1.3, include dependen-
cies for C and C++ projects are not direct dependencies.
Furthermore, we did not include Chromium because the
algorithm generating transitive dependencies does not scale
to that size, even when we tried to use advanced computa-
tional techniques, such as Crocopat’s use of binary decision
diagrams [46]. For ITK, although we were able to obtain
transitive dependencies, none of the architecture recovery
techniques scaled to its size. Therefore, we cannot report
those results. Results for Bash, Hadoop, and ArchStudio, are
reported in the tables corresponding to the different metrics
(column Trans).

When comparing the results obtained with direct (Sym
for Bash and S-Int for Hadoop and ArchStudio) and transi-
tive (Trans) symbol dependencies, we observe that using
direct dependencies generally provides similar or better
results. Results with MoJoFM, normalized TurboMQ, and
c2ccvg tend to favor the use of direct dependencies over
transitive dependencies (+15 pp on average for normalized
TurboMQ when using direct dependencies, +4.9 pp on av-
erage for MoJoFM).

According to a2a, using transitive dependencies has a
minor impact (-0.33 pp on average) on the results. a2a gives
importance to the discrepancy of files between the recovered
architecture and the ground truth. As no files are added or
removed when obtaining the transitive dependencies from
the direct dependencies, this discrepancy is exactly the same
between the direct and transitive dependencies. This is why
we do not observe a significant difference between direct
and transitive dependencies results when using a2a.

When running statistical tests, we found that results
from direct dependencies (S-Int) are statistically different
from results obtained from transitive dependencies for all
metrics, except a2a, confirming our conclusion that direct
dependencies have a positive impact on the quality of the
recovered architectures.

With fewer dependencies, using direct dependencies is
more scalable than transitive dependencies. In summary, di-
rect dependencies help generate more accurate architectures
than transitive dependencies in most cases.

6.2.4 Impact of the Level of Granularity of the Dependen-
cies
Results at the module level are reported for ITK and
Chromium under the column Mod. of Tables 3, 4, 8, 9, 13,
14, 18, and 19. Module dependencies are obtained by adding
information extracted from the configuration files to group
files together. This information is written by the developers
and could represent the architecture of the project as it is
understood by developers. Given the inherent architectural
information in such dependencies, it is expected that they
would improve a recovery technique’s accuracy. Because we
only have module dependencies for ITK and Chromium,
we do not have enough data points to measure statisti-
cal significance of our results. However, results obtained
from module-level dependencies tend to be much better
than from file-level dependencies. For example, on average,
compared to using the best file-level dependencies, using
module-level information improves the results by 7.5 pp
according to a2a.

Overall, our results indicate that module information,
when available, significantly improves recovery accuracy
and scalability of all recovery techniques. As shown in
Table 1, the number of module dependencies is almost 70
times lower than the number of file dependencies. Because
of this reduction in the number of dependencies, we obtain
results from all recovery techniques in a few seconds when
working at the module level, as opposed to several hours
for each technique when working at the file level.

6.3 RQ3: Can existing architecture recovery tech-
niques scale to large projects comprising 10MSLOC or
more?
6.3.1 Scalability
Overall, ACDC is the most scalable technique. It took only
70-120 minutes to run ACDC on Chromium on our server.
The WCA variations and ARC have a similar execution
time (8 to 14 hours), with WCA-UENM slightly less scalable
than WCA-UE. Bunch-NAHC is the last technique which
was able to terminate on Chromium for both kinds of
dependencies, taking 20 to 24 hours depending on the kind
of dependencies used. LIMBO only terminated for symbol
dependencies after running for 4 days on our server.

Bunch-SAHC timed out after 24 hours for both include
and symbol dependencies. We report here the intermediate
architecture recovered at that time. Bunch-SAHC investi-
gates all the neighboring architectures of a current architec-
ture and selects the architecture that improves MQ the most;
Bunch-NAHC selects the first neighboring architecture that
improves MQ. Bunch-SAHC’s investigation of all neighbor-
ing architectures makes it less scalable than Bunch-NAHC.

LIMBO failed to terminate for include dependencies af-
ter more than 4 days running on our server. Two operations
performed by LIMBO, as part of hierarchical clustering, re-
sult in scalability issues: construction of new features when
clusters are merged and computation of the measure used
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to compare entities among clusters. Both of these operations
are proportional to the size of clusters being compared or
merged, which is not the case for other recovery techniques
that use hierarchical clustering (e.g., WCA).

ZBR needs to store data of the size nzV , where n is the
number of files being clustered, z is the number of zones,
and V is the number of terms. For large software (i.e., ITK
and Chromium), with thousands of files and millions of
terms, ZBR ran out of memory after using more than 40GB
of RAM.

The use of symbol dependencies improves the recovery
techniques’ scalability over include dependencies for large
projects (i.e., ITK and Chromium). The main reason for this
phenomenon is that include dependencies are less direct
than symbol dependencies.

As mentioned in the discussion of the previous research
question, working at the module-level significantly reduces
the number of dependencies and, therefore, greatly im-
proves the scalability of all dependency-based techniques
for large projects. Indeed, at the module-level we were able
to obtain results in a few seconds, even for techniques that
did not scale with file-level dependencies.

6.3.2 Metrics vs. Size
While some algorithms are scalable for large projects, it
does not mean that results obtained for large systems are as
relevant as results obtained for smaller systems. We verify if
automatic architecture recovery techniques perform equally
for software of all sizes by measuring the evolution of the
architectures’ quality, when the size of the projects increases.

Overall, we can see that results for Chromium (the
largest project) are generally less accurate than results
for Bash, ArchStudio, or Hadoop (the smallest projects).
However, results for ITK are generally worst than for
Chromium, despite ITK being ten times smaller. Because
we only study 5 different projects, we cannot draw clear
conclusions. Nonetheless, the fact that results for ITK are
worst than for Chromium seems to indicate that the size
of the project under study is not the only factor affecting
the quality of recovered architectures. Other factors such as
the programming language, the coding style, and the use
of dynamic bindings probably also have an impact that we
can’t measure with only five different projects.

6.4 Comparison with Baseline Algorithms
To see whether software architecture recovery algorithms
are effective, we compare their results with two baseline
recovered architecture.

For the first baseline, we recovered the architecture
based on the directory structure of the project. According
to a2a results, all recovery techniques performed better
than the baseline for Bash, ITK and Chromium. A similar
trend can be observed for TurboMQ and c2ccvg , with a
few exception (e.g. WCA and Limbo for Chromium for
TurboMQ). This seems to indicate that architecture recovery
techniques might be helpful to improve the architecture of
these projects.

For ArchStudio and Hadoop, the directory structure-
based architecture consistently outperforms architectures
recovered with other algorithms, except for TurboMQ for

which results are less consistent. This seems to indicate that
ArchStudio and Hadoop already have a directory relatively
similar to their ground truth architecture and that archi-
tecture refactoring might not be necessary for these two
projects.

Our second baseline consists in comparing the al-
gorithms specifically designed for architecture recovery
(ACDC, Bunch, WCA, and Limbo) with the results obtained
from a basic machine learning algorithm, k-means, used
with default parameters. Tables 24 and 25 show the statisti-
cal significance and the effect size of the difference between
K-means and other algorithms, independently from the de-
pendencies used. ACDC is the only algorithm that produces
equivalent or better results than K-means consistently, for all
metrics. WCA-UE and Limbo always produce worst results
than K-means. Finally, the two Bunch algorithms produce
better results than K-means only for some metrics.

The three techniques that performed consistently worst
than the baseline algorithm are all hierarchical clustering
algorithms. It is possible that techniques based on hierarchi-
cal clustering are not adapted to recover flat architectures.
Results could be different for other projects or ground-truth
architectures.

6.5 Summary of Results
Overall, we discovered three main findings from our study.
First, using accurate symbol dependencies improves the
quality of the recovered architectures. Second, using direct
dependencies is more scalable and generally improves the
quality of the results. Finally, working with high-level de-
pendencies (i.e. module dependencies) is another key factor
for scalable and high-quality architecture recovery of large
systems.

6.6 Comparison with the Prior Work
As previously mentioned, three of our subject systems were
also used in our previous study [10]. It is difficult to compare
our results with the prior study because of the differences
described in Section 5.3. When using the same type of
dependencies (Inc) as in our previous study, we observe mi-
nor differences for some algorithms. However, on average,
the MoJoFM scores only drop by 0.1 pp for all techniques
over the scores reported in [10]. In the cases of Hadoop
and ArchStudio, our previous study used a different level
of granularity (class level), which makes comparison with
current work irrelevant.

7 THREATS TO VALIDITY

This section describes several secondary results of our re-
search such as issues encountered with the different met-
rics, extreme architectures, and guidelines concerning the
dependencies, the architecture recovery techniques, and the
metrics to use in future work.

7.1 Metrics Limitations
As mentioned in section 5.5, some metrics have limitations
and can be biased toward specific architectures. In this
section, we explain the limitations we encountered with two
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TABLE 24: Wilcoxon Signed Rank for each algorithm when compared to K-means

Metrics p-values
ACDC Bunch-NAHC Bunch-SAHC WCA-UE WCA-UENM Limbo

MoJoFM <.001 .002 .27 <.001 <.001 <.001
a2a .42 <.001 <.001 .11 .11 <.001
TurboMQ <.001 <.001 <.001 <.001 <.001 <.001
c2ccvg weak .003 <.001 .004 <.001 <.001 0.004
c2ccvg mod .002 <.001 .003 <.001 <.001 <.001
c2ccvg maj <.001 <.001 .65 <.001 <.001 <.001

TABLE 25: Cliff’s δ Effect Size Tests. A negative value indicates that the effect size is in favor of K-means.

Metrics Effect Size
ACDC Bunch-NAHC Bunch-SAHC WCA-UE WCA-UENM Limbo

MoJoFM .54 -.25 -.04 -.67 -.64 -.86
a2a -.005 -.15 -.16 -.08 -.08 -.31
TurboMQ .52 .49 .51 -.66 -.66 -.53
c2ccvg weak .27 -.57 -.45 -.56 -.56 -.11
c2ccvg mod .24 .58 -.33 -.57 -.55 -.97
c2ccvg maj .42 -.25 -.06 -.55 -.55 -.77

of the metrics we used. Those limitations appeared because,
the metrics in question were neither explicitly intended for
nor adapted to specific types of dependencies.

The dependencies are often incomplete. For example,
include dependencies generally contain fewer files than the
ground-truth architecture. The reasons were explained in
Section 3.1.3, including the fact that non-header-file to non-
header-file dependencies are missing. Unfortunately, one of
the most commonly used metrics, MoJoFM, assumes that
the two architectures under comparison contain the same
elements. Given this limitation, one can create a recovery
technique that achieves 100% MoJoFM score easily but
completely artificially. The technique would simply create
a file name that does not exist in a project, and place it
in a single-node architecture. The MoJoFM score between
the single-node architecture and the ground truth will be
100%. By contrast, the a2a metric is specifically designed to
compare architectures containing different sets of elements.

In addition to the “file mismatch” issue with MoJoFM,
we also identified issues with TurboMQ, as discussed in
Section 5.5. Replacing TurboMQ by its normalized version
yielded an improvement. However, one has to be care-
ful when using normalized TurboMQ. We identified two
boundary cases where normalized TurboMQ results are
incorrectly high. It is possible to obtain the maximum score
for normalized TurboMQ by grouping all the elements of
the recovered architecture in a single cluster. As there will
be no inter-cluster dependencies, the score will be 100%.
We manually checked all recovered architectures to make
sure this specific case never happened in our evaluation. The
second “extreme case” occurs when the dependency graph
used as input is not fully connected. This can happen when
using only partial symbol dependencies (i.e., global variable
usage, non-dynamic-bindings dependency graph, etc.). In
this case, some recovery techniques will create architectures
in which clusters are not connected to one another. This
also results in a normalized TurboMQ score of 100%. In
our evaluation, this issue occurs when using non-dynamic-
bindings dependencies for ArchStudio and Chromium in
Tables 13 and 15. This is a limit of normalized TurboMQ
when using partial dependencies.

Those are specific issues we observed performing our
analysis. It is conceivable that biases towards other types of
architecture have yet to be discovered. This suggests that a
separate, more extensive study on the impact of different
architectures on the metrics would be useful in order to
obtain a better understanding of those metrics. Such a study
has not been performed to date.

Metrics are convenient because they quantify the accu-
racy of an architecture with a score, allowing comparisons
between recovery techniques. Our study has included, de-
veloped, adapted, and evaluated a larger number of metrics
than prior similar studies. However, the value of this score
by itself must be treated judiciously. Obviously, the “best”
recovered architecture is the one that is the closest to the
ground-truth. At the same time, important questions such
as “Is the recovered architecture good enough to be used
by developers?”, “Can an architecture with an a2a score of
90% be used for maintenance tasks?” cannot be answered
by solely using metrics. A natural outgrowth of this work,
then would be to involve real engineers in performing
maintenance tasks in real settings. Then it would be possible
to evaluate the extent to which the metrics are indicative
of the impact on completing such tasks. We are currently
preparing such a study with the help of several of our
industrial collaborators.

The metrics chosen in this paper measure the similarity
and quality of an architecture at different levels—the system
level (measured by MoJoFM and a2a), the component level
(measured by c2ccvg) and the dependency-cohesion level
(measured by normalized TurboMQ). In future work, we
intend to measure the accuracy of an architecture from an
additional perspective, by analyzing whether the architec-
ture contains undesirable patterns or follows good design
principles.

7.2 Selecting Metrics and Recovery Techniques
Using only one metric is not enough to assess the quality
of architectures. However, some metrics are better than
others depending on the context. When working on soft-
ware evolution, the architectures being compared will likely
include a different set of files. In this case, a2a, c2ccvg , and
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normalized TurboMQ are more appropriate than MoJoFM,
which assumes that no files are added or removed across
versions. If the architectures being compared contain the
same files (e.g., comparing different techniques with the
same input), a2a will give results with a small range of
variations, making it difficult to differentiate the results of
each technique. In this case, MoJoFM results are easier to
analyze than the ones obtained with a2a.

We do not claim that one recovery technique is better
than the others. However, we can provide some guide-
lines to help practitioners choose the right recovery tech-
nique for their specific needs. According to our scalability
study, ACDC, ARC, WCA, and Bunch-NAHC are the most
adapted to recover large software architectures. When try-
ing to recover the low-level architecture of a system, practi-
tioners should favor ACDC, as it generally produces a high
number of small clusters. If a different level of abstraction is
needed, WCA, LIMBO, and ARC allow the user to choose
the number of clusters of the recovered architecture. Those
techniques will be more helpful for developers who already
have some knowledge of their project architecture.

7.3 Non-uniqueness of Ground-Truth Architectures
There is not necessarily a unique, correct architecture for
a system [1], [31]. Recovering ground-truth architectures
require heavy manual work from experts. Therefore, it is
challenging to obtain different certified architectures for
the same system. As we are using only one ground-truth
architecture per project, there is a threat that our study
may not reflect other ground-truth architectures. To reduce
this threat, we use four different metrics, including one
independent of the ground-truth architecture. Two of the
metrics used in this study were developed by some authors
of this paper, which might have caused a bias in this study.
However, all four metrics, including metrics developed
independently, follow the same trend—symbol dependen-
cies are better than include dependencies—which mitigates
some of the potential bias. Furthermore, actual developers
or architects of the projects aided in the production of
our ground-truth architectures, further reducing any bias
introduced in those architectures.

7.4 Number of Projects Studied
We have evaluated recovery techniques on only five sys-
tems, which limits our study’s generalizability to other sys-
tems. Adding more projects is challenging. First, manually
recovering the ground-truth architecture of a test project is
time-consuming and requires the help of an expert with
deep knowledge of the project [1]. Second, the projects
studied need to be compatible with the tools used to extract
dependencies. For example, the C++ projects evaluated need
to be compilable with Clang. To mitigate this threat, we se-
lected systems of different sizes, functionalities, architecture
paradigms, and languages.

8 FUTURE WORK

Dependencies. This paper explores whether the type of
dependencies used affects the quality of the architecture
recovered, and answers in the affirmative: Each recovery

technique improves if more detailed input dependencies are
used.

The results in this paper show, however, that any
attempted evaluation of architecture recovery techniques
must be careful about dependencies: For example, if we look
at the best architecture recovery technique to recover Bash,
MoJoFM would select a different best technique in four out
of five cases with different input dependencies; c2ccvg in 3/5
cases; and normalized TurboMQ in 2/5 cases. a2a is more
stable and would select Bunch-SAHC in all the cases, but
a2a also shows that most of the techniques perform similarly
for Bash when using similar dependencies. If we look at
the other projects, we also observe that none of the metrics
always pick the same best recovery technique when using
different dependencies.

In this paper, we evaluate architecture recovery tech-
niques using source-code dependencies. Other types of de-
pendencies can alternatively be used. For example, one can
look at a developers’ activity (e.g., files modified together) to
obtain code dependencies [69] and further work is necessary
to evaluate if completely different types of dependencies
such as directory structure, historical information or de-
veloper’s activity can be use in the context of automatic
architecture recovery.

In addition, we do not consider weighting dependencies.
For example, consider FileA that uses one symbol from
FileB, and FileC that uses 20 symbols from FileB. Intuitively,
it seems that FileB and FileC are more connected than FileA
and FileB. Unfortunately, the current implementations of the
architecture recovery techniques do not consider weighted
graphs. Using weighted dependencies could also be a way
to improve the quality of the recovered architectures.

Nested architectures. The architecture recovery tech-
niques evaluated in this study all recover “flat”, i.e., non-
hierarchical architectures. We focus on flat architectures for
several reasons. First, for 4/5 systems we only have access
to a flat ground-truth architecture. Second, the existing au-
tomatic architecture recovery techniques we evaluate only
recover flat architectures.

In previous work on obtaining ground-truth architec-
tures [1], results indicate that architects do not necessarily
agree as to the importance of having a nested or flat ar-
chitecture. However, when discussing with Google devel-
opers during the recovery of Chromium’s ground truth,
it appeared that they view their architecture as a nested
architecture in which files are clustered into small entities,
themselves clustered into larger entities. Some work has
been done on improving metrics to compare nested architec-
tures [70], [71], but little work has been done on proposing
and evaluating automatic techniques for recovering nested
architectures. A proper treatment of nested architectures,
while out of scope of this paper, is an important area for
future research.

Multiple Ground-Truth Architectures. Our present
work relies on several metrics used for evaluation of ar-
chitecture recovery, some of which require a ground-truth
architecture that might not be unique. More empirical
work is needed to explore the idea of multiple ground-
truth architectures for a given system. One possible direc-
tion is to conduct ground-truth extraction with different
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groups of engineers on the same system. Another direc-
tion would be to have system engineers develop ground-
truth architectures starting from automatically recovered
architectures. Ground-truth architectures are important for
quality architecture-recovery evaluation and deserve further
examination.

9 CONCLUSIONS

The paper evaluates the impact of using more accurate
symbol dependencies, versus the less accurate include de-
pendencies used in previous studies, on the accuracy of
automatic architecture recovery techniques. We also study
the effect of different factors on the accuracy and scalability
of recovery techniques, such as the type of dynamic bind-
ings resolution, the granularity-level of the dependencies
and whether the dependencies are direct or transitive. We
studied nine variants of six architecture recovery techniques
on five open-source systems. To perform our evaluation, we
recovered the ground-truth architecture of Chromium, and
updated ArchStudio and Bash architectures. In addition,
we proposed a simple but novel submodule-based archi-
tecture recovery technique to recover preliminary versions
of ground-truth architectures. In general, each recovery
technique extracted a better quality architecture when using
symbol dependencies instead of the less-detailed include
dependencies. Working with direct dependencies at module
level also helps with obtaining a more accurate recovered
architecture. Finally, it is important to carefully choose the
type of dynamic-bindings resolution when working with
symbol dependencies, as it can have a significant impact
on the quality of the recovered architectures.

In some sense this general conclusion that quality of
input affects quality of output is not surprising: the prin-
ciple has been known since the beginning of computer
science. Butler et al. [72] attribute it to Charles Babbage, and
note that the acronym “GIGO” was popularized by George
Fuechsel in the 1950’s. What is surprising is that this issue
has not previously been explored in greater depth in the
context of architecture recovery. Our results show that not
only does each recovery technique produce better output
with better input, but also that the highest scoring technique
often changes when the input changes.

There are other dimensions of architecture recovery that
are worthy of future exploration, such as: recovering nested
architectures; evaluating the usefulness of the recovered
architecture to do specific maintenance tasks; and resolving
function pointers and dynamic bindings.

The results presented here clearly demonstrate that there
is room for more research both on architecture recovery
techniques and on metrics for evaluating them.
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